
Portable, Unobtrusive Garbage Collectionfor Multiprocessor SystemsDamien Doligez�Ecole Normale Sup�erieureINRIA Rocquencourt�Ecole PolytechniqueDamien.Doligez@inria.fr Georges Gonthier�INRIA Rocquencourt78153 LE CHESNAY CEDEXFRANCEGeorges.Gonthier@inria.frAbstractWe describe and prove the correctness of a new concurrentmark-and-sweep garbage collection algorithm. This algo-rithm derives from the classical on-the-y algorithm fromDijkstra et al. [9]. A distinguishing feature of our algo-rithm is that it supports multiprocessor environments wherethe registers of running processes are not readily accessible,without imposing any overhead on the elementary opera-tions of loading a register or reading or initializing a �eld.Furthermore our collector never blocks running mutator pro-cesses except possibly on requests for free memory; in par-ticular, updating a �eld or creating or marking or sweepinga heap object does not involve system-dependent synchro-nization primitives such as locks. We also provide supportfor process creation and deletion, and for managing an ex-tensible heap of variable-sized objects.1 IntroductionConcurrent garbage collection has a well-deserved reputa-tion for being a tough problem. This is evidenced by thediscrepancies between the state of theory and practice inthis area. As we shall see below, the published proven al-gorithms often contain simplifying assumptions that cannotbe met in practice in a multiprocessor system, because thiswould either impose unbearable overhead on the mutatorprocesses, or require a degree of hardware and/or operatingsystem support that compromises portability. Implementedsystems that do not fall in the latter two categories oftenrely on incompletely formalized algorithms, which generallymeans buggy algorithms, given the subtleness of the correct-ness proofs.To our knowledge, and as we shall argue below, all pub-lished concurrent collectors fall in one of the above cate-gories, and thus fail to meet at least one of the basic re-quirements for portable, e�ective garbage collection on mul-tiprocessors. In fact the only proposal that even attempts tomeet these requirements is the Doligez-Leroy hybrid collec-tor [10]. Unfortunately, the algorithm they proposed was in-completely speci�ed and, perhaps not unexpectedly, buggy.�This work was partly funded by the ESPRIT Basic Research Ac-tion No. 6454 (Project CONFER)Copyright 1994 ACM. Appeared in the Proceedingsof the 21st Annual ACM SIGPLAN-SIGACT Sympo-sium on Principles of Programming Languages, Jan-uary 1994, pp. 70{83.

In this paper, we redress this state of a�airs by fully describ-ing and proving a concurrent garbage collection algorithmthat meets the requirements for the Doligez-Leroy collectorarchitecture. This turns out to be much more intricate thanthe simple adaptation of the concurrent mark-and-sweep al-gorithm [9] outlined in [10]. We still expect the experimentalresults of [10] to hold for our model, because a slightly mod-i�ed (debugged) version of their algorithm �ts in our model.In the next section we spell out the basic portability ande�ciency requirements for a collector for multiprocessors.We show why previous algorithms fail at least one these re-quirements, and how these requirements coincide with thoseof the Doligez-Leroy architecture. In section 3 we describethe basic algorithm of [9], and expose a series of counterex-amples to explain why a straightforward adaptation of thisalgorithm to multiple mutators would not work; we also ad-dress some e�ciency issues. In section 4 we describe thebasic procedures of our algorithm. In section 5 we describethe extensions to handle process and heap management. Fi-nally, in section 6 we present a sketch of the correctness proofof the algorithm. This proof is based on a formal model ofthe algorithm, expressed in a Unity/TLA-like format; thismodel, listed in the appendix, also covers the extensions tothe basic algorithm.2 The requirementsOur basic requirements are essentially shaped by the follow-ing \facts of life" about multiprocessors:1 Registers are local. Even on a uniprocessor, it canbe hard to track the machine registers of a runningprocess. On a multiprocessor this is next to impossi-ble; furthermore this impossibility extends to the localmemory of each processor.2 Synchronization is expensive. Of course any mul-tiprocessor system will provide semaphores and othersynchronization devices, but often these will only beavailable through expensive system calls. Thus a por-table collector should use as little synchronization aspossible.3 Resources are not bounded. It is unreasonable toforbid system calls to grow the heap. And just as un-reasonable to make the liveness of the collector dependon exhaustion of the system memory.

2.1 Actions and overheadLet us classify the various actions that can be taken by amutator thread:a) move data (including heap pointers) between reg-isters and/or local memoryb) load a �eld in a register (dereference a heappointer)c) reserve free memory for future new heap objectsd) create a heap object in previously reserved memorye) �ll a �eld in a new heap objectf) update a �eld in an existing heap objectg) cooperate with the collector (see below)h) mark heap objects referenced by registers and localmemory (this is a special case of g)We break up the usual \allocate a heap object" action intoseparate c (reserve), d (create), and e (�ll) actions. Thec actions are a necessary evil: the c actions of all activemutator threads all contend for the free memory providedeither by the collector or the system. Hence c actions mustcall on synchronization primitives, which may be expensive(fact 2). Having separate d and c actions allows us to amor-tize the synchronization overhead by keeping local pools foreach thread, and \batching" operations on the free list.The e (�ll) and f (update) action types correspond tothe same physical operation|a store in the heap. We dis-tinguish them because they have di�erent frequencies andpreconditions. In a e action the modi�ed heap object is stillprivate to the mutator thread, while in an f action it mayshared with other threads. Hence f actions are harder toimplement, so it is fortunate that in practice they are notvery frequent: having an e�cient garbage collector encour-ages the creation of new objects to hold new results, ratherthan the hazardous reuse of temporaries.The g and h actions (cooperate and mark) are an un-avoidable consequence of fact 1. Obviously, a reasonablealgorithm should ensure that they do not disrupt the muta-tor threads signi�cantly.Let us say a garbage collection algorithm is unobtrusiveif it meets the following conditions:(i) It adds no overhead to the very frequent mutator ac-tions of type a, b, and e.(ii) It only imposes synchronization overhead on type cmutator actions, for which it is unavoidable.(iii) Mutator actions of type g and h are executed only ata mutator thread's convenience.(iv) For any mutator, the total overhead of g and h actionsfor a full collection cycle is bounded, a \full collectioncycle" being the period that ends when the collectorhas reclaimed all currently unused heap objects.(v) Full collection cycles always terminate, regardless ofincreases in the heap size or the number of processes.Requirement (i) is a basic e�ciency constraint. Any usefuloverhead has to include at least one heap reference, whichwould take as much time as a load or �ll action, and pos-sibly twenty times as much as a move action. Require-ment (ii) is a direct consequence of fact 2: less frequentactions of type d, f , g, or h can incur moderate overhead,but by fact 2 synchronization cannot be considered \mod-erate overhead". Requirement (iii) means a mutator doesnot have to be ready to cooperate with the collector at all

