
Hashconsing in an Incrementally Garbage-Collected System
A Story of Weak Pointers and Hashconsing in OCaml 3.10.2

Pascal Cuoq∗

CEA LIST, Software Reliability Labs,
91191 Gif-sur-Yvette Cedex, FrancePasal.Cuoq�ea.fr Damien Doligez

INRIA
Domaine de Voluceau, BP 105

78153 Le Chesnay, FranceDamien.Doligez�inria.fr
Abstract
This article describes the implementations of weak pointers, weak
hashtables and hashconsing in version 3.10.2 of the Objective Caml
system, with focus on several performance pitfalls and their solu-
tions.

Categories and Subject Descriptors D2.3 [Software Engineer-
ing]: Coding Tools and Techniques

General Terms Design, Performance

Keywords OCaml, garbage collection, weak pointers, weak refer-
ences, weak hashtables, hash-consing, maximal sharing

1. Introduction
This article describes the implementations of weak pointers, weak
hashtables and hashconsing in OCaml. None of these conceptsare
novel. Weak pointers have existed in some LISP implementations
for a long time (Haible 2005; Goto 1974). The subtitle refers
more precisely to OCaml’s implementation of these features, which
is much more recent (Leroy 1997). Despite the long history of
weak references, subtle performance issues were noticed inthe first
OCaml implementation when it was confronted with real use. The
3.10.2 version of the OCaml system (Leroy et al. 2007) fixes all
the issues that have been encountered at the time of this writing.
Hashconsing in OCaml (Filliâtre and Conchon 2006), based onthe
provided weak arrays and weak hashtables, now works reliably
and is employed in heavy duty applications, such as automated
theorem proving (Bonichon et al. 2007; Conchon and Contejean
2006) and abstract interpretation analysis (Frama-C development
team 2008). What is more, these changes have gone unnoticed
by most OCaml developers, even the developers of some of the
aforementioned heavy duty applications, because there hasnot
been any programmer-visible interface change associated to the
fixes that were taking place under the hood. In fact, weak pointers
in a functional language, when they are provided expressly to allow

∗ This work has been supported by the french RNTL project CAT
ANR05RNTL00301

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ML’08, September 21, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-60558-062-3/08/09. . . $5.00

hashconsing, are difficult to get right for a conjunction of two
reasons. Firstly, a wide class of bugs in the implementationof weak
pointers only cause some values to remain in memory for too long,
and have no other, more obvious, ill side-effects. Secondly, it is
hard to predict the expected speedup when adding hashconsing to a
program, which makes it difficult to tell that it is less than it could
have been. This article describes the issues that were foundand
the solutions that were provided in the process of making OCaml’s
weak hashtables, and the underlying weak arrays, scale up.

This article provides some insights into OCaml’s Garbage Col-
lector’s implementation. This may be of interest to any OCaml pro-
grammer who ever interfaced OCaml and C code and was left won-
dering why the Ocaml reference manual needed to be so strict on
the subject. However, the issues described here are not specific to
functional languages, they should be applicable to other languages
that provide weak references such as Python (Beazley and Rossum
1999) or Java (Gosling et al. 2000).

The considerations to take into account when making the choice
of a Garbage Collection technique are described in (Wilson 1992).
Following the terminology used there, the Garbage Collector (GC)
implemented in the current versions of OCaml is both generational
and incremental.

This article starts with an overview of the inner workings of
OCaml’s GC (section 2), providing context and vocabulary for the
rest of the discussion. The “weak pointer” feature is described in
section 3, while the implementation of this feature in OCaml’s GC
is discussed in section 4. OCaml provides a higher-level construct
built upon weak pointers, weak hashtables. The interface ofthese
weak hashtables is described in section 5. An example of use of
these weak hashtables for hashconsing is provided in section 6,
and in section 7, this example is used to illustrate the pitfalls that
should be avoided when implementing weak hashtables. Section 8
describes a different possible implementation for weak hashtables,
and section 9 benchmarks the two implementations, each withboth
OCaml’s 3.09.3 and OCaml’s 3.10.2 runtimes.

2. Garbage collection in OCaml
The heap of an OCaml program is divided into aminor heap,
whence newly requested blocks are always allocated provided that
they are small enough, and amajor heap, where live blocks from
the minor heap are copied when the minor heap is full.

The blocks that are allocated in both heaps contain the number
of words that was requested by the ML program that allocated them
— for instance, two words for aConscell — plus a header word
that the GC uses for bookkeeping. The header word is divided in
bitfields respectively dedicated to storing thesizeof the block, a
tag containing some rough type information about the contents of
the block, and a 2-bitcolor used by the GC for tracking reachable

blocks. The files implementing OCaml’s GC can be found in the
directorybyterun in OCaml’s distribution (Leroy et al. 2007).

For scoping reasons, because the blocks in the minor heap are
more recent than the blocks in the major heap, one might think
that there would be no references from the major heap to the minor
heap. There can actually be a few such references, firstly because
it is not exactly true that blocks in the minor heap are always
more recent than blocks in the major heap: big blocks are allocated
directly into the major heap, and these can reference all theblocks
already allocated in the minor heap at that time. Another reason
why there can be references from the major heap to the minor
heap is that OCaml allows some values to be mutated: a cell in
the major heap may be modified in-place and the address of a
more recent block in the minor heap can be written there. In the
implementation, these two causes for the existence of pointers from
the major heap to the minor heap are the same one, because big
blocks are initialized using the sameModify macro that also serves
for in-place modifications.

When the minor heap is full — when there is no free space left
to allocate new blocks from — aminor collectiontakes place. A
minor collection makes space available again in the minor heap by
copying the live blocks from the minor heap to the major heap.
Since it follows that everything left in the minor heap is dead, the
GC can then re-use the minor heap in its entirety.

The addresses of locations in the major heap where a pointer to a
block in the minor heap has been written are called theremembered
set (Wilson 1992). In OCaml’s implementation, the remembered
set is stored in a structure calledref_table. Keeping this table
up-to-date is one job of theModify macro. Maintaining this table
of locations is necessary to determine which blocks in the minor
heap are alive at the time of doing a minor collection, and also
in order to be able to update these locations when the blocks are
consequently moved to the major heap. At the time of doing a
minor collection, the live blocks are found by recursive traversal,
starting with theref_table, and the part of the stack that is recent
enough to possibly contain pointers to the minor heap. The major
heap does not need to be examined in its entirety in order to doa
minor collection.

The major heap is garbage-collected with what is essentially an
incrementalMark and Sweepalgorithm. Slices ofmajor collection
are done just after each minor collection.

Figure 1 shows a simplified view of the memory of an OCaml
program. If a minor GC is triggered in this state, blocks A andC
will be copied to the major heap (and the root references to them
will be updated); block F will also be copied to the major heap,
and the reference inside L will be updated; then the whole minor
heap will be cleared (leaving B, D, E, and G behind), as well astheref_table. Note that J is not reclaimed at this point, since it is in
the major heap and thus not subject to minor collection. Onlythe
major GC can deallocate it.

