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Abstract
Reasoning about program control-flow paths is an important func-
tionality of a number of recent program matching languages and
associated searching and transformation tools. Temporal logic pro-
vides a well-defined means of expressing properties of control-flow
paths in programs, and indeed an extension of the temporal logic
CTL has been applied to the problem of specifying and verifying
the transformations commonly performed by optimizing compilers.
Nevertheless, in developing the Coccinelle program transformation
tool for performing Linux collateral evolutions in systems code, we
have found that existing variants of CTL do not adequately support
rules that transform subterms other than the ones matching an entire
formula. Being able to transform any of the subterms of a matched
term seems essential in the domain targeted by Coccinelle.

In this paper, we propose an extension to CTL named CTL-
VW (CTL with variables and witnesses) that is a suitable basis
for the semantics and implementation of the Coccinelle’s program
matching language. Our extension to CTL includes existential
quantification over program fragments, which allows metavariables
in the program matching language to range over different values
within different control-flow paths, and a notion of witnesses that
record such existential bindings for use in the subsequent program
transformation process. We formalize CTL-VW and describe its use
in the context of Coccinelle. We then assess the performance of the
approach in practice, using a transformation rule that fixes several
reference count bugs in Linux code.

1. Introduction
Program matching is the process of searching within the source code
of a program for code fragments matching a given pattern, described
using some language. Recently, program matching languages that
combine descriptions of code fragments with information about
the control-flow paths between them have been found useful in
specifying rules for program manipulation tasks such as compiler
optimizations [16, 17], bug finding [10], refactorings [23], and
evolution [20].

In recent work, we have developed the transformation system
Coccinelle [20], which provides the language SmPL (Semantic
Patch Language) for specifying desired matches and transformations.
Coccinelle is targeted towards performing collateral evolutions
in systems code. Such evolutions comprise the changes that are
needed in client code in response to evolutions in library APIs, and

may include modifications such as renaming a function, adding
a function argument whose value is somehow context-dependent,
and reorganizing a data structure. Collateral evolutions may involve
fragments of code that are scattered throughout a function or a file,
such as a function call and its corresponding error-handling code,
and thus it is often necessary to take into account the control-flow
relationships between the relevant code fragments. Beyond collateral
evolutions, we have also found Coccinelle useful for finding and
fixing bugs in the use of API functions [18], for which control-flow
relationships must also be taken into account.

In developing Coccinelle, it was necessary to choose a foundation
on which to base the matching process. In the context of specifying
compiler optimizations, Lacey and De Moor have observed that the
temporal logic CTL can provide a convenient foundation for the se-
mantics of program matching languages that take control-flow paths
into account, because it is designed for reasoning about paths [16].
In this setting, a pattern is compiled into a formula of the logic and
a program is translated into its control-flow graph. Model checking
[7, 12] is then used to match the formula against the control-flow
graph, thus identifying where the pattern matches in the program. To
support the specification of compiler optimizations, Lacey and De
Moor extended CTL first with predicates over free variables, produc-
ing the logic CTL-FV [17], and then with predicates over variables
that may be existentially quantified, producing a logic that we refer
to as CTL-V [15]. The former allows collecting information about
the program during the matching process, via variable bindings, and
imposing constraints on the allowed subterms when a given variable
is matched more than once. The latter enables localizing collected
information and imposed constraints to within individual subsets of
the possible control-flow paths, such as the different branches of a
conditional statement.

The needs of Coccinelle, however, have made apparent some
inadequacies of CTL-V as the back end of a program matching
language. While the use of existentially quantified variables allows
variables to have different values within different control flow paths,
the semantics of CTL-V does not provide a means of retrieving the
values of such variables for use during subsequent transformation.
Furthermore, CTL-V model checking, like standard CTL model
checking, only provides information about the state at which the
entire formula is satisfied, and not about the intermediate results
that contribute to a successful match. Information about such inter-
mediate results, however, is important when a single formula can
describe transformations of subterms, as is needed for Coccinelle.
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In this paper, we present a variant of CTL named CTL-VW
(CTL with variables and witnesses), that addresses the above needs
for program matching. The syntax of CTL-VW is the same as
that of CTL-V, extending that of CTL with predicates defined
over metavariables that can be existentially quantified over the
set of program fragments. The semantics of CTL-VW maintains a
collection of witnesses that record the states and bindings that satisfy
existentially quantified subformulas. We exploit these witnesses
both to record variable bindings and to identify states at which
transformation should take place. In practice, we have used CTL-
VW as the basis of the implementation of Coccinelle. We have used
Coccinelle to implement over 60 collateral evolutions, affecting in
total over 5800 files in various recent versions of Linux [20]. We
have also used Coccinelle to find over 45 bugs in Linux code.