times: it can restrict cooperation to well-de�ned points in itscode. As a consequence, transient states are allowed in themutators, which is required by e�cient code. Another con-sequence is that real-time garbage collection becomes possi-ble: a mutator may exclude cooperation overhead for sometime-critical part of its code. Requirement (iv) bounds theamount of cooperate and mark overhead a mutator mustincur before getting any signi�cant payback from the collec-tor. Requirement (v) simply takes fact 3 into account.Put all together, requirements (i){(v) state that the per-formance of the concurrent collection algorithm should beroughly comparable to that of a sequential collector, butwithout the disrupting pauses (requirements (iii) and (iv)).On the other hand, we limit ourselves to rather weak ef-�ciency requirements on the collector. The basic collectoractions of marking, unmarking, or reclaiming a heap ob-ject should not require synchronization; the total amountof collector work for a full cycle should be proportional tothe maximal heap size and the total number of processes,at least in absence of the (presumed infrequent) updateactions. Stronger requirements (e.g., removing the provi-sion for update actions) would imply additional mutatoroverhead that is not justi�ed in practice, as the collector israrely the bottleneck, especially in the setting of [10] (whichwe outline in subsection 2.3.) Also, allocating more mem-ory will compensate for a slower algorithm, up to a certainpoint [13]. As a last resort, parallelizing the collector is alsoan option [15, 19].2.2 Where all else failsAs elementary as constraints (i{v) seem to be, they all butrule out copying garbage collection algorithms that relocateobjects in order to eventually reclaim entire areas at once.By fact 1, the collector cannot update the local memoryof running processes to reect the relocation, so it mustarrange for the processes to do this updating on their own.The known schemes for doing this invariably break at leastone of (i){(iii). Doing a test [3] or a second indirection [6, 20]for each heap access obviously breaks (i) for load actions.Using virtual memory page protections to bypass the test [2]breaks (ii) and (iii): mutators incur the possibly high pagefault overhead at random times.Some promising systems were recently proposed for in-cremental and concurrent copying collection [5, 18]; howeverthey require a global rendez-vous of all the mutators in eachcollection cycle, breaking either (ii) or (iii).So it seems we must give up relocation to get an un-obtrusive concurrent collector, which leaves us with mark-and-sweep algorithms. Unfortunately, the basic on-the-ymark-and-sweep algorithm [9] does not account for fact 1|it assumes that the local pointers of a thread only point tootherwise accessible objects. This could only be enforced byimposing overhead on move actions [12], and thus break-ing (i). All the derivatives of [9] su�er this fatal aw [4, 14].Furthermore these algorithms only support a single mutator;the multiple mutator version [15] explicitly requires synchro-nization overhead, breaking (ii).2.3 The Doligez-Leroy designIt may seem a pity that we had to rule out the copying al-gorithms, as only they can deal with the large amount ofshort-term garbage generated by functional languages suchas ML [1]. As was shown in [10], this dilemma can be solved71

Major heap

Minor heaps

Stacks

1 2 3

Threads

Global
variablesFigure 1: The Doligez-Leroy architectureby organizing the local memory of each processor into a stackand heap (Figure 1), and running a stop-and-copy collectorlocally to do generation scavenging. This stop-and-copy col-lector does not break requirement (ii) because it only stopsthe local thread. Copying is especially adapted to the younggeneration because most of the young objects are garbage,and a copying collector works best in that case. Thus most ofthe garbage is reclaimed by the mutator threads themselvesand the major collector is only concerned with long-livedand mutable objects.With this architecture the previously overlooked fact 1becomes glaringly obvious: clearly the global collector can-not trace the local heap without the cooperation of the mu-tator thread. In a highly portable system such as Caml-Light [17], fact 2 is a matter of course. So [10] had implic-itly laid out requirements (i){(iv) for their global collector.They only missed on requirement (v) and, as we will seebelow, on some subtle implications of requirements (i){(iv).3 The basic algorithm and its shortcomingsIn this section, we expose the Dijkstra et al. algorithm [9](hereafter called the \basic algorithm") and a series of coun-terexamples that show why a straightforward adaptation tomultiple mutators cannot work, and we describe some e�-ciency problems of this algorithm.3.1 The basic algorithmFirst we describe the heap data structure, then the opera-tions of the collector and mutators.The heap is a �xed array of objects, each of which has a�xed number of �elds.const End;MaxIndex 2 NATtype ADDR � f0; : : : ;End � 1gINDEX � f0; : : : ;MaxIndexgvar heap 2 array [ADDR; INDEX] of OBJECTThere is a �xed set of globally accessible locations. One ofthem is the head of the free list, which uses the usual linkedlist implementation.const Globals 2 set of ADDRThe tracing status of heap objects is modeled by a separatecolor array:

Mark : foreach x 2 Globals do MarkGray(x)Scan: repeatdirty falseforeach x 2 ADDR doif color[x] = Gray thendirty trueforeach i 2 INDEX doMarkGray(heap[x; i])color[x] Blackuntil :dirtySweep&Clear: foreach x 2 ADDR doif color[x] = White thenappend x to the free listelse if color[x] = Black thencolor[x] WhiteFigure 2: The basic collectortype COLOR � fWhite;Gray;Blackgvar color 2 array [ADDR] of COLORinit 8x 2 ADDR; color[x] =WhiteWhite objects are unmarked. Their reachability status is un-known. Black objects are traced. They are marked (reach-able) and their sons are marked. Gray objects are markedbut their sons have not been marked yet.Because the free list head is one of the globally accessi-ble values, the free list is traced by the garbage collector,and allocation is a special case of assignment. In fact, �ll,reserve, create, and update operations are all instancesof a generic store operation, implemented as follows:MarkGray(x) �if color[x] = White then color[x] GrayStore(x; i; y) �heap[x; i] yMarkGray(y)The collector cycle is divided in four steps (Figure 2):Mark : Mark objects referenced by global variables.Scan: Scan the heap for marked (Gray) objects, and tracethem by marking their sons and Blackening them. Re-peat the scan as needed to ensure all reachable objectsare marked and traced.Sweep: Reclaim all white objects.Clear : Unmark all marked objects, establishing the precon-ditions of the next collector cycle.The two invariants used in [9] to prove this algorithm are:� During the Scan step, every White reachable ob-ject is reachable from a Gray object.� At the beginning of the Sweep step, there is noGray object.From these invariants, one can deduce that all reachable ob-jects must be Black at the beginning of the Sweep step. Thesecond invariant is easy to prove, assuming that MarkGrayis atomic. For the �rst invariant, one proves that at mostone Black-to-White pointer exists: the pointer from x to ywhen the mutator is between the two lines of Store.72

AFigure 3: If we don't mark the old value: : :The algorithm still works when MarkGray is not atomic,but the proof is more complex. The detailed proofs can befound in [9].This algorithm is subject to oating garbage, i.e. garbagecreated during a collector cycle, which will not be reclaimedby this cycle, but by the next one. This means that a \fullcollection cycle" is composed of two collector cycles.3.2 Local memoryThe basic algorithm fails to take fact 1 into account: themutator must make sure that its local variables only pointto objects that are already reachable from Globals. Notonly does this mean that all the temporary variables of eachmutator must remain visible to the collector at all times,but also that all assignments to these temporary variablesincur the overhead of MarkGray; thus the basic algorithmfails our requirement (i).To correct this problem, we decided that the local vari-ables (the roots) of the mutators are hidden to the collectorand we added, as in [10], a handshake between the collectorand each mutator. The Mark step of the collector becomes:Mark : foreach x 2 Globals do MarkGray(x)issue a call for rootswait until all the mutators have answeredAnd the mutators must execute the Cooperate procedurefrom time to time:Cooperate �if a call for roots is pending thencall MarkGray on all the rootsanswer the callThis constraint seems to preclude calls to foreign functions,which will not call Cooperate; the implementation solves thisproblem by adding a wrapper around such functions. Thewrapper synchronizes with the collector and delegates thecooperation work to the collector thread itself. The syn-chronization is only needed for long-running functions, soits overhead is negligible compared to the running time ofthe function.In this new setting, as stated in [10], we have to markthe \old" value of a �eld before the update, or the collectorcould reclaim objects that are still in use. This is illustratedby the following counterexample with a single mutator A(Figure 3):C calls for the rootsA grays its only root, 2answers to the callloads the value of �eld 0 of 2 in a registersets �eld 0 of 2 to nilC notices that all mutators have answeredblackens 2, which completes the Mark stepreclaims , which is still in use by A