3. Weak pointers, weak arrays
Weak pointers(Haible 2005) constitute one of the advanced fea-
tures that a GC can have. They provide the possibility of recording
a pointer to a block without making the block automatically alive.
Of course, when accessing such a pointer, the program may be no-
tified that this block has been reclaimed, which may cause some
interesting race conditions. In OCaml, the functionWeak.get that
accesses a weak pointer to an object of typet returns a value of typet option — that is, one ofSome(v) or None. WhenWeak.get
returnsNone, it means that the GC has determined that the value
referenced by the weak pointer had become unreachable by con-
ventional pointers, and has reclaimed it.

An often mentioned example of use of weak pointers is that of
the implementation of a “smart cache” (Chailloux et al. 2000), that

Figure 1. OCaml memory layout

allows the GC to reclaim the memory used by the cache “when
necessary”. Although this example is the first one that springs to
mind when reading the (somewhat dry) corresponding sectionof
the reference manual, it should be remembered as an example of
how not to use weak pointers. Indeed, the GC is always reclaiming
memory! It does not know, and it is not its role to care, if the cache
is actually very small compared to the amount of memory available
from the system, and if it makes the program much faster. It will
bluntly reclaim the memory used by the so-called smart cache
when the time comes. Additionally, there are no guarantees at all
concerning the time it takes for a dead block to be reclaimed by
most GCs. While having an upper bound on this time is desirable
and some specialized GCs attempt to provide one (Baker 1978), it
does not make much sense to expect a lower bound on this time.
Improving the GC so that it would reclaim any dead block very
quickly without unreasonable overhead would be an improvement
made in good faith — and probably with a good bit of thinking.
Still, such an improvement would slow down any program that
relies on weak pointers for caching.

Useful examples of the use of weak pointers are examples where
the values referenced by weak pointers may also be referenced
through non-weak pointers. Let us here emphasize that blocks that
are referenced by weak pointers are not reclaimed if they arealso
referenced normally. This gives us our first valid example ofuse of
weak pointers, the poor man’sfinalized block. Finalization (Leroy
et al. 2007) is another advanced feature that a GC can provide. It
gives the possibility to execute a specific function when a block is
reclaimed. If a GC does not provide this feature but providesweak
pointers, it is possible to emulate finalization in the case where
the finalization function does not need to get the (dead) block as
argument, by keeping a weak pointer to the block to be finalized.
Its disappearance can then be detected by polling. Trying todo this
with a normal pointer would result in keeping the block alive, which
would defeat the purpose of finalization.

Another, more direct example of the usefulness of weak pointers
can be found in the implementation in any garbage-collectedlan-
guage of an interpreter for a garbage-collected language (Peyton-
Jones et al. 1999; Elliott and Hudak 1997). In this case, it ispos-
sible for the interpreted language to piggy-back onto the host lan-
guage’s memory management, saving the interpreter’s implementer

the trouble of writing his own GC. The fact that the interpreted
language’s values (say, synchronous processes) are simplyvalues
from the host language makes this implementation scheme even
more desirable. This gives the two languages a chance to collabo-
rate closely. For instance, the standard library of the hostlanguage
is thus conveniently available from the interpreted language.

However, if the interpreted language needs to maintain a list of
living processes, a difficulty appears with the desirable implemen-
tation scheme proposed above. Keeping this list can be necessary
for any kind of bookkeeping — for instance, to inform all living re-
active processes that a synchronous clock shared by all of them has
advanced. The intention, however, is likely to be that “onlyliving
(i.e. referenced) processes should receive the signal”, asopposed
to the strategy of “keeping every process alive so that it canre-
ceive the signal”. The latter is a kind of memory leak. It is exactly
what happens if an ordinary, non-weak data structure is usedto
store the list of processes. Weak pointers are the standard solution
to this difficulty: in order to allow processes to be garbage-collected
when they are no longer referenced from other processes, thedata
structure where they are enumerated should use weak references to
them.

Hashconsing is another example of the use of weak pointers.
Hashconsing is a technique that employs a hashtable to remember
all the value of a given typet that have been created. This way,
it is possible, when the program is about to create a new valueof
typet, to check in the hashtable if this exact value does not already
exist, and to use the existing value if it does, thus ensuringmaxi-
mal sharing. In some applications, hashconsing can improve both
memory usage and computation times because the maximal sharing
property also makes it cheap to determine if two values are equal.
However, when hashconsing is implemented without taking care of
using weak pointers, there is a memory leak problem: the hashtable
then causes all the values of typet to remain in memory even when
they are no references to them except the one from the hashtable.
But in fact, the maximal sharing property does not require tokeep
every value of typet in memory indefinitely! When one such value
has ceased to be useful, it can safely be collected, because it can al-
ways be created again later. For this reason, weak references should
be used at some point when implementing hashconsing. Of all the
uses for weak pointers, hashconsing will receive the most attention
in this article.

In OCaml, there is a two-word memory overhead for allocating
a single weak pointer, but this overhead does not increase for
additional weak pointers in the same block. The primitive construct
provided is therefore that ofweak arrays, so that, when it is not
otherwise too constraining, several weak pointers can be allocated
at once in a single array. The functions for manipulating weak
arrays can be found at toplevel within theWeak module in OCaml’s
standard library.

4. Adding weak arrays to OCaml
This section describes the issues raised by the addition of weak
arrays to the OCaml system.

4.1 Interface of the Weak module

In OCaml, 'a Weak.t is the type of weak arrays of'a. Such
arrays can be created, modified and accessed with the following
primitives:type 'a tval reate : int -> 'a tval set : 'a t -> int -> 'a option -> unitval get : 'a t -> int -> 'a optionval get_opy : 'a t -> int -> 'a optionval hek : 'a t -> int -> bool

Figure 2. OCaml memory with weak arrays

The functionget_opy returns a shallow copy of the stored
value. The utility of this function will be explained in section 7.2.

4.2 Implementation

Weak arrays are allocated directly in the major heap for simplicity.
They are materialized as blocks with theAbstrat_tag, which
means that the contents of these blocks are not traversed recursively
by the major collection. TheAbstrat_tag has always existed in
the current implementation of OCaml’s GC. It is habitually used for
data (such as floating-point values) whose bits should not betreated
as though they composed an address. In the case of a weak array,
the values inside the block are indeed addresses, but they should
not be traversed by the GC because that would make them alive,
which is precisely what is not wanted. If there are other, normal
pointers pointing to a block referenced from a weak array, itis the
traversal of these pointers that will make the block alive. If there
aren’t, the block will eventually be reclaimed as dead and the value
of the weak pointer changed to a sentinel that means the blockhas
become dead.