The contributions of this paper are as follows:

• We present the semantics of CTL-VW. We show that this
semantics is a conservative extension of that of CTL-V.

• We present in two steps a model checking algorithm for CTL-
VW. In the first step, we extend the CTL model checking
algorithm with environments, producing a new model checking
algorithm for both CTL-FV and CTL-V. In the second step, we
further extend this model checking algorithm with witnesses, for
CTL-VW.

• We show that the model checking algorithm for CTL-VW is
sound and complete with respect to the semantics of CTL-VW.

• We show how to translate the core of Coccinelle’s program
matching language SmPL into CTL-VW. This core is sufficient
to express a semantic patch for finding and fixing some bugs
in the use of reference counts in Linux code. The resulting
corrections have been validated by Linux experts and accepted
into the Linux kernel.1 Our examples show that the CTL-VW
based implementation of Coccinelle is efficient enough to be
usable on a 1.4GHz laptop.

The rest of the paper is organized as follows. Section 2 briefly
presents Coccinelle in terms of a realistic example that highlights
the above-cited requirements. Section 3 describes CTL and some
variants that are precursors to our work. Section 4 describes our
first contribution: a bottom-up model checking algorithm for CTL-V.
Section 5 introduces our second contribution: CTL-VW, including
its syntax, semantics, and a model checking algorithm. Section 6
describes how CTL-VW is used in the context of Coccinelle. Finally,
Section 7 presents related work and Section 8 concludes.

2. Overview of Coccinelle
Our motivation for this work was to be able to use CTL as a
foundation for the semantics and implementation of SmPL, the
program matching and transformation language of Coccinelle [20].
The syntax of SmPL is derived from that of a Linux patch file
[19], which is a notation familiar to Linux programmers. Unlike
a standard patch, however, which is text-based, a semantic patch
takes into account the semantics of the matched code, in particular
its intraprocedural control-flow. From the point of view of CTL,
the relevant features of a semantic patch are that it may describe a
complex region of code, specified in terms of program fragments
that should be connected by control-flow paths, and that it may be
needed to specify transformations at any point within the described
region. Furthermore, the region may involve multiple control-flow
paths, e.g., due to conditionals, and different control-flow path may
involve different computations, each of which may be relevant to
the transformation process.

1 http://www.emn.fr/x-info/coccinelle/

@type ref@ 1
statement S; identifier f1,f2; expression E1,E2; constant C; 2
struct device node *n; struct device node *n1; struct device node *n2; 3
@@ 4

5
n = of find node by type(. . .) 6
. . . 7
if (!n) S 8
. . . when != of node put(n) 9

when != n1 = f1(n,. . .) 10
when != E1 = n 11

( 12
+ of node put(n); 13

return −C; 14
| of node put(n); 15
| n2 = f2(n,. . .) 16
| E2 = n 17
| return . . .; 18
) 19

Figure 1. The semantic patch type ref written in simplified SmPL

In this section, we present the SmPL language via a short
example that illustrates the above issues. We defer a more formal
presentation of the code language of SmPL to Section 6, where we
show how to define its semantics by translation into the CTL-VW
logic developed in the next three sections.

2.1 A simple SmPL sample
Managing reference counts is a common source of errors in C code.
In particular, we have observed that Linux error handling code
sometimes does not appropriately decrement reference counts for
objects acquired in the current function. Figure 1 shows a semantic
patch type ref for correcting such problems involving the function
of find node by type. This function increases a reference count
that should subsequently be decremented by calling the function
of node put. The semantic patch in Figure 1 inserts a call to of -
node put before a return in error handling code (indicated by a
return of a negative value), when there was no such call previously,
and when it is not possible that the value returned by of find -
node by type has been saved in a more permanent manner.