BAFigure 4: If we don't pause before marking: : :Marking the old value was an option in the basic algorithm;it was rejected early on, because it obviously generated moreoating garbage [9]. However it has also been noted thatmost of the garbage is oating anyway [21]. This holdseven if the garbage were generated randomly, whereas inpractice most of the garbage consists of recently allocatedobjects, which are always marked in the basic algorithm.Hence controlling the allocation color to prevent almost alloating garbage in the Sweep and Clear steps is more likelyto reduce oating garbage e�ectively.3.3 Multiple mutatorsWhile [10] concluded correctly that old values have to bemarked, they missed an important point: with multiple mu-tators, it is impossible to get the value of the old objectreliably! To do so would require at least an atomic com-pare&swap [11] and thus violate (ii). The Store operationof [10] was:Store(x; i; y) �MarkGray(heap[x; i])heap[x; i] yMarkGray(y)This does not work because the assignment is not guaran-teed to overwrite the value that was just shaded, as demon-strated by this counterexample with A,B (Figure 4):C calls for the rootsA grays its only root 2answers the callloads �eld 0 of 2 ()grays in preparation to a Store into �eld 0 of 2B grays 2 and 4answers the callgrays , which is already graysets �eld 0 of 2 to 4grays 4clears the register pointing to 4C blackens all objects, completing the Scan stepperforms its Sweep step (whitens all objects)starts a new cycle by calling for the rootsB grays its only root, 2answers the callreloads �eld 0 of 2 (4)A resumes its Store by setting �eld 0 of 2 to nilgrays its roots and 2 (2 is already gray)answers the callC blackens 2 and , completing its Scan stepreclaims 4, which is still in use by BTo sum up, �rst B lays a trap for A by putting a whiteobject in �eld 0 of 2, then A trips the trap by overwriting73

that �eld. Our algorithm uses a second handshake beforethe call for roots to ensure that all traps laid during theSweep step are tripped before the Mark step begins.We have two other counterexamples (only one of whichappears in [10]) that show the existence of a trade-o� be-tween:1. adding a third handshake2. always marking the new value3. adding some overhead to StoreWe chose 1 over 2 to avoid the creation of oating garbageduring the Sweep step, and over 3 because the collector isnot the bottleneck, and because 1 enables us to concentrateall the overhead of Store before the actual assignment.3.4 Scan terminationThere is one obvious e�ciency problem with the basic algo-rithm: it scans the heap many times to �nd Gray objectsduring the Scan phase. The worst case is even quadratic inthe heap size, and it is easily attainable with a list whosecells are in decreasing order, a common case when allocationis in increasing order. Since most of these Gray objects weremarked by the collector itself, it is easy to add a cache ofGray objects to the collector. As long as this cache is notempty, the collector does not need to scan the heap to �ndGray objects. A further improvement is to turn dirty into aglobal variable and have the mutators set it when they markan object. This only avoids the last scan, but in practice weonly have one or two scans most of the time, so saving onescan is a big win.Kung and Song [14] use a double-ended queue to avoidthe scans completely, but their solution does not work withmultiple mutators without synchronization on update op-erations. All the other proved algorithms use repeated scansof the heap.In the design of [14], objects are marked Gray as theyare inserted in the queue, which plays the same role as ourcache. This policy does not work in our case, as the followingcounterexample shows (Figure 5):The last three objects in the heap are 4, , and 2;�eld 0 of is 4 and �eld 0 of 2 is ; 2 is gray while 4and are white, and the collector scan has reached 2 whiledirty is still false and the cache is empty. The following canoccur:A loads �eld 0 of 2 ()grays (�rst step of an assignment to �eld 0 of 2)C blackens 2, as its only �eld is already gray: : : thus completing the Scan stepA sets dirty true (too late!)sets �eld 0 of 2 to nilloads �eld 0 of (4)C reclaims 4, which is still used by ANote that it does not help if A sets dirty true beforemarking, as C can reset dirty and repeat the scan at anytime. Hence C must add any gray object it encounters tothe cache, and must mark those objects Black to avoid du-plicates. Furthermore, if C removes objects from an over-owing cache, it must reset their color to Gray. (This im-plies that mutators should never write back the color of aBlack object, which prohibits \logical or" implementationsof MarkGray.)We have a two-mutator version of this example to showthat mutators must set dirty true even when the oldvalue is already gray. This compels us to make x a globalvariable, and make the mutators test the position of the

End

A

xFigure 5: If we don't trace gray objects: : :gray object compared to x before they change dirty, so thatrepeated assignments of the same values do not cause a spu-rious scan of the entire heap (or even prevent terminationof the Scan step).4 Our algorithmIn this section we will describe the algorithm in the simplecase where the sizes of the heap, the objects, and the set ofmutators are all constant. We delay the discussion of heapextension and requirement (v) to section 5, as well as thediscussion of variable-sized objects.We divide the description of our algorithm as follows:�rst the heap model and the description and evolution ofthe global variables, then the mutator primitives and �nallythe collector code.4.1 The heap and global variablesWe will reuse most of the heap model of the basic algorithm,with a number of additions and changes. First of all, thereis a �xed set of processes:const MaxPid 2 NATtype PID � f0; : : : ;MaxPidgUnlike the basic algorithm, we abstract from the represen-tation of the free memory list, using a multiset rather thana set so that we can prove there are no double insertions.The initial live data must not point to the free list.var free 2multiset of ADDRinit Globals \ free = ;8x 2 ADDR n free 8i 2 INDEX ;heap[x; i] 2 ADDR n freeWe will use a fourth color, Blue, to indicate free locationswhere a heap object may be created. The correspondingareas are ignored by the collector. All locations in free mustbe Blue, but the converse is not always true, as processesmay withhold some free memory.type COLOR � fWhite;Gray;Black;Blueginit 8x 2 ADDR; color[x] = �Blue if x 2 freeWhite otherwiseThe collector cycle is still divided in the same four steps:Mark , Scan, Sweep, and Clear.All the complex handshake synchronization takes placeduring the Mark and Clear steps, although these steps were74