The first word of each block representing a weak array is re-
served for chain-linking all the weak array blocks together. This is
illustrated in figure 2, where J and K are the weak arrays. Notethat
because of theAbstrat_tag, this chain-linking does not make
the weak array blocks automatically alive. The liveness status of
a weak array block is determined like that of any other block,by
the presence of a live conventional pointer to it in the heap.The
contents of the block representing a weak array, from the second
word until the last one, are the actual weak references. A sentinel,weak_none, is used to indicate that a particular weak reference was
referencing a value that has been reclaimed.

The fact that the weak array blocks are chain-linked together
allows to traverse them in a special phase of the garbage collection
that takes place right after the major collection’sMark phase is
finished. At that point during the major GC cycle, the blocks that
are going to be considered live and those that are going to be
reclaimed are clearly marked as such in thecolor field of their
respective headers. It is during this special phase that theweak
pointers found to be pointing towhite blocks — blocks that are

going to be reclaimed as dead in the upcomingSweepphase — are
replaced by the sentinelweak_none.

Besides, live blocks may also be moved around by the major GC
in a phase calledCompaction, and unlikeref_table in the case of
the blocks moving from the minor heap to the major heap, there
isn’t a convenient complete list of locations of pointers toupdate.
The GC knows how to correctly update all the pointers to moving
blocks that it has traversed, but since it does not traverse the weak
array blocks at all while examining the heap, this needs to bedone
in another specific phase by traversal of the weak array chain.

4.3 Pitfalls

The description above corresponds exactly to Ocaml 3.09.3’s im-
plementation: when a pointer into the minor heap is written at any
location in the major heap, the location is added to theref_table
so that it can later be updated when the pointed block is moved.
Since weak arrays are mutable structures allocated in the major
heap, the above conditions apply in particular each time that a value
from the minor heap is added to a weak array. In Ocaml 3.09.3, the
location inside the weak array would be added to theref_table
like any other major heap location updated with a pointer towards
the minor heap. However, this could incur a significant memory
waste in some circumstances. This section explains why.

The major GC is incremental. When blocks are copied to it from
the minor heap, these blocks are automatically marked as alive. In
normal circumstances, they are alive, for the major GC’s definition
of liveness as “reachability at the beginning of the major cycle”
— since they have been copied, they definitely were reachable.
Except, of course, for blocks in the minor heap whose only claim
to reachability was a reference in a weak array. For these, the usual
algorithm of “copy block to the major heap, mark block as alive
and update the pointing location”, while not being observationally
wrong, is sub-optimal. These blocks, if not referred to through a
normal pointer (that would either be registered in theref_table
or that would have been discovered by the minor heap traversal)
can rightfully be considered as dead, because there are no non-
weak references to them at that instant. For these blocks, the best
algorithm to apply is “reclaim the block and change the weak
pointer accordingly”. Applying the usual algorithm to themmeans
that they will stay in memory on average one major cycle and a half
longer than necessary.

In OCaml 3.10.2, in order to handle the case of these weak
references more appropriately, the locations inside weak arrays
being updated with a pointer to the minor heap are recorded ina
different structure, theweak_ref_table. Only the locations in theref_table are treated as roots for the minor collection. Right after
the minor collection is finished, theweak_ref_table is analyzed
in an additional step. Locations recorded in theweak_ref_table
that contain the address of a block that was moved to the major
heap are updated with the new address, while the locations that
contain the address of a block that was not visited during theminor
heap traversal are marked as being weak pointers that have been
reclaimed.

Let us go back to figure 2 for an example. In this figure, K is a
weak array and theweak_ref_table points to it. K points to E, but
the minor collection will not copy E into the major heap, but leave it
to be reclaimed along with B, D, and G. Then the additional phase
will erase the pointer from K to E, replacing it withweak_none.

Note that the implementation of theweak_ref_table shares
most of its code with the existingref_table, hence this new
feature does not add significant complexity to the runtime system.

5. Adding weak hashtables to OCaml
The weak hashtables described here provide slightly different func-
tionality than typically found in weak hashtables in other lan-

guages. Indeed, OCaml’s weak hashtables are implemented without
relying on any primitive feature other than weak pointers, whereas
many variations on the theme of weak hashtables have been defined
(Haible 2005; Li 2007), some of which require more support inthe
language core than simple weak pointers. OCaml’s weak hashta-
bles are not hashed maps but hashed sets, where only the keys are
stored. While this means that some sophisticated usages of weak
pointers are disallowed, it will be seen in section 6 that thedraw-
backs when implementing hashconsing are minimal.

This is the interface of weak hashtables:module type S = sigtype datatype tval reate : int -> tval merge : t -> data -> data...endmodule Make (H : Hashtbl.HashedType) :S with type data = H.t
The functorWeak.Make takes a moduleH that contains a typet of the data to be hashconsed, and functionshash and equal;
it creates a weak hashtable ofH.t. It provides, among others, areate function to allocate new hashtables, and amerge function
to look up or add a piece of data in a given hashtable. This functor
is part of the OCaml standard library, and it is written entirely in
ML, relying only on the “weak arrays” primitive. A weak hashtable,
like a normal hashtable, is represented as an array of buckets. The
basic idea is to represent each bucket as a weak array containing
the values that have beenmerged into the table at this point. The
functionmerge applies the hash function to the passed valuev, and
infers from the result which bucketv should go into — or already is
in. It can then comparev to the values already stored in the bucket
in order to decide which case applies, return the found valuev1 if
it finds one such that(equal v v1) is true, or addv to the bucket
and return the valuev otherwise.

OCaml’s weak hashtable implementation distinguishes itself
from some others (Peyton-Jones et al. 1999; Haible 2005) in that
it allows arbitrary ML functions to be used as the equality and the
equality-compatible hash function on keys. In practice, the OCaml
weak hashtable library is presented as a functor to be applied to a
module that provides these functions. For instance, assuming that
the moduleL is a module of lists with theHashtbl.HashedType
interface (i.e. providing a typet and functionshash andequal), a
weak hashtable of lists can be created with:module ListWeakHashtbl = Weak.Make(L)

This feature is vital, for example in the Zenon theorem prover
(Bonichon et al. 2007), to make weak hashtables of first-order terms
modulo alpha-conversion, and in Frama-C (Frama-C development
team 2008) where AVL trees are stored in weak hashtables, and
must be compared modulo rebalancing.

Note that it is not necessary for a programming language to
have a sophisticated module system in order to provide the fea-
ture “weak hashtable with user-defined equality and (equality-
compatible) hash function”. Any language where functions are
first-class citizens could provide a similar feature. Still, some of
the pitfalls to be described in section 7 come from the fact that the
equality and hash functions are ordinary, user-defined functions.
The authors did not notice these pitfalls mentioned in the litera-
ture, perhaps because this feature was never provided together with
incremental garbage collection.

6. Hashconsing
In this section, we will illustrate the use of OCaml’s flavor of
weak hashtables with the example of the hashconsing of a list
type. The explanations given here are solely for the purposeof
showing one concrete use of weak hashtables. The implementation
of hashconsing in OCaml is described in much more detail in
(Filliâtre and Conchon 2006).