The type ref semantic patch consists of a single rule, which
first declares a collection of metavariables and then defines a
transformation specification. The metavariables are designated
according to the kind of terms they can match, such as a statement,
an identifier, or an expression (line 2). An expression metavariable
can be further constrained by its type (line 3). The transformation
specification essentially has the form of C code, except that lines
to remove are annotated with - in the first column, and lines to add
are annotated with + (line 13). A transformation specification can
also use dots, “...” (line 7), describing an arbitrary sequence of
instructions within a control-flow path. Dots may be modified with
a when clause (lines 9-11), indicating a pattern that should not occur
anywhere within the matched sequence. Finally, lines 12-19 specify
a disjunction of patterns, of the form ( pat1 | . . . | patn ).

Full SmPL, as implemented in Coccinelle, provides many fea-
tures not illustrated by this example, such as multiple rules, subpat-
terns that match 0 or more times, dots within arbitrary subterms, and
the ability to use both universal and existential path quantification
[20]. All of these features can be encoded similarly to the basic
strategies presented in Section 6.

2.2 Assessment
Our goal is to encode the semantic patch of Figure 1 as a single
formula of a CTL-like logic. For this, the main issues are 1) to
manage the metavariables nx, C, etc., 2) to allow metavariables to
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match different terms along different control-flow paths, as e.g.,
the return value C may be different at each return site when there
are multiple returns under conditionals, 3) to record the various
bindings of the metavariables within the different control-flow paths,
as e.g., the binding of C may be needed to transform the enclosing
return, and 4) to record the sites where transformation is needed.
For the last point, in our case, the complete formula representing
the semantic patch would match at a call to of find node by -
type, but transformation is required at the various matches of
the subformula representing return -C;. A semantic patch may
indeed specify a transformation anywhere within the matched term.
Among these requirements, CTL-FV provides only a representation
of metavariables, and CTL-V additionally allows metavariables to
match different terms along different control-flow paths. We thus
develop the logic CTL-VW that permits an encoding of a semantic
patches that addresses the remaining requirements, i.e., 3) and 4).

3. Background
In this section, we present the theoretical background for the work
in the present paper. First, we briefly review the syntax, semantics,
and algorithmic implementation of the well-known Computational
Tree Logic (CTL) [7]. Next, we present a variant of CTL called
CTL-FV (CTL with free variables) used by Lacey et al. to show the
correctness of some classical compiler optimizations [17]. Finally,
we present CTL-V (CTL with variables), a CTL variant with
existentially quantified variables, and formally define its semantics.

3.1 Computational Tree Logic
Computational Tree Logic is a temporal logic based on the notion of
branching time [7]. It has been implemented in a variety of model
checkers and used to model check properties ranging from hardware
verification [11, 14] to program analysis [22].

In what follows we briefly review the syntax and semantics of
CTL without going into detail. For a textbook treatment, see [12].
CTL is a logic for reasoning about states and the paths between
them. Its syntax is as follows:

φ ::= p | φ ∧ φ | φ ∨ φ | ¬φ |
AXφ | EXφ | A[φUφ] | E[φUφ]

Intuitively, the formulas p (propositions), φ ∧ φ, φ ∨ φ, and ¬φ
are the same as in propositional logic, and permit reasoning about
the properties of a given state. The remaining formulas permit
reasoning about paths. AXφ holds if all the successors of the current
state satisfy φ, while EXφ holds if at least one successor of the
current state satisfies φ. A[φ1 Uφ2] expresses that along all paths
there is some state where φ2 holds, and requires that φ1 hold at
all preceding states. E[φ1 Uφ2] is similar, except that there need
be only one path with these properties. For example, in Figure 2a,
the formula A[(f(1) ∨ g(2)) Uh(1, 2)] holds at state 1, because all
paths eventually reach a state, i.e., state 3 or 5, where the proposition
h(1, 2) holds, and at all previous states, i.e., states 1, 2, and 4, either
f(1) or g(2) holds. On the other hand, in Figure 2c, AX(g(2))
does not hold at state 1, because g(2) does not hold at one of the
neighbors, state 4. The semantics of CTL is defined over a model:

DEFINITION 1. A model is a triple, (States,→, Label), where
States is a finite set of states;→⊆ States×States is the successor
relation such that ∀s.∃r.s → r, i.e., every state has at least one
successor; and Label : States → P(Atom) is a labelling function
that assigns a set of atomic propositions to each state.