dirty

Clear Mark ClearSweepstep Scan

Async

Sync 2
Sync 1statusC

Asyncphase Sync 1 Sync 2

End

0

swept WhiteAllocation color: Gray

∞+

∞-

End

0

scanned

∞-

Black

cache overflow

Async

Async

Sync 2
statusm Sync 1

marking {

true
falseFigure 6: Timing diagram for global variablesrather trivial in the basic algorithm. The collector keepstrack of the handshake status in a phase variable, whosevalues after the �rst, second, and third handshake are, re-spectively,Sync1 indicating that mutators will only update �elds withpointers to objects that will be marked in this cycle.Sync2 indicating that mutators will only update �elds thatpoint to objects that will be marked in this cycle.Async indicating that all mutators have marked the objectsreferenced by their registers at one point in this cycle,whence no reachable object will be reclaimed duringthis cycle. We will have phase = Async at the begin-ning of the next cycle.As illustrated in Figure 6, the Clear and Mark steps endwith the �rst and third handshakes, respectively; in practicethese steps are quite short, hence most of the time we havephase = Async.The collector and all the mutators use a global statusvariable to implement the handshakes:type STATUS � fAsync;Sync1;Sync2gvar statusC = Async 2 STATUS8m 2 PID; var statusm = Async 2 STATUSAt rest all statuses equal phase. The collector initiates ahandshake by advancing statusC , the mutators respond byfollowing suit, and �nally the collector moves phase when

all have responded. The �rst two handshakes require noother action from the collectors than completing pendingactions (especially update); before completing the thirdhandshake mutators must mark all the objects they refer-ence (Figure 6).The collector must perform a polling loop to completethe handshake. Fortunately, the collector need not be idleduring that period for the last two handshakes, as it hasother marking or tracing work to perform, and the �rsthandshake is likely to be extremely brief, as it requires al-most no work from the mutators.Finally, three global variables are used to implement thee�ciency re�nements described in subsections 3.2 and 3.4.var swept = +1 2 ADDR] f�1;+1gtracks the progress of the Sweep step, and is set to �1and �1 before and after the Sweep step, respectively. Mu-tators test swept in create and update actions to avoidgenerating oating garbage during the Sweep step.var dirty 2 BOOLis used to ensure that the Scan step only terminates whenall reachable objects have been marked. It is set to falseby the collector each time it starts a new scan, and reset totrue by a mutator that detects the scan has missed a grayobject, forcing the collector to repeat the scan.var scanned = �1 2 ADDR] f�1g75

tracks the progress of the Scan step, and is reset to �1between scans. Mutators test scanned before resetting dirtyto avoid causing spurious scans.4.2 The mutator actionsThe only local variables of a mutator are its multiset of heappointers, and free memory pool.const MaxPool > 0 2 NATvar pool = ; 2multiset of ADDRroots 2multiset of ADDRinit roots \ free = ;There are two mutator marking actions. MarkGray is usedbefore the Scan step, otherwise MarkAndWarn is used toensure that a concurrent scan does not miss the markedobject (more precisely, to ensure that the collector tracesthe object at least once during the Scan step).MarkGray(x) �if color[x] = White then color[x] GrayMarkAndWarn(x) �if color[x] 6= Black thenMarkGray(x)if x � scanned then dirty trueThe code for mutator m should execute the Cooperate pro-cedure at reasonably close intervals; the overhead is minimalexcept for the root marking that occurs once per cycle. Wecould also allow the mutator to relocate a pointer in a newheap object and mark this object rather than the one refer-enced by the pointer, i.e., the marking can be performed bya local copying collection cycle as in [10].Cooperate �if statusm 6= statusC thenif statusm = Sync2 thenforeach x 2 roots do MarkGray(x)statusm statusCMemory reservation is the only action requiring a criticalsection, introduced here by the await : : :do : : : construct.The pick x 2 S construct chooses and removes one copy ofa random element x 2 S.Reserve �await free 6= ; dorepeatpick x 2 free do pool pool � fxguntil free = ; _ jpoolj =MaxPoolThe Create procedure chooses the color of the new objectbased on the progress of the cycle to minimize oating gar-bage. The race with the Sweep step is resolved with theGray color; we could also defer the decision to the nextallocation or handshake. Note how the sentinel values ofswept simplify the logic.Create �pick x 2 pool docolor[x] Blackif statusm 6= Async _ x < swept thencolor[x] Whiteelse if x = swept thencolor[x] Grayreturn x

Although there is no overhead on the �ll operation, the mu-tator must completely �ll the �elds of an object before mark-ing or using the object, and in any case before marking itsroots.Although the Update operation carries the most over-head, it all occurs up front, before the store proper. Theproof shows that during the Async phase, the marking over-head e�ectively cuts out the �eld from the collector's tracingspace. Hence a mutator repeatedly modifying the same �eldonly needs to incur the update once per collector cycle.Update(x; i; y) �if statusm 6= Async thenMarkGray(heap[x; i])MarkGray(y)else if swept = �1 thenMarkAndWarn(heap[x; i])heap[x; i] y4.3 The collectorWe assume the size of the collector cache is bounded.const MaxCache> 0 2 NATvar cache = ; 2multiset of ADDRphase = Async 2 STATUSTrace is just the standard Black tracing procedure, with therecursion stack made explicit by cache, and with overowhandled by the Gray color. The comparison with scanned istighter than in MarkAndWarn, because tracing is not con-current with scanning.Trace(x) �MarkBlack(x)while cache 6= ; do pick y 2 cache doforeach i 2 INDEX do MarkBlack(heap[y; i])MarkBlack(x) �if color[x] 6= Black thenif jcachej <MaxCache thencolor[x] Blackcache cache � fxgelsecolor[x] Grayif x < scanned then dirty trueBecause handshakes are completely asynchronous for themutators, they require some waiting on the part of collector.Apart from access to the free list, handshakes are the onlysynchronization overhead on the collector.Handshake(s) �statusC sforeach m 2 PID doawait statusm 6= phase do skipphase sThe collector cycle (Figure 7) is a straightforward implemen-tation of the diagrams of Figure 6. Note that both scannedand swept always point at the object under scrutiny or justbefore it.76

Clear : Handshake(Sync1)Mark : swept �1cobeginHandshake(Sync2)Handshake(Async)andforeach x 2 Globals do Trace(x)Scan: repeatdirty falsescanned 0while scanned < End doif color[scanned] = Grey thenTrace(scanned)scanned scanned + 1scanned �1until not dirtySweep: swept 0while swept < End doif color[swept] 2 fBlack;Grayg thencolor[swept] Whiteelse if color[swept] =White thencolor[x] Blueawait true do free free � fxgswept swept + 1swept +1Figure 7: The collector cycle5 ExtensionsIn this section, we describe how our algorithm can be ex-tended to deal with more realistic heap and process man-agement. These extensions are absolutely needed for a use-ful implementation, and they interfere in non-trivial wayswith correctness proofs. The model in the appendix and theproof cover all extensions discussed here.5.1 Process managementBecause the collector must wait on all threads to completea handshake, managing process creation and terminationmainly poses liveness problems. We must make sure thatthe collector only has to wait on a �nite number of pro-cesses to complete a cycle, by imposing that mutators callCooperate before they launch a new process for the �rst timeand always give their own status to new processes: processeswith the \wrong" status will not beget o�spring until theyanswer the collector.We must also ensure that the collector only tests a �nitenumber of processes. We can do this by maintaining a list ofactive processes. The contention for the list can be resolvedby using double indirection (handles) for each link, each pro-cess inserting its recent o�spring after itself on each statuschange, and letting the collector remove dead processes.5.2 Heap managementRealistic heap management involves dealing with variable-sized objects, system allocation, and fragmentation.We stick to the traditional implementation of variable-sized object, a header word containing the object size andcolor followed by the pointer �elds, in order not to inter-fere with debugging. This �xes the direction of scans and