Creating a hashconsed list type is little more than defining an
adequateons function that takes a headh and a tailt and creates
the listCons(h, t). Theons function should guarantee that only
one instance of theCons constructor applied to a given (h, t) pair
is visible at any time. In other programming languages, thiseffect
can be obtained by use of a weak mapping fromh and t to the
constructed list. In OCaml, because the weak hashtables arein fact
hashsets, theCons constructor should be applied tentatively to form
a listl similar to the one that is desired, and then the weak hashtable
should be looked up for a value that is “equal” to l.let ons h t =let l = Cons(h, t) inListWeakHashtbl.merge tbl l

In the rest of this section we will slightly abuse the definition
of OCaml’s physical equality primitive==, and assume that it is
possible to use it to compare two values if both these values have
been hashconsed in the same table. This abuse is widespread,but it
still is an abuse: for immutable objects, the only formal guarantee
concerning physical equality is that it implies structuralequality.
In theory, the OCaml implementation reserves the right to share
or duplicate structurally equal immutable values. In practice, we
know that== has the behavior we need on theCons cells. A better
implementation would not use== for comparing lists, but instead
either arrange to physically compare mutable objects (for which== provides more guarantees) or tag the applications ofCons with
unique integers. In our example, the abuse allows for conciseness
in the definition of equality on hashconsed lists as the physical
equality:let list_equal l1 l2 = (l1 == l2)

The equality to use during weak hashtable lookups should not
be the equality defined above. Indeed, during a lookup, one of
the values in the comparison is aCons that was applied without
knowing yet whether this application was redundant. On the other
hand, the equality to use for the lookup in the weak hashtablecan
assume by induction that the hashconsed children of its argument
nodes are equal iff they are physically equal. In other words, this
equality, which is only useful for lookups, can be defined as in the
following module:module L =struttype t = Empty | Cons of value * tlet equal l1 l2 =math l1, l2 with(Cons(h1, t1)), (Cons(h2, t2)) ->(list_equal t1 t2) && (element_equal h1 h2)| ...let hash l = ...end

This moduleL is the one that should be passed to the func-
tor Weak.Make in section 5. Thehash function inside the mod-
ule L should be defined with identical care for identical reasons.
If the programmer’s decision was to tag the applications ofCons
with unique integers, these tags make a fine hash function forhash-
consed lists, but the functionL.hash should not use its argument

node’s tag as a hash value, because its argument has not been hash-
consed yet (theCons constructor was applied tentatively with a
fresh tag). Instead, the functionL.hash should be defined so as
to make use of the tags of the children of the node it is appliedto.
Similarly to the functionL.equal, it does not need to look deeper
into its argument than the first level.

To reiterate, while the moduleL defined here should be the
one passed to the functorWeak.Make in order to create a weak
hashtable module able to soundly store and recover lists being
hashconsed, its functions should not be used for anything else, as
there are better implementations available when the argument(s)
are lists that have already been hashconsed.

7. Pitfalls in the implementation of weak
hashtables

Along with the performance issues already mentioned in the treat-
ment of weak arrays by the runtime system, the introduction of
hashconsing in Frama-C revealed issues that were specific tothe
weak hashtable layer. A common theme underlying these issues is
that the resemblance of weak hashtables to standard hashtables at
the interface level is misleading: performance can be suboptimal if
weak hashtables are implemented too similarly to standard hashta-
bles.

7.1 Deciding when to resize weak hashtables or buckets

OCaml’s standard hashtables, as well as weak hashtables, are able
to resize themselves dynamically as the number of elements they
contain is growing. For a standard hashtable, the decision to resize
is easy to take: it is only a matter of counting the elements that go in
and come out, and to allocate a new, bigger array of buckets when
a fixed average number of elements per bucket has been reached.
In the case of a weak hashtable, however, the problem is more
complicated. What the standard hashtable is doing, by counting
the elements that go in and come out of the table, is to keep a
count of the number of elements inside the table. In the case of
a weak hashtable as used for hashconsing, the elements come in
and eventually evaporate silently. At cruising speed, the quantity
of live data inside the hashtable remains about constant while new
values come in all the time, so that for a program running for an
unbounded time, the total amount of data that has been put inside
the table may be unbounded. But without additional support from
the GC, it is not known how many live elements are inside the weak
hashtable and therefore it is difficult to make an informed choice
about resizing.

The same problem exists at the level of the individual bucket. A
strategy that may seem both reasonable and simple to implement is
the following: grow each bucket when it needs to, otherwise keep
them the same size. This strategy does not work so well for the
hypothetical program above that runs an unbounded time while al-
ways keeping a bounded amount of live data inside the table. Be-
cause of inevitable statistical fluctuations, each bucket will at one
time or another grow past any fixed size — and then empty itself
back as the pointers are reclaimed and the statistical tide moves to
another bucket. Eventually, the weak hashtable implementing the
“reasonable” strategy will have arbitrarily large bucketscontaining
almost exclusively reclaimed weak pointers.

In OCaml 3.10.2, each bucket in a weak hashtable is periodi-
cally checked for the possibility of being shortened (if thenumber
of reclaimed pointers inside allows it). This check is performed in-
crementally: a couple of buckets, chosen in a round-robin fashion,
are checked each time we need to grow a bucket. Furthermore, the
table is resized according to an estimation of its fullness based on
the number of buckets with a size above a fixed threshold. Notethat

the latter would not be an appropriate measure of fullness without
the former measure against buckets growing too large.

7.2 Avoid making stored values alive needlessly

In the basic implementation for weak hashtables, themerge func-
tion, when applied to a valuev, finds the appropriate bucket and
comparesv to each element it finds in the bucket. This means call-
ing the equality function on each element already in the bucket.
The equality function is a perfectly ordinary ML function, which
was provided through OCaml’s functor system. Like every other
ML function, this function expects its arguments to be alive— it
would not, in fact, be prepared to handle an argument that wasn’t,
because the equality function is likely to do some allocations dur-
ing its execution, which are possibly going to give control to the
GC, which is possibly going to finish a cycle and reclaim all the
dead blocks it can find. Therefore, it appears necessary to make
elements from the bucket alive at the time of passing them to the
equality function.

This wouldn’t be a problem with a stop-the-world garbage col-
lector, but OCaml’s incremental collector uses the snapshot-at-
beginning technique, as described in (Wilson 1992). In thissetting,
making a block alive, even for a short time, means that it cannot
be deallocated in the current major GC cycle. In case of frequent
access to a weak hashtable, some of its buckets may be traversed
at least once during each GC cycle. In this case, their dead blocks
will never be deallocated.