The set of infinite paths starting in state s is denoted Path(s). For a
path π = s0 → s1 → · · · → sj → · · · the jth element is denoted
by π[j], i.e., π[j] = sj . Note that the set of paths may be infinite.
Finally, the next function computes the set of successors of a given
state: next(s) = {s′ | s→ s′}.
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Figure 2. Some simple CTL models illustrating differences be-
tween control-flow paths

We now formally define the semantics for CTL as a set of
judgements of the formM, s |= φ, whereM is a model, s ∈ States
and φ is a CTL formula. For convenience, we elide the model in the
judgements:

s |= p ⇔ p ∈ Label(s)
s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2

s |= φ1 ∨ φ2 ⇔ s |= φ1 ∨ s |= φ2

s |= ¬φ ⇔ s 6|= φ
s |= AXφ ⇔ ∀s′ ∈ next(s).s′ |= φ
s |= EXφ ⇔ ∃s′ ∈ next(s).s′ |= φ
s |= A[φ1 Uφ2] ⇔ ∀π ∈ Path(s).∃i ≥ 0.π[i] |= φ2 ∧

∀0 ≤ j < i.π[j] |= φ1

s |= E[φ1 Uφ2] ⇔ ∃π ∈ Path(s).∃i ≥ 0.π[i] |= φ2 ∧
∀0 ≤ j < i.π[j] |= φ1

Figure 3 presents a model checking algorithm, SAT, for CTL.
Given a formula and a model, SAT returns the set of states at
which the formula is true in the model. The algorithm is based
on that presented in [12], but we have reorganized it so that it
can be easily extended to the logics CTL-V and CTL-VW that we
consider subsequently. In particular, the algorithm accepts predicates
parameterized by a list of variables x, which in the case of CTL will
always be an empty list, and it includes a line for formulas ∃x.φ,
which are not part of CTL. In the latter case, the instantiation of the
model checking algorithm for CTL simply fails.

In this algorithm, the SAT function simply serves to recursively
traverse the formula, except in the case of a proposition, where it
returns each state where the proposition is satisfied (recall that x
is empty for CTL). The functions applied to the intermediate SAT
results then perform the main calculation of the algorithm. The
function conj combines compatible information from two sets of
results, and thus implements conjunction. In the case of CTL, this
amounts to intersection. The function disj collects all information
from two sets of results, and thus implements disjunction. The
functions Conj and Disj fold conj and disj over a set of results,
respectively, and are used to define some of the other functions. The
function neg computes the complement of a set of results, and in
the case of CTL amounts to returning the difference between the
complete set of states and the given set of states. The functions pre∀
and pre∃ have the effect of checking whether all neighbors of a state
are in a given set of results or whether there exists a neighbor of a
state that is in a given set of results, respectively. These functions
are used in the implementation of AX and EX, respectively, and in
the definition of the functions SATAU and SATEU that implement AU
and EU.

The remaining functions manipulate the elements of the sets of
results, which are states in the case of CTL. The function inj takes
as arguments a state and an environment (always empty for CTL)
and injects it into the type of results for the given logic, which in the
case of CTL implies just dropping the environment. The (partial)
function

d
determines whether two results are compatible, which

simply means that they are equal in the case of CTL. The function
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SAT function:
SAT(p(x)) = {inj(s, θ) | p(θ(x)) ∈ Label(s) ∧

dom(θ) = fv(p(x))}
SAT(φ1 ∧ φ2) = conj(SAT(φ1), SAT(φ2))
SAT(φ1 ∨ φ2) = disj(SAT(φ1), SAT(φ2))
SAT(¬φ) = neg(SAT(φ))
SAT(∃x.φ) = exists(x, SAT(φ))
SAT(AX φ) = pre∀(SAT(φ))
SAT(EX φ) = pre∃(SAT(φ))
SAT(A[φ1 U φ2]) = SATAU(SAT(φ1), SAT(φ2))
SAT(E[φ1 U φ2]) = SATEU(SAT(φ1), SAT(φ2))