sweeps|bottom-up|but does not otherwise a�ect the al-gorithm.There is a mild clash between this header conventionand the system allocation conventions, which usually growmemory from the top up. This can be solved by setting a toplimit at the beginning of the Scan step. Since swept = �1at that time, only oating garbage can be created abovelimit. The Clear step must then start by unmarking allobjects created above limit during the previous Scan andSweep steps.Block splitting (using only part of a free memory block tocreate an object) is delicate because it interferes with thecomparisons with swept; the correct solution is to createthe object at the top of the block, and to do the equalitytest with the block pointer rather than the object pointer.Finally, the collector should be able to merge adjacentfree blocks. In a sequential system this is done by rebuildingthe free list during the Sweep step. Doing this in a concur-rent system creates contention with the mutators, which canbe reduced by letting the collector reclaim large segments ofthe free list for rebuilding. Since those segments must bewhite, we have the option of keeping the free list in white,and marking the free objects blue when they are reservedby a mutator.6 The proofA \proof" of a garbage collection algorithm is never a proofof an actual implementation of that algorithm; it is a proofof some mathematical model that conveys the essential ideasof the algorithm. More often this model is chosen in orderto make the proof as short and elegant as possible [9, 4, 7],so it is very high-level and abstract. This yields elegantpapers, but also carries a price: it is not clear how to �tthe vast amount of details of an actual implementation inthe small, cleverly crafted invariants of the published proof.This is somewhat unsettling for an asynchronous shared-memory garbage collector, where intricate synchronizationproblems invariably creep in the implementation of high-level concepts.We purport to provide a proof that does provide for allthe details of an actual implementation, including all the ex-tensions discussed above, but that remains abstract enoughto be tractable. The key step here is the choice of the model.By giving dataow description of the algorithm we make thecommunication pattern between the various internal statesexplicit. Writing down the safety invariants|the most crit-ical part of a garbage collection algorithm proof|then be-comes a simple, if tedious, matter of combining and relatingthe values of the various variables. During the course ofthis work most of the problems with the algorithm wereidenti�ed during the construction of the model; only a fewmore appeared during the safety proof. The liveness proofis straightforward.6.1 The modelThe mathematical model on which this proof is based islisted in Appendix A. The formalism we chose is a cross be-tween algol, UNITY [7], and TLA [16]. Super�cially ourformat resembles most UNITY: a set of concurrent atomicassignments, with only weak fairness constraints. The codeof the individual atomic assignments uses an algol-like syn-tax.77

step 2 STEP ^ phase 2 fAsync;Sync1;Sync2g(1) statusC = phase = Async(2) _ (statusC = Async ^ phase = Sync2 ^ step = Mark)_ (statusC = Sync1 ^ phase 6= Sync2 ^ step = Clear)_ (statusC = Sync2 ^ phase 6= Async ^ step = Mark)8m; statusm 2 fstatusC ; phase;Dead;Free;Quickg(3) 8m; answeringm) statusm = phase 6= statusC(4) 8m;markingm) statusm = Sync2 6= statusC(5) 8m; statusm 2 fDead;Free;Quickg) pcm = Halt(6) fp j statusp = Quickg =Lmfchildm j pcm = Launchg(7) Figure 8: Handshake invariantsMathematically, however, our formalism is really sug-ared TLA, because this o�ers the best approach to provingindependently that implementations of the collector or pro-cesses match the model. From TLA we inherit the localvariables of subprocesses and the selective use of fairnessconstraints|only statements containing a WF=) are subjectto a weak fairness constraint.1We express the algorithm in a dataow rather than animperative style, in keeping with the TLA view that theeasiest thing to abstract away from in a program is the pro-gramming language syntax. Instead of having a single im-perative variable x whose exact meaning at any given timedepends on a pc variable that could take several dozen val-ues, we use a handful of dataow variables, each of whichholds the set of values of x at a given processing state. Wecan use a single set to factor away common processing, muchlike we use procedures in an imperative setting: for examplethe mark variable of the mutator model corresponds to theMarkGray procedure.This dataow style allows us to considerably reduce thenumber of pc values. For example the collector is almostcompletely parallelized; only the four steps remain. Besidesthe obvious gain in compactness, this also makes our modelmore general, indicating how the collector could be paral-lelized. In fact we have attempted to make the model asgeneral as possible, e.g., we use a rover pointer to allow thecollector to start tracing any Gray object at any time.We take a rather high-level view of the free list mange-ment. Operations on the free list are viewed simply asatomic multiset operations; their implementation on termsof semaphores and linked list operation is standard and doesnot interfere with the rest of the algorithm. We model thefree list with two sets, free and alloc, of White and Blueobjects, respectively. The \memory" action that transfersobjects from free to alloc can be assigned either to the col-lector, for a Blue free list, or to the mutators, for a Whitelist, as hinted in section 5.We are even more cavalier with process management.The process list is implicit; two extra values, Free and Quick,indicate processes not on the list. While the implementationoutlined in section 5 is a little tricky, it does not interact1Free variables in an action are implicitly quanti�ed existentially inthe action, so for example the collector action with precondition x 2cache must eventually be performed if cache is not empty in�nitelyoften.

whiten � claim � [0;ptr) \ [0; swept](8) step = Sweep ^ ptr < limit) swept � ptr(9) step 6= Sweep) swept 2 f�1;+1g(10) step = Clear ^ phase = Async) swept = +1(11) statusC 6= Async) ptr = limit ^ whiten = ;(12) step 2 fMark ; Scang) whiten = claim = ;(13) step = Mark ^ statusC = Async) swept = �1(14) step = Scan) swept = �1(15) step = Scan) scanned � ptr ^ scanned < limit(16) step = Scan ^ reset ^ scanned = �1) ptr = limit(17) step 6= Scan) reset(18) step 2 fSweep;Clearg) blacken = trace = ;(19) step 2 fSweep;Clearg) cache = �elds = ;(20) step 2 fSweep;Clearg) rover = 0(21) Figure 9: Collector invariantswith the rest of the algorithm, so there is little point inintroducing more detail.On the other hand, we have a detailed model of the heaplayout, because the fragmentation procedures interfere quitesubtly with the Sweep step. Each heap location containseither a pointer or an object header containing its size andcolor; objects start with a header and are adjacent in theheap.All actions in our model, except free list and processmanagement actions, are asynchronous in the sense thatthey make at most one read or write on a global variableor heap location, if one discounts reads of variables that areread-only for all other processes, such as swept for the col-lector, processm for a running mutator m, or the size of anon-garbage object.Compliance with the latter constraint has introduced afew bumps and twists in the model. For example the col-lector uses an explicit register ptr to sweep the memory.However it is straightforward to show that the resulting be-havior still conforms to the timing diagrams of Figure 6.Global invariants (1{7) (Figure 8) show that the handshakesgo through, and invariants (8{21) (Figure 9), which are lo-cal to the collector, �ll in the rest of the picture. Threenotation details: m always ranges over PID, local muta-tor variables are subscripted (e.g., markingm), and sets areconsidered a special case of multisets, so (7) asserts thatffchildmg j pcm = Launchg is a partition of the set of Quickprocesses.6.2 SafetySafety for a garbage collector generally reduces to \the col-lector does not free reachable objects". Here, because of ourmore detailed model, we must also show that \the objectlayout is not disrupted by the mutators or the collector".The �rst step towards this is to capture the \layout" and\reachable" concepts precisely, which we do in Figure 10.Z, Y , and X are the \end", \�eld", and \�eld value" re-78