In fact, the bucket elements need not be made alive. OCaml’s
weak arrays allow requesting a shallow copy of the contents of a
cell, and in this case, it is the copy that is forced to life, not the
original value. The copied block’s children, on the other hand, are
forced to life in the process, because they are referenced from the
copy. These children are the same as the original block’s. So, if an
element in a weak hashtable is dead and the program is doing a lot
of lookups in the table, only the element’s top node is guaranteed to
be reclaimed on the next GC cycle. The children of the node may
have been forced to life by lookups.

This scheme was originally thought to be sufficient... And itis,
in a way. Any non-circular dead hashconsed value will be reclaimed
after enough GC cycles, even in the worse case where lookups keep
making children of the current remaining subtree alive again. One
problem with the described scheme is that of circular valuesstored
in weak hashtables. The hashconsing of circular values is anad-
vanced topic but can be encountered (Considine 2000; Mauborgne
2000). The circular hashconsed values may be kept in memory in-
definitely by lookups, even when they are otherwise unreachable.
Effectively, each lookup for another value that has the samehash
will make all the descendants of the circular value alive, including
itself. Another problem is more likely to be encountered when us-
ing hashconsing techniques: if every node of a tree or DAG is hash-
consed, as is for instance the case for Binary Decision Diagrams
(Clarke et al. 1999), the deallocation of dead values can be very
slow. Indeed, for a now-dead tree that is stored in a weak hashtable,
the height of the dead subtrees that keep wasting heap space only
going down by one unit at each major GC cycle.

A solution for this issue relies on the fact that most of the time, it
is enough to know the hash of each of two values to decide that they
are different (if their hashes are different, the values aredifferent).
The full hash value of each value stored in a weak hashtable is
kept in a cache. Before comparing for equality the value to bemerged with a value already present in the same bucket, their hash
values are compared. If the full hash values do not match, it is not
necessary to call the user-providedequal function on the values,
and thus the value from the bucket does not need to be made alive.
Of course, part of the information contained in the hashes ofboth
values is necessarily identical since their hashes lead them to the

same bucket. But it pays to compare the full word of information
contained in the values’ hashes before calling theequal function.

Although it is called less frequently, the internalresize func-
tion inside theWeak.Make functor is subject to a similar remark.
This function is called when a weak hashtable is estimated tohave
become too small for the number of elements it contains. It allo-
cates a new, bigger weak hashtable and copies the elements from
the former into the latter. The pre-3.10.2 version of this function
called the user-providedhash function on each of the values stored
in the table, thus forcing the GC to keep them in memory for one
additional major cycle, even if they were about to be reclaimed.
This function now makes use of the cached hash value for each
value in the old table. It avoids callinghash and is carefully written
so as to avoid forcing to life the referenced values. This implies us-
ing a runtime primitive,Weak.blit, that was introduced in OCaml
3.10.2 especially for this reason. The primitiveWeak.blit copies
values from a weak array to another weak array without making
them alive (using the OCaml functionsWeak.get andWeak.set
would make the values alive).

8. A different weak hashtable implementation
The weak hashtables implementation described above with all per-
formance issues fixed is the version distributed with OCaml 3.10.2.
Another implementation was made for Frama-C, at a time when it
was not clear yet where the issues were in OCaml’s provided ver-
sion. The purpose of this alternative implementation was tolower
the memory overhead when storing a large number of elements in
a weak hashtable, and especially to lower it so it became possible
to have an average of one element per bucket (to emphasize speed)
without unreasonable space overhead. At the time, one test case
also made it seem like the inherent limitation of OCaml’s weak
hashtables to 4 million buckets on 32-bit architectures wasan is-
sue, so another goal was to raise this limit. It only became clear
later that the issue exhibited with this test case was in factwith
dead values not being reclaimed quickly enough when they were
referred in a weak hashtable, and with improper heuristics for re-
sizing weak hashtables.

The implementation can be found in the Frama-C distribution,
in file bukx.ml (the name is supposed to evoke hierarchical buck-
ets). This implementation attempts to reduce both wasted space and
overhead by mutualizing the space available to several buckets in a
single weak array. This implies the management of free cellsand of
the cells allocated to each bucket very much as if each weak pointer
was a block in a filesystem, and each bucket a file. We will call the
filesystem-like structure a “meta-bucket” in the rest of this section.
At the time of creating a weak hashtable, its size can be chosen by
selecting the appropriate number of meta-buckets. To storea value
inside a weak hashtable composed of several meta-buckets, part of
the value’s hash is used to choose a meta-bucket, and the remaining
entropy is used to select a bucket inside the meta-bucket.

There is a compromise in the choice of the number of buck-
ets that compose a meta-bucket. An obvious advantage of mutu-
alizing many buckets it that the mutualization is more efficient,
whereas with smaller and more numerous meta-buckets, a meta-
bucket may still have free cells while another is full and forces
the resizing of the table and the redistribution of present elements.
There are also less obvious advantages for the choice of mutualiz-
ing a smaller number of buckets. One is that the “filesystem-side”
overhead has a chance to be smaller when it takes fewer bits to
encode the number of a weak cell in the common pool. Another
is that when looking for reclaimed pointers in the table, a smaller
meta-bucket allows for better locality of the required memory ac-
cesses. The implementation settled on using the FAT filesystem
(Wikipedia 2008) from 20th-century operating systems for man-
aging one meta-bucket, mutualizing 254 weak pointers (clustersin

Figure 3. A 3-bit FAT

the FAT analogy) shared between 256 buckets (root directory en-
tries). Root directory entries and FAT entries can each be encoded
in one byte.

Figure 3 shows an example of a 3-bit FAT. In this figure, each
square box uses only 3 bits of memory, while the rectangular ones
are regular 32- or 64-bit values. Indexes into the FAT range from 0
to 6, and 7 represents Nil. There are 4 buckets in the meta-bucket
(A to D); A and D are empty, B has one entry and C has two entries,
linked together via the FAT. The free entries are linked in the meta-
bucket’s free list.

A separate mechanism limits the ill side-effects of small meta-
buckets. It delays the resize operation when some meta-buckets
become full before others, by spilling the additional elements in
a second smaller structure. When benchmarking this mechanism
by storing only live values inside the table, the fill rate would
reach between 80% and 90% before a meta-bucket and its spill
bucket were both full, forcing to resize the table. Regarding the
dead data in the table, another ad-hoc mechanism makes the table
more aggressive in its collection of reclaimed weak pointers, at the
cost of more CPU usage, when it looks like the available memory
or address space of a typical workstation would soon be exhausted.

With the choice of an 8-bit FAT, assuming that the table is full
and that the average bucket size is one, the memory occupied by
each element of the table is one word for the element itself, one
word for caching the hash value of the element, about one bytefor
the bucket’s root directory entry, and a one-byte entry in the FAT,
for a total of 10 bytes on a 32-bit architecture. Unevenness in the
distribution of elements inside meta-buckets mean that theactual
average space occupied per element is between 11 and 12 bytes
even just before resizing.