Operators on SAT results:
conj(T1, T2) = {t1

d
t2 | t1 ∈ T1 ∧ t2 ∈ T2 ∧ t1

d
t2 is defined}

Conj = fold conj {inj(s, ∅) | s ∈ States}
disj(T1, T2) = T1 ∪ T2

Disj = fold disj ∅
neg(T ) = Conj {negone(t) | t ∈ T}
exists(x, T ) = {existsone(t) | t ∈ T}
pre∀(T ) =

S
s∈States(Conj {shift(s′, T, s) | s′ ∈ next(s)})

pre∃(T ) =
S

s∈States(Disj {shift(s′, T, s) | s′ ∈ next(s)})
SATAU(T1, T2) = local var W = T1, Y = T2, X;

repeat X = Y ; Y = disj(Y, conj(W, pre∀(Y )));
until same(X, Y );
return Y ;

SATEU(T1, T2) = local var W = T1, Y = T2, X;
repeat X = Y ; Y = disj(Y, conj(W, pre∃(Y )));
until same(X, Y );
return Y ;

Element level operators, for CTL:
inj(s, θ) = s
s1

d
s2 = s1, if s1 = s2

negone(s) = {s′ | s′ ∈ States− {s}}
shift(s1, T, s2) = {s2}, if s1 ∈ T , ∅ otherwise
same(T1, T2) = T1 = T2

existsone is not defined

Figure 3. A generic model checking algorithm and its instantiation
for CTL

negone computes the complement of a single result. The function
shift returns all results in a set T that are associated with a state
s1, but replaces the state information in each case by another state
s2; this function makes it convenient to implement pre∀ and pre∃.
Finally, the function same makes it possible to vary the termination
condition for the fixpoint iterations in SATAU and SATEU.

It is straightforward to show that this algorithm is sound and
complete with respect to the semantics [12]:

THEOREM 1 (Soundness and completeness).
s |= φ⇔ s ∈ SAT(φ)

3.2 Computational Tree Logic with free variables
While CTL has proven to be very useful in the context of program
analysis [22], Lacey et al. showed that the extension CTL-FV, sup-
porting not propositions but predicates over free variables, could be
used in the context of program transformation [17]. In particular
CTL-FV has been used to formalize and prove correct a number of
classical compiler optimizations [17, 21]. The introduction of vari-
ables implies that logic satisfies our first requirement for Coccinelle
(Section 2.2).

The syntax of CTL-FV is essentially the same as that of CTL
with the addition of predicates over free variables. We refer to these
variables as metavariables:

φ ::= p(x) | φ ∧ φ | φ ∨ φ | ¬φ |
AXφ | EXφ | A[φUφ] | E[φUφ]

f(x) ∧ AX(g(y) ∧ AX(h(x, y)))
f(x) ∧ AX(∃y.(g(y) ∧ AX(h(x, y))))

Figure 4. CTL-FV and CTL-V formulas

fv(φ) is the set of free metavariables of a formula φ.
The semantics of CTL-FV is almost the same as that of CTL;

indeed, they are based on the same models. The new features are that
the semantics of predicates now takes free variables into account and
all judgements now carry an environment θ, mapping metavariables
to an arbitrary set of values, Val:

Env = MetaVar → Val

When using CTL-FV to describe program transformations, Val is
the set of subterms of the program to be transformed. The semantics
is defined as follows. Again we elide the model:

s |=θ p(x) ⇔ p(θ(x)) ∈ Label(s)
s |=θ φ1 ∧ φ2 ⇔ s |=θ φ1 ∧ s |=θ φ2

s |=θ φ1 ∨ φ2 ⇔ s |=θ φ1 ∨ s |=θ φ2

s |=θ ¬φ ⇔ s 6|=θ φ
s |=θ AXφ ⇔ ∀s′ ∈ next(s).s′ |= φ
s |=θ EXφ ⇔ ∃s′ ∈ next(s).s′ |= φ
s |=θ A[φ1 Uφ2] ⇔ ∀π ∈ Path(s).∃i ≥ 0.π[i] |=θ φ2

∀0 ≤ j < i.π[j] |=θ φ1

s |=θ E[φ1 Uφ2] ⇔ ∃π ∈ Path(s).∃i ≥ 0.π[i] |=θ φ2

∀0 ≤ j < i.π[j] |=θ φ1

Model checking for CTL-FV has been done using a standard model
checker by instantiating the formula with respect to all possible
bindings of the metavariables [21].