xZy �� x 2 ADDR ^ heap[x] 2 HEADER^ y = heap[x]:size+ x+ 1xY y �� 9z; xZz ^ x < y < zxXy �� 9z; xY z ^ y = heap[z]O �= Z�(0) \ [0; end)W �= fx 2 O j heap[x]:color =WhitegG �= fx 2 O j heap[x]:color = GraygB �= fx 2 O j heap[x]:color = BlackgCm �= fnewm j pcm 2 CREATE n fSplitggN �= fnewm j 9m;pcm 2 CREATE n fSplit;FillggSm �= foldm j pcm = SplitgFm �= fheap[y] j pcm 2 CREATE ^ newm Y y 62 �llmgAm �= drootsm [dmarkm [Fm[fx j (x = newm _ x = oldm _ xY �eldm)^ pcm 2 UPDATEg[fx 2 argsm j statusm 6= Quickg[fx 2 argsp j pcm = Launch ^ p = childmgU �= X� �(G [B) nSmCm� [SmX�(Am)V �= (W [G [B) ndfreeJ �= V nSm(X�(Am) [Cm)K �= f�eldm j 9m; pcm2UPDATE ^ statusm 6= Sync1^ (pcm = Store _ oldm 6= heap[�eldm])gxTy �� 9z 62 K;xY z ^ y = heap[z] 62 BRC �= fx 2 G j step 6= Scan _ x � ptr _ reset _ dirtyg[blacken [dcache [(heap[d�eldsnK][trace) nBRm �= (dmarkm [fx 2 Fm j markingmg) n BM �= T � �RC [SmRm� [(G [B) nSmCmFigure 10: Auxiliary de�nitions

U �LmCm � V n dclaim(22) free � claim �W(23)alloc �Lm(poolm � Sm) = O n (W [G [B)(24)8m;�llm � fx 2 Y (newm) j pcm 2 CREATEg(25)8m;pcm 2 UPDATE) �eldm 2 Y (O)(26)whiten � V ^ d�elds � Y (O) ^RC � U [G(27)8m; statusm 6= Async _ step 2 fMark ;Scang(28)) Cm �W [B ^ pcm 6= GrayNew8m;pcm = Split) heap[newm]:color = Black(29)fptr ; limit; roverg � O [fendg(30)ptr � limit ^ sublimit � limit(31)end 2 Z�(0)(32)8m;pcm = Split) oldm Y newm(33)8m;pcm = Split) Z(oldm) = Z(newm)(34) step = Sweep) �U [SmCm� \W � [0; ptr)(35)8m;pcm = ClearNew ^ step = Sweep) newm < ptr(36) step = Sweep) dfree \ [ptr ; sublimit) = ;(37) step = Sweep) B � whiten [N [[ptr; end)(38)8m;pcm = TestSweep ^ step = Sweep ^ oldm < swept(39)) newm 62 [swept; ptr) n (W [whiten)8x 2 O; step = Sweep ^ swept < x < ptr) x 2 V(40) step = Clear) B � whiten [N [[ptr; limit)(41) step 2 fMark ;Scang) heap[K]�M = X�(M)(42) dcache � G [B ^ blacken � W [G(43)8m;pcm = Store ^ statusm 6= Async ^ :markingm(44)) newm 2 B [G [Rm8m;pcm 2 fTestScan;SetDirtyg ^ step 2 fMark ;Scang(45)) oldm 2 G [B8m;pcm 2 UPDATE n fStoreg) statusm = Async(46)8m; statusm2fDead;Free;Quickg) Am = poolm = ;(47)8m;pcm=Halt) argsm = ;(48)8m;markingm _ statusm=Async ^ step2fMark ;Scang(49)) X�(Am) �M8m;markingm ^ pcm = Fill) newm 2W(50)8m; statusm = Async ^ step 2 fMark ;Scang(51)) markm = ; ^Cm � B ^ pcm 6= ClearNewstep = Scan) RC [UnB � [0; limit)(52)8m;pcm = GrayOld ^ step = Scan) oldm < limit(53)8x 2 OnB; step = Scan ^ x < ptr < limit(54)) x < scannedFigure 11: Safety invariants79

lations, respectively, so X� is the reachability relation. O isthe set of objects, W , G, B its color subsets. Am is the setof objects immediately accessible by mutator m. It includesnot only drootsm (the set underlying the multiset rootsm),but also objects that are being marked or updated, and �lled�elds Fm of an object being created. The latter (Cm) is notpart of Am. U is the set of objects under use; it includes allobjects reachable from the \registers" Am, or from shadedobjects not under creation (which may be used by the col-lector). V is the set of valid objects, and O n V is the setof available memory blocks. J is the set of garbage objects:valid objects that are not reachable from any mutator.The main safety invariant is (22) which implies that usedobjects only contain pointers to used objects, that they donot appear on the free or claim lists, and that there are nopointers to objects under creation (since the inclusion of amultiset union in a set implies that the union is disjoint).However all the invariants in Figure 4 depend on each otherto some extent (except 46{47), and must be proved simul-taneously.(23{25) asserts that all free memory, blue or white, iswell accounted for. (25{31) ensure that mutator and collec-tor pointer variables have proper values; (28) ensures thatthe mutators do not create un�lled gray objects when thecollector is tracing. (32) asserts that the object layout isconsistent on all the used portion of the heap, and is neededto establish (30{31); (33{34) ensure that fragmentation pre-serves (32).(35{37) ensure that only garbage is reclaimed by thesweep step. (38{41) ensure that the sweep and clear stepsdo not leave black objects behind, except newly created ob-jects that will be cleared (N). (40) is the key property of thesplit-o�-top policy: the sweep cannot leap over free memoryblock headers. This ensures (39), which in turn ensures thatnew objects are created with the right color.The remaining invariants ensure that the mark and scansteps shade all objects, so that (35) is established at thebeginning of the next sweep. These invariants are all basedon the formula forM , the set of objects that would be tracedby the collector if the mutators cleared all their registers.M contains all shaded objects, plus all objects reachableby the trace relation T from the trace roots RC and Rm.The trace relation is like the reachability relation, except itignores black �elds and �elds that are being updated andwhose values are unreliable (K).The main marking invariant is (49); it is the equivalentof the \reachable objects are reachable from a gray" invari-ant of the basic algorithm. In turn, (49) crucially dependson (42), which asserts thatM is closed under reachability; itis the equivalent of the \no black points to a white" invariantof the basic algorithm.Part of the proof of (49) is that M is non-decreasingafter phase = Sync2. The purpose of the update overheadis to ensure that the inevitable increase of K does not leadto a decrease of M , i.e., it ensures that oldm will alwaysbe traced. In addition, K also contains the �elds for whicholdm is the \wrong" value, and the overhead is misspent.The status 6= Async overhead covers that case by ensuringthat the value deposited in a �eld that remains in K becauseof a concurrent assignment is always traced.Finally, note that the invariants remain valid if we addto K all the �elds that have been updated since the startof the mark step. Once a �eld has been \cut o�" from thecollector, it remains so. This implies that Async processes