In contrast, if all buckets were of size one in one of OCaml’s
weak hashtables, the memory occupied per element would be 3
words to store the element (3 words is the heap size occupied by
a one-element weak array), 2 words to store the hash value of the
element in a normal array, and two words to index both the weak
array and the normal array so that they can be accessed. The total is
7 words (28 bytes on a 32-bit architecture). But when the average
number of elements per bucket is one, all buckets are unfortunately
not of size one with usual hash functions. OCaml’s implementation
of weak hashtables cleverly shares all buckets of size zero,so the
above estimation is wrong. The simulation in appendix A shows
that assuming that the hash function is random, more than a third of
the buckets can be expected to be empty when 100000 elements are
stored in a weak hashtable of 100000 buckets. On the other hand,
in order to avoid constant resizing of the buckets, the allocation
size for a bucket follows1 the progression 0, 3, 7, 13, so that for

1 The formula used to compute the new size when re-allocating abucket is
given by the functionnext_sz in file weak.ml.

instance, a bucket for 4 elements really contains room for 7.Taking
both these biases into account, we arrive to an average size of 3.2
words per element for the weak arrays (and 2.6 words per element
for the integer arrays containing the hashes of the elements) when
storing 100000 elements in a 100000-buckets weak hashtable, for
a total of roughly 31 bytes per element on a 32-bit architecture.

It should be kept in mind, however, that the memory efficiency
of OCaml’s weak hashtables improves when the average bucket
size grows larger than one. Also, the total size of these hashtables
grows in a more progressive fashion (each bucket is resized indi-
vidually), whereas the mutualized buckets must be allocated all at
once when resizing one of the weak hashtables described here.

9. Benchmarks
Frama-C (Frama-C development team 2008; Monate and Signoles
2008) is a framework for writing collaborating static analyzers for
the C language. One of the existing analyzers inside Frama-Cis a
value analysis based on abstract interpretation (Cousot and Cousot
1977). This analyzer computes over-approximated (but correct) su-
persets of the possible values for all variables at all points of the
analyzed program. One of the specificities of this analyzer is that
it keeps all the information thus computed (the values of allvari-
ables in all program points) so as to be able to answer requests from
other analyzers when they need it. When using abstract interpreta-
tion techniques to detect the possibilities for run-time errors in the
analyzed program, only a small fraction of this informationneeds
to be retained at a given time of the analysis. The problem of the
increased memory consumption thus caused by the collaborative
approach of Frama-C was solved by using Patricia trees (Okasaki
and Gill 1998) for the representation of memory states and using
hashconsing on these trees. The implementation of big-endian Pa-
tricia trees was borrowed from Menhir (Pottier and Régis-Gianas
2005) and heavily adapted.

In order to compare the performance of the various weak
hashtable versions available, we launched four different binaries of
the Frama-C value analyzer on the C program in appendix B. The
compiled source code for the analyzer was identical in each case
except for the fact that, in two of the compilations, OCaml’sstdlib
version of weak hashtables were used and in the other two, Frama-
C’s weak hashtables were used. Both versions were compiled using
both OCaml 3.09.3 and OCaml 3.10.2. TheWeak module has iden-
tical interfaces in these two versions, but OCaml 3.10.2’s version
of the moduleWeak fixes the problems that are described in this
article. The results are reported in the first four lines of table 1.

The analyzer is launched with options that force it to compute as
precise a representation as it can of the memory state at the end of
the execution2. Additionally, after the analysis, for each statement,
a (possibly over-approximated) union of the states that have oc-
curred at this statement is available for querying. Intermediate com-
putations consume even more time and memory (the algorithmsthe
analyzer relies on could be modified or improved, but we believe
that this does not make this benchmark less relevant as an example
of the practical use of hashconsing).

First and foremost, it should be pointed out that these measures
are not comparisons of hashconsed implementations versus non-

2 It is possible to use less time and memory to analyze this pro-
gram, but then the optimal conclusion concerning the value ofS (respectively [62475..62975], [499950..500950], [1687425..1688925],
[3999900..4001900] for values ofN being 50, 100, 150, 200) may not be
reached. Indeed, the way the program is written, the analyzer needs to have
at one point a precise representation of a rather big memory state in order
to reach this conclusion.
3 A bug in /usr/bin/time on the test platform prevents obtaining the maxi-
mum resident size when it is larger than 2GiB.

N = 50 N = 100 N = 150 N = 200
3.09.3 stdlib 78.3s 2952s 23582s 101815s

114MiB 732 MiB 1629MiB >2GiB3

3.09.3 buckx 52.2s 1149s 9427s 44714s
98MiB 349MiB 654MiB 991MiB

3.10.2 stdlib 49.1s 1018s 7936s 37472s
85MiB 326MiB 624MiB 936MiB

3.10.2 buckx 50.6s 1106s 8908s 43896s
95MiB 350MiB 560MiB 836MiB

3.10.2 buckx+ 50.0s 1038s 8615s 40269s
89MiB 320MiB 598MiB 854MiB

Table 1. User time and maximum RSS as reported by/usr/bin/time -l on a 2.66GHz 5150 Intel Xeon Mac Pro with
8GiB of memory (Mac Os X 10.5.2)

hashconsed ones. While unfortunately the non-hashconsed imple-
mentation of Frama-C is no longer available for reference, its re-
sults would be out of the chart here, withOut_of_memory excep-
tions starting earlier than N = 100 for a 32-bit address space4. The
improvements by a factor of more than two in time and memory
usage that appear in these results are with respect to a hashconsed
version of the software that was already much improved compared
to the non-hashconsed one.

If we look at the results of table 1 in a little more detail, it is
apparent that using either Frama-C’s own implementation ofweak
hashtables or OCaml 3.10.2 makes the analysis significantlyleaner
and faster than the OCaml 3.09.3 native version of weak hashtables.

Comparing the rows “3.09.3 buckx” and “3.09.3 stdlib” show
that Frama-C’s own implementation of weak hashtables has played
an important role as a stop-gap measure to make Frama-C more ef-
ficient when the latest available version of OCaml was 3.09.3. As
mentioned previously, the analysis of one C program did exceed
the maximum number of buckets a stdlib weak hashtable can have
when the analyzer was compiled with OCaml 3.09.3. The advan-
tage it provides is no longer so clear with OCaml 3.10.2. The only
difference that remains visible between the two weak hashtables
implementations when run on the same 3.10.2 runtime is in the
tradeoff between space and CPU usage. The native one is a little
faster at the expense of a little additional memory usage.

The differences between the “3.09.3 buckx” and “3.10.2 buckx”
versions can be attributed to the improvements in the runtime
between the two versions of Ocaml (section 4.3: the addition
of weak_ref_table). The expected improvement depends on
whether the program creates short-lived hashconsed values. Frama-
C is in this case, and the run-time improvement is smallish (2-5%)
and the memory size improvement is about 15%. On an off-topic
note, the problem of the hashconsing of short-lived values is given
an interesting twist in (Appel and Gonçalves 1993), although the
ideas there do not seem to apply directly to the framework de-
scribed here.

The wider gap between “3.09.3 stdlib” and “3.10.2 stdlib” takes
into account both the improvements in the runtime and in the weak
hashtables implementation.

The row “3.10.2 buckx+” in table 1 corresponds to a recent
version of the buckx weak hashtables where a performance bug
was identified and fixed. Fixing this bug should make the analyzer
both faster and more memory efficient. In practice, the bugfixalso
displaces the equilibrium point the analyzer tries to reachbetween
the total memory used and the time spent collecting garbage (the

4 Frama-C is supported on all the 64-bit architectures that are supported
by OCaml, but because of the increased word size, and unless swapping is
acceptable to the user, there needs to be at least 6GiB of installed RAM to
start improving on the results of the 32-bit version

second ad-hoc mechanism mentioned in section 8). As a result, the
time/space ratio seems uninteresting for N=150, value for which
the analyzer just entered its memory-saving mode at the end of its
analysis without the fix and does not enter it any longer with the
fix. For other values of N, the advantage is clearer, althougha little
more memory is used for N=200 compared to the “3.10.2 buckx”
version. The obvious meta-conclusion is that, if the current design
for efficient hashconsing in OCaml was considered final, either
weak hashtable implementation would probably benefit from being
fine-tuned with the help of additional, representative benchmarks.

10. Related work
It is natural to use hashconsing to limit space and time usagewhen
implementing abstract interpretation algorithms, and it seems to be
what is done in (Mauborgne 2000) (for the more difficult problem
of cyclic values), although the article does not make mention of
weak references.

(Filliâtre and Conchon 2006) details a way to implement hash-
consing in OCaml (based on the weak arrays provided by the run-
time), relying on types to ensure that a non-hashconsed value does
not get mistaken with a hashconsed one by accident, and caching
the hash value. That article mostly assumes that efficient weak
hashtables are available and puts the emphasis on the way to get
hashconsing from them, whereas here we describe the construction
of efficient weak hashtables in OCaml’s flavor. The article uses,
as we do, the physical equality== (between hashconsed values, of
course). The “type-safe” qualifier in the article’s title comes from
the fact that the type system will prevent values of the hashconsed
type from being created by direct application of the constructors, as
opposed to the maximal-sharing-preserving function that applies
the constructor tentatively, looks it up in the hashconsingtable,
and returns the new value only if it was not already in the table.
It should be pointed out, however, that this assumes that values can
only be created by application of their constructors. The functionArray.get may create a new value if the value is stored unboxed
inside the array (this is already the case withfloats, and the prac-
tice might be generalized in some future version of OCaml). TheMarshal.from_* functions,even when used in a type-safe way,
also allocate new values which break the hashconsing invariant. In-
cidentally, the functionWeak.get_opy has the same property, and
it is not considered type-unsafe. Comparing unique tags instead of
using == prevents observing any ill side-effects from the use ofArray.get or Weak.get_opy, although of course the program
will still behave incorrectly if it marshals a hashconsed value some-
where, the heap version of the value is later found to be dead,re-
claimed by the GC, re-created by application of the constructor, and
the program then un-marshals the original, previously marshaled
value. Besides, the implementation proposed in (Filliâtreand Con-
chon 2006) caches the hash of each value as a field inside the type'a hash_onsed. As we found out (section 7.2), this means by
construction that the value will be forced to life when the cached
hash value is read. The hash value should ideally be stored sepa-
rately from the stored value, so that it can be accessed without re-
quiring a call to eitherWeak.get or Weak.get_opy on the stored
value.

The WEAK structure of SML/NJ (Appel and MacQueen 1991)
provides a different interface from OCaml, with immutable weak
pointers and a small set of primitives, which was used successfully
in (Shao 1997). We had to provide a more complex interface that
gives more control to the user in order to cope with the difficulties
introduced by the incremental GC of OCaml. Moreover, the trade-
offs in OCaml’s weak pointers are geared toward hashconsing
rather than general use. The primitives provided by SML/NJ make
it natural to use a different design for the weak hashtable buckets.

This reflects the influence of the design of weak references onthe
design of efficient weak hashtables.

11. Future directions
OCaml’s weak pointers make it possible to build weak hashtables,
but the approach taken here is not ideal. The weak hashtablesneed
to be periodically polled for reclaimed pointers. This is a kind of
garbage collection happening within the hashtable, and it is not
easy to synchronize with the GC. If the hashtable collections hap-
pen too frequently, it is a waste of time because there are notenough
reclaimed pointers to make them worthwhile. If they happen too
seldom, space is wasted because of the numerous reclaimed point-
ers using up the room in the table.

It seems clear, as already remarked in (Peyton-Jones et al. 1999)
that weak references and finalization should not be considered
separately. The solution to the above dilemma is to let the GC
take an appropriate bookkeeping action when reclaiming a weak
pointer. The nature of the action that would be best for avoiding
the need to self-garbage-collect weak hashtables remains to be
defined. It is possible to experiment in this direction by using
finalization functions to do the bookkeeping but, for performance
and scalability, once the appropriate finalization action has been
found, it may need to receive special support in the OCaml runtime
in order to avoid excessive overhead.

Acknowledgments
The authors are thankful to Benjamin Monate, Virgile Prevosto,
Didier Rémy and Julien Signoles for reading early versions of this
document and providing useful insights. The anonymous referees’
contributions were very valuable even though time was too short
to implement all their suggestions before the final revision. Dillon
Pariente (Dassault Aviation) provided the example C programs that
made it clear that hashconsing was needed in Frama-C.

References
Andrew W. Appel and Marcelo J. R. Gonçalves. Hash-consing garbage

collection. Technical Report CS-TR-412-93, Computer Science Depart-
ment, 1993. URLiteseer.ist.psu.edu/111544.html.

Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In
J. Maluszýnski and M. Wirsing, editors,Proceedings of theThirdInter-
national Symposium on Programming Language Implementation and
Logic Programming, number 528, pages 1–13. Springer Verlag, 1991.
URL iteseer.ist.psu.edu/appel91standard.html.

Henry G. Baker. List processing in real-time on a serial com-
puter. Communications of the ACM, 21(4):280–94, 1978. URLhttp://iteseer.ist.psu.edu/baker78list.html.

David Beazley and Guido Van Rossum.Python; Essential Reference. New
Riders Publishing, Thousand Oaks, CA, USA, 1999. ISBN 0735709017.

Richard Bonichon, David Delahaye, and Damien Doligez. Zenon : An
extensible automated theorem prover producing checkable proofs. In
Nachum Dershowitz and Andrei Voronkov, editors,LPAR, volume 4790
of Lecture Notes in Computer Science, pages 151–165. Springer, 2007.
ISBN 978-3-540-75558-6.

Emmanuel Chailloux, Pascal Manoury, and Bruno Pagano.Développement
d’applications avec Objective Caml. O’Reilly, 2000.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.Model Checking.
The MIT Press, 1999.