need to incur the update overhead at most once per cycleper updated �eld.6.3 LivenessThe liveness part of the proof is much more standard. Weneed to establish that \all garbage is eventually collected",i.e., x 2 J ; x 62 V . It is straightforward to show that all\quick" garbage in J [W [[0; limit) at the beginning of asweep step is collected by that step, and that the rest of thegarbage is whitened and thus becomes quick garbage duringthe sweep and clear steps, and remains quick garbage duringthe mark and scan steps. Therefore, we only need to showprogress of the collector cycle, and this is trivial except forthe handshakes and the scan step.For the handshakes, �rst note that each active muta-tor must eventually change its status after the collector haschanged his, either by doing an exit, or several cooperateactions. If m never does an exit, then 2[pcm 6= Halt so meventually sets answeringm. m can only reset answeringmby completing the cooperate, which it must eventually dosince all other actions are blocked. In addition, only themutators with pc 6= Halt at the start of the handshake canspawn processes with status = phase; once these mutatorshave responded the set of mutators with status = phasedecreases, hence the handshake completes.Let us assume the scan step never terminates, 2[step =Scan]. Note that no used white objects can be created dur-ing the scan step, so thatW\(U[M) is eventually constant.After all pending updates complete, no mutator will everset the color of an object to Gray. It follows from this and(43) that cache�G must decrease, so the normal emptyingof the cache must eventually stop. At this point the cachemust be empty, since the overow action cannot empty thecache. Therefore we must have cache = blacken = ; fromthis point on, and G is constant. Eventually we must alsohave 2[�elds = trace = ;].If 2[:reset] at this point, then eventually 2[ptr = limit],so 3[dirty], otherwise the scan step would end, and by (17)3[reset], a contradiction. So 3[reset], and thus3[scanned =�1]. From this point on we must have G\ [0; scanned] = ;,since blacken must remain empty. Thus once all pend-ing updates have completed, no mutator can set dirty.As above, eventually we have reset ^ scanned = �1, andby (18) ptr = limit, whence eventually :reset^:dirty. Thisimplies 2[:dirty ^:reset], which implies a contradiction bythe above.References[1] Appel, A. W. Compiling with continuations. Cam-bridge University Press, 1992.[2] Appel, A. W., Ellis, J. R., and Li, K. Real-timeconcurrent collection on stock multiprocessors. SIG-PLAN Notices 23, 7 (1988), 11{23.[3] Baker, H. G. List processing in real time on a serialcomputer. Commun. ACM 21, 4 (1978), 280{294.[4] Ben-Ari, M. Algorithms for on-the-y garbage collec-tion. ACM Trans. Program. Lang. Syst. 6, 3 (1984),333{344.80

[5] Boehm, H. J., Demers, A. J., and Shenker, S.Mostly parallel garbage collection. SIGPLAN Notices26, 6 (1991), 157{164.[6] Brooks, R. A. Trading data space for reduced timeand code space in real-time garbage collection on stockhardware. In Lisp and Functional Programming 1984(1984), ACM Press, pp. 256{262.[7] Chandy, K. M., and Misra, J. Parallel ProgramDesign. Addison-Wesley, 1988.[8] Cypress. BiCMOS/CMOS data book. Cypress Semi-conductor, 1991.[9] Dijkstra, E. W., Lamport, L., Martin, A. J.,Sholten, C. S., and Steffens, E. F. M. On-the-ygarbage collection: an exercice in cooperation. Com-mun. ACM 21, 11 (1978), 966{975.[10] Doligez, D., and Leroy, X. A concurrent, genera-tional garbage collector for a multithreaded implemen-tation of ML. In Principles of Programming Languages1993 (1993), ACM Press, pp. 113{123.[11] Herlihy, M., and Moss, J. E. B. Non-blockinggarbage collection for multiprocessors. Technical reportCRL 90/9, DEC Cambridge Research Lab., 1990.[12] Hibino, Y. A practical garbage collection algorithmand its implementation. In 7th Annual InternationalSymposium on Computer Architecture (1980), ACMPress, pp. 113{120.[13] Hickey, T., and Cohen, J. Performance analysis ofon-the-y garbage collection. Commun. ACM 27, 11(1984), 1143{1154.[14] Kung, H. T., and Song, S. W. An e�cient parallelgarbage collection system and its correctness proof. InFoundations of Computer Science 1977 (1977), IEEEComputer Society Press, pp. 120{131.[15] Lamport, L. Garbage collection with multiple pro-cesses: an exercise in parallelism. In Proc. IEEE Conf.Parallel Processing (1976), pp. 50{54.[16] Lamport, L. The temporal logic of actions. Researchreport 79, DEC Systems Research Center, 1991.[17] Leroy, X., and Mauny, M. The Caml Light system,version 0.5 | documentation and user's guide. Techni-cal report L-5, INRIA, 1992.[18] Nettles, S., O'Toole, J., Pierce, D., and Haines,N. Replication-based incremental copying collection. InInternational Workshop in Memory Management 1992(1992), vol. 637 of Lecture Notes in Computer Science,Springer-Verlag, pp. 357{364.[19] Newman, I. A., Stallard, R. P., and Woodward,M. C. A hybrid multiple processor garbage collectionalgorithm. The Computer Journal 30, 2 (1987), 119{127.[20] North, S. C., and Reppy, J. H. Concurrent garbagecollection on stock hardware. In Functional Pro-gramming Languages and Computer Architecture 1987(1987), vol. 242 of Lecture Notes in Computer Science,Springer-Verlag, pp. 113{133.

[21] Wadler, P. L. Analysis of an algorithm for real timegarbage collection. Commun. ACM 19, 9 (1976), 491{500.A The full algorithm modelGlobal declarationstype ADDR �= NATSIZE �= NATCOLOR �= fBlue ;White;Gray;BlackgHEADER �= recordncolor 2 COLORsize 2 SIZEWORD �= ADDR] HEADERPIDSTATUS �= fAsync ;Sync1;Sync2;Dead ;Free ;Quickgvar heap 2 array [ADDR] of WORDend 2 ADDRdirty 2 BOOLfree ; alloc 2multiset of ADDRstatusC 2 STATUSswept 2 ADDR] f�1;+1gscanned 2 ADDR] f�1g8m 2 PID;statusm 2 STATUSargsm 2multiset of ADDRGlobal initializationinit end = 0free = alloc = ;statusC = Async8m 2 PID; statusm 2 fFree ;Asyncgfm 2 PID j statusm 6= Freeg is �nite8m 2 PID; argsm = ;Memoryh s 2 SIZE=) heap [end] recordncolor 7! Bluesize 7! send end + s+ 1alloc alloc � fendg ih x 2 free=) heap [x]:color Bluefree free 	 fxgalloc alloc � fxg ih x 2 free=) free free 	 fxg ih x 2 alloc=) alloc alloc 	 fxg iheap [x]:color White
81

Mutator mtype CREATE �= fSplit;TestSweep;ClearNew ;GrayNew ;FillgUPDATE �= fTestOld;GrayOld ;TestScan;SetDirty;StoregLABEL �= CREATE]UPDATE] fHalt ;Work ;Launchgvar pc = Halt 2 LABELroots = pool = mark = �ll = ; 2multiset of ADDRanswering = marking = false 2 BOOLchild 2 PIDold;new ;�eld 2 ADDRstartuph pc = Halt ^ statusm 2 fAsync;Sync1;Sync2gWF=) roots argsmargsm ;if statusm 6= statusC then answering truepc Work ilaunchh pc = Work ^ :answering ^ p 2 PID ^ statusp = Free=) child pstatusp Quickpc Launch ih pc = Launch ^ x 2 roots ^ p = child=) argsp argsp � fxg ih pc = Launch ^ p = childWF=) statusp nAsync if markingstatusm otherwisepc Work iexith pc = Work ^ mark = pool = ;=) statusm Deadanswering marking falseroots ;pc Halt icooperateh pc 6= Halt ^ statusm 6= statusCWF=) answering true ih pc = Work ^ answering ^ :markingWF=) answering falseif statusm = Sync2 thenmark mark � rootsmarking truestatusm nSync1 if statusm = AsyncSync2 otherwise ih pc = Work ^ marking ^ mark = ;WF=) answering marking falsestatusm Async imarkh x 2 mark ^ heap [x]:color 6= White=) mark mark 	 fxg ih x 2 markWF=) heap [x]:color Graymark mark 	 fxg imoveh x 2 roots=) roots roots � fxg ih x 2 roots=) roots roots 	 fxg iloadh x 2 roots ^ x < z � x+ heap [x]:size=) roots roots � fheap [z]g ireserveh pc = Work ^ x 2 alloc=) alloc alloc 	 fxgpool pool � fxg ih x 2 pool=) pool pool 	 fxgalloc alloc � fxg i

createh pc = Work ^ :answering ^ s 2 SIZE^ x 2 pool ^ heap [x]:size >= s=) pool pool 	 fxgold xnew x+ heap [x]:size � s�ll fnew + 1; : : : ;new + sgheap [new] recordncolor 7! Blacksize 7! spc nSplit if new > oldTestSweep otherwise ih pc = SplitWF=) heap [old]:size new � 1� oldpool pool � foldgpc TestSweep ih pc = TestSweepWF=) pc 8<:ClearNew if statusm 6= Async_ swept > newGrayNew if old � swept � newFill otherwise ih pc = ClearNewWF=) heap [new]:color Whitepc Fill ih pc = GrayNewWF=) heap [new]:color Graypc Fill i�llh y 2 roots ^ z 2 �llWF=) heap [z] yif marking then mark mark 	 fyg�ll �ll 	 fzg ih pc = Fill ^ �ll = ;WF=) roots roots � fnewgif marking then mark mark � fnewgpc Work iupdateh pc = Work ^ :answering^ x; y 2 roots ^ x < z � x+ heap [x]:size=) new y�eld zold heap [z]if statusm 6= Async ^:marking thenmark mark � fnewgif statusm = Sync2 thenmark mark � foldgpc nTestOld if statusm = AsyncStore otherwise ih pc 2 UPDATE ^ swept > �1=) pc Store ih pc = TestOldWF=) pc (GrayOld if heap [old]:color = WhiteTestScan if heap [old]:color = GrayStore otherwise ih pc = GrayOldWF=) heap [old]:color Graypc TestScan ih pc = TestScanWF=) pc nSetDirty if scanned � oldStore otherwise ih pc = SetDirtyWF=) dirty truepc Store ih pc = StoreWF=) heap [�eld] newpc Work i82

Collectortype STEP �= fSweep ;Clear ;Mark ;Scangvar step = Sweep 2 STEPphase = Async 2 STATUSptr = limit = sublimit = rover = 0 2 ADDRreset = true 2 BOOLwhiten = blacken = trace = ; 2 set of ADDRclaim = cache = �elds = ; 2multiset of ADDRsweeph step = Sweep ^ swept = ptr < sublimitWF=) if heap [ptr]:color 2 fGray;Blackg thenwhiten whiten [fptrgelse if heap [ptr]:color = White thenclaim claim � fptrgptr ptr + heap [ptr]:size + 1 ih step = Sweep ^ swept < ptr < sublimitWF=) swept ptr ih step = Sweep ^ sublimit � ptr < x � limitWF=) free free 	 fptr ; : : : ; x� 1gsublimit x ih step = Sweep ^ ptr = limitWF=) swept +1 ih step = Sweep ^ swept = +1WF=) limit endstep Clear iclearh step = Clear ^ ptr < limitWF=) if heap [ptr]:color 2 fGray;Blackg thenwhiten whiten [fptrgptr ptr + heap [ptr]:size + 1 ih x 2 whitenWF=) whiten whitennfxgheap [x]:color White ih step = Clear ^ ptr = limit ^ whiten = ;WF=) statusC Sync1 ih statusC = phase = Sync1 ^ claim = ;WF=) statusC Sync2step Mark iclaimh x 2 claim ^ y = x+ heap [x]:size + 1 2 claim=) claim claim 	 fygheap [x]:size size + heap [y]:size + 1 ih x 2 claimWF=) claim claim 	 fxgfree free � fxg ihandshakeh statusC 6= phase ^ 8m 2 PID; statusm 6= phaseWF=) phase statusC ih statusm = DeadWF=) statusm Free i

globalsh step 2 fMark ;Scang=) rover 0 ih step 2 fMark ;Scang ^ rover < end=) rover rover + heap [rover]:size + 1 ih step 2 fMark ;Scang ^ rover < end^ heap [rover]:color = Gray=) blacken blacken [froverg itraceh x 2 blackenWF=) heap [x]:color Blackblacken blackennfxgcache cache � fxg ih x 2 cache ^ cache 6= fxg=) cache cache 	 fxgheap [x]:color Grayif x < ptr then reset true ih x 2 cacheWF=) cache cache 	 fxg�elds �elds � fx+ 1; : : : ; x+ heap [x]:sizegh x 2 �eldsWF=) �elds �elds 	 fxgtrace trace [fheap [x]g ih x 2 traceWF=) trace tracenfxgif heap [x]:color 2 fWhite;Grayg thenblacken blacken [fxg imarkh phase 6= AsyncWF=) swept �1 ih statusC = phase = Sync2 ^ swept = �1WF=) statusC Async ih step = Mark ^ phase = Async ^ scanned = �1WF=) ptr limit endstep Scan ireseth resetWF=) if step = Scan then ptr limitscanned �1 ih step = Scan ^ reset ^ scanned = �1WF=) ptr 0reset dirty false ih step = Scan ^ scanned < ptr ^ dirtyWF=) reset true iscanh step = Scan ^ scanned < ptr < limitWF=) scanned ptr ih step = Scan ^ scanned = ptr < limitWF=) if heap [ptr]:color = Gray thenblacken blacken [fptrgptr ptr + heap [ptr]:size + 1 ih step = Scan ^ ptr = limit ^ :reset ^ :dirty^ cache = �elds = ; ^ blacken = trace = ;WF=) reset truerover ptr sublimit 0step Sweep i83