Sylvain Conchon and Evelyne Contejean. The Alt-Ergo automatic theorem
prover, 2006. URLhttp://alt-ergo.lri.fr/.

Jeffrey Considine. Efficient hash-consing of recursive types, 2000. URLhttp://iteseer.ist.psu.edu/artile/rey00eient.html.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of

fixpoints. InConference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

Conal Elliott and Paul Hudak. Functional reactive animation. In In-
ternational Conference on Functional Programming, 1997. URLhttp://onal.net/papers/ifp97/.

Jean-Christophe Filliâtre and Sylvain Conchon. Type-safemodular hash-
consing. InML ’06: Proceedings of the 2006 workshop on ML, pages
12–19, New York, NY, USA, 2006. ACM. ISBN 1-59593-483-9. URLhttp://doi.am.org/10.1145/1159876.1159880.

Frama-C development team. Frama-C: Framework for modular analysis of
C, 2008. URLhttp://frama-.ea.fr/.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.Java Language
Specification, Second Edition: The Java Series. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2000. ISBN 0201310082.

Eiichi Goto. Monocopy and associative algorithms in an extended lisp.
Technical Report TR 74–03, University of Tokyo, 1974.

Bruno Haible. Weak References, Data Types and Implementation,
2005. URL http://www.haible.de/bruno/papers/s/weak/WeakDatastrutures-writeup.html.

Xavier Leroy. The Objective Caml system, release
1.07, Documentation and user’s manual, 1997. URLhttp://aml.inria.fr/pub/distrib/oaml-1.07/oaml-1.07-refman.txt.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The Objective Caml system, re-
lease 3.10, Documentation and user’s manual, 2007. URLhttp://aml.inria.fr/pub/distrib/oaml-3.10/oaml-3.10-refman.txt.

Zheng Li. Weaktbl, a weak hash table library for OCaml, 2007.http://www.pps.jussieu.fr/�li/software/weaktbl/README.

Laurent Mauborgne. Improving the representation of infinite trees to deal
with sets of trees. In G. Smolka, editor,European Symposium on
Programming (ESOP 2000), volume 1782 ofLecture Notes in Computer
Science, pages 275–289. Springer-Verlag, 2000.

Benjamin Monate and Julien Signoles. Slicing for security of code. InTrust
2008, Lecture Notes in Computer Science. Springer-Verlag, 2008.

Chris Okasaki and Andrew Gill. Fast mergeable integer
maps. In Workshop on ML, pages 77–86, 1998. URLhttp://iteseer.ist.psu.edu/okasaki98fast.html.

Simon L. Peyton-Jones, Simon Marlow, and Conal Elliott. Stretching the
storage manager: Weak pointers and stable names in haskell.In Imple-
mentation of Functional Languages, pages 37–58, 1999. URLhttp://iteseer.ist.psu.edu/peytonjones99strething.html.

François Pottier and Yann Régis-Gianas. Menhir, December 2005. URLhttp://ristal.inria.fr/�fpottier/menhir/.

Zhong Shao. An overview of the FLINT/ML compiler. InProc. 1997 ACM
SIGPLAN Workshop on Types in Compilation (TIC’97), Amsterdam,
The Netherlands, June 1997.

Wikipedia. File Allocation Table, 2008. URLhttp://en.wikipedia.org/wiki/File_Alloation_Table.

Paul R. Wilson. Uniprocessor garbage collection techniques. In
Proc. Int. Workshop on Memory Management, number 637
in LNCS, Saint-Malo (France), 1992. Springer-Verlag. URLhttp://iteseer.ist.psu.edu/wilson92uniproessor.html.

A. Appendix: Simulation
The following is the OCaml code used to evaluate the distribution
of the respective sizes of 100000 buckets where 100000 elements
have been stored in them.let n = 100000let t = Array.reate n 0let = Array.reate n 0(* ontinued on next page *)

let () =for i = 0 to n-1 dolet r = Random.int n int.(r) <- t.(r) + 1done;for i = 0 to n-1 do.(t.(i)) <- .(t.(i)) + 1done;for i = 0 to n-1 doFormat.printf "%6d -> %6d�\n" i .(i)done
Results:

number of buckets
n containing n elements
0 36767
1 36799
2 18406
3 6138
4 1546
5 281
6 57
7 4
8 2

Estimation of the number of memory words used by weak arrays
when storing 100000 elements in one of OCaml’s weak hashtables:let w = 0 * 36767 +5 * (36799 + 18406 + 6138) +9 * (1546 + 281 + 57 + 4) +15 * 2 ;;val w : int = 323737
Estimation of the number of memory words used by the integer
arrays for hashes when storing 100000 elements in one of OCaml’s
weak hashtables:let h = 0 * 36767 +4 * (36799 + 18406 + 6138) +8 * (1546 + 281 + 57 + 4) +14 * 2 ;;val h : int = 260504
B. Appendix: Benchmark
The following is the C code passed to Frama-C’s value analysis for
benchmarking various implementations of hashconsing.#define N 150#inlude ".../share/builtin.h"#define FRAMA_C_MALLOC_INDIVIDUAL#inlude ".../share/mallo."strut S { int s ; int **t; };strut S tt[N℄;int *P[N℄;void init(strut S *ps){ int j,size;size = ps->s;ps->t[0℄ = mallo(sizeof(int));*(ps->t[0℄) = Frama_C_interval(0, 10);

for (j = 1; j < size; j++){ ps->t[j℄ = mallo(sizeof(int));*(ps->t[j℄) = size + j;P[Frama_C_interval(0, j-1)℄ = ps->t[j℄;}}int S;int sum(strut S *ps){ int j, size, s;size = ps->s;s = 0;for (j = 0; j < size; j++)s = s + *(ps->t[j℄);return s;}int main(void){ int i;int **p;for (i=0; i<N; i++){ p = (int **) mallo((i+1) * sizeof(int));tt[i℄.s = i+1;tt[i℄.t = p;init(&tt[i℄);}for (i=0; i<N; i++){ S = S + sum(&tt[i℄);}*(P[10℄) = -1;return S;}
Note that Frama-C does not handle well the analysis of pro-

grams where there is non-determinism in the shape of the allocated
memory blocks. The calls tomallo here are only a convenient
way to create large memory states (eachmallo call is equivalent
to creating a fresh variable). In a typical embedded program, there
would not be any dynamic allocation but there would be numerous
global variables, some of them being complicated structures. The
version of Frama-C used for this benchmark is 20080301. The pro-
gram is analyzed with the following command line:toplevel.opt -val benh. .../share/builtin.-slevel 210
C. For those who kept reading after the credits
The program in appendix B is incorrect: the pointerP[10℄ may
not have been initialized when it is accessed at the very end of the
program. Frama-C warns about this, but does not emit any other
alarm. This means that Frama-C guarantees that this line is the only
one where there might be an invalid memory access in this program.