3.3 Computational Tree Logic with quantified variables
Lacey further extends CTL-FV with the ability to existentially
quantify over metavariables [15], producing a logic that we refer to
as CTL-V. The syntax of CTL-V is as follows:

φ ::= p(x) | φ ∧ φ | φ ∨ φ | ¬φ | ∃x.φ
| AXφ | EXφ | A[φUφ] | E[φUφ]

The semantics is the same as that of CTL-V, augmented with:

s |=θ ∃x.φ ⇔ ∃v ∈ Val.s |=θ[x7→v] φ

Introducing the ability to quantify over metavariables allows
metavariables to have different values within different control-
flow paths (our second requrement for Coccinelle) and thus adds
flexibility as compared to CTL-FV. For example, consider the
formulas in Figure 4, of which the first is in both CTL-FV and CTL-
V, and the second is only in CTL-V. Both formulas are satisfied at
state 1 in the model in Figure 2(a), as it is possible to uniformly
assign x to 1 and y to 2. Only the second formula is satisfied at state
1 in the model in Figure 2(b), as in the left branch (states 2 and 3),
y must be 2, while in the right branch (states 4 and 5), y must be 3.
Finally, neither formula is satisfied at state 1 in the model in Figure
2(c), as it is not possible to choose a consistent value for y in the
left branch (states 2 and 3).

Lacey has presented a model checking algorithm for CTL-V
[15]. This algorithm follows a top-down strategy, in which it tries to
satisfy the formula at each state of the model, rather than following
a bottom-up strategy, which is the source of the efficiency of the
standard CTL model checking algorithm presented in Figure 3. No
precise performance measurements are provided.

4. A Model Checking Algorithm for CTL-V
In this section, we present a bottom-up model checking algorithm
for CTL-V that is based on the CTL model checking algorithm
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presented in Figure 3. This algorithm is not sufficient as a foundation
for Coccinelle, as it does not record information about the bindings
of existentially quantified variables. Nevertheless, it permits to
introduce a representation of environments that is common to model
checking for both CTL-V and CTL-VW, and the algorithm may be
of independent interest in context of the work of Lacey and De Moor
[16]. While the CTL model checking algorithm identifies the set
of states where a formula is satisfied, the CTL-V model checking
algorithm must identify the set of pairs of a state and an environment
that satisfy the formula. The algorithm is applicable to both CTL-V
and CTL-FV, and even to CTL, although the environment it collects
is unnecessary in the latter case.

We first present a representation of environments that allows
the CTL-V model checking algorithm to efficiently represent in-
formation about bindings, then present the CTL-V model checking
algorithm, and finally consider its soundness and completeness with
respect to the semantics of Section 3.3.

4.1 Environments for CTL-V model checking
A recurring problem in model checking is how to represent the result
of negation; the size of the complement of a set of states depends on
the size of the model, which can be very large. For CTL-V, where
the result of model checking is a set of state-environment pairs,
taking the complement of the result includes taking the complement
of the environment, where the size of the result depends on the size
of Val. In the case of program matching, Val amounts to the set of
subterms of the program. In our experience, the set of bindings that
derive from matching a predicate against the source code is quite
small, and thus taking the complement in this manner would incur
a substantial performance overhead. To address this issue, we use
constructive negation [6].2

Rather than negating a binding by creating a disjunction of all
of the possible bindings for the variable other than the current one,
we add the ability to represent negative bindings directly. Thus, we
define an extended form of environment, Env±, in which a variable
is mapped to either a positive binding (a particular value in Val) or
a set of negative bindings (in P(Val)):

Env± = (MetaVar → Val + P(Val))⊥

The added bottom element is used to represent an environment that
contains conflicting information. The domain of ⊥ is undefined.
The following notation facilitates reasoning about the positive and
negative bindings of an environment:

DEFINITION 2. Let θ ∈ Env±. We define

1. dom+(θ) = {x ∈ dom(θ) | θ(x) ∈ Val}
2. dom−(θ) = {x ∈ dom(θ) | θ(x) ∈ P(Val)}
3. θ+(x) = θ(x) iff x ∈ dom+(θ)

4. θ−(x) = θ(x) iff x ∈ dom−(θ)

Env+ = {θ ∈ Env± | dom(θ) ⊆ dom+(θ)} is the set of the
environments that have only positive bindings. Env+ is the same as
Env, and thus is the form of environment accepted by the semantics.
Env+

φ = {θ ∈ Env± | dom(θ) ⊆ dom+(θ) ∩ fv(φ)} is the subset
of Env+ restricted to the free variables of the formula φ.

NOTATION 1. For convenience, we define the following explicit no-
tation for environments. Let {x1, . . . , xm, y1, . . . , ym} ⊆ MetaVar
be a set of pairwise different meta-variables. Then [x1 7→ v1, . . . ,
xn 7→ vn, y1 67→ V1, . . . , yn 67→ Vn] represents the environ-
ment θ such that θ(xi) = vi ∈ Val for every i ∈ 1..n and
θ(yj) = Vj ∈ P(Val) for every j ∈ 1..m.

2 Another approach would be to use BDDs, for which negation can be
performed in constant time. We have not taken this option, however, because
it is not clear how it scales to include witnesses, which we add in CTL-VW.

DEFINITION 3 (Conflict). Two environments θ1, θ2 ∈ Env±, with
θ1 6= ⊥, θ2 6= ⊥, conflict iff ∃x ∈ dom(θ1) ∩ dom(θ2)

θ+1 (x) 6= θ+2 (x) ∨ θ+1 (x) ∈ θ−2 (x) ∨ θ+2 (x) ∈ θ−1 (x)

Otherwise, θ1 and θ2 are said to be compatible.

Next, we introduce an ordering on environments. This ordering is
needed to relate the environments that are returned by the algorithm,
which can contain negative bindings, to the ones that satisfy the
formula according to the semantics. Intuitively an environment
with more specific information is less than one with less specific
information, e.g., [x = 42, y = 12] v [x = 42] v [x 6= 87].

DEFINITION 4 (Environment ordering). Let θ1, θ2 ∈ Env± and
define θ1 v θ2 iff θ1 = ⊥ ∨

`
dom(θ1) ⊇ dom(θ2) ∧ ∀x ∈

dom(θ1).θ
+
1 (x) = θ+2 (x) ∨ θ+1 (x) /∈ θ−2 (x) ∨ θ−1 (x) ⊇ θ−2 (x)

´
According to this ordering, the environment with the empty set as
its domain is the greatest element > and ⊥ is the least element.

To compute the environment that satisfies a conjunction in
a given state, the algorithm joins the environments that satisfy
each of the conjunct formulas in the same state. The join of two
environments is defined as follows:

DEFINITION 5 (Environment join). Let θ1, θ2 ∈ Env±. We define
θ1 u θ2 to be ⊥ if θ1 = ⊥ or θ2 = ⊥, i.e., θ1 u ⊥ = ⊥ u θ2 = ⊥.
For θ1 6= ⊥, θ2 6= ⊥, if θ1 and θ2 are compatible, θ1u θ2 is defined
as follows:

(θ1 u θ2)(x) =

8>><>>:
v if θ+1 (x) = v ∨ θ+2 (x) = v
V1 if θ−1 (x) = V1 ∧ x /∈ dom(θ2)
V2 if θ−2 (x) = V2 ∧ x /∈ dom(θ1)
V1 ∪ V2 if θ−1 (x) = V1 ∧ θ−2 (x) = V2

If θ1 and θ2 conflict, then θ1 u θ2 = ⊥.

It is straightforward to show that the join operator computes the
greatest lower bound of two environments according to the environ-
ment ordering.

Finally, we conclude with the definition of the negation of an
environment. This operation can create negative bindings.

DEFINITION 6 (Negation of an environment). For θ ∈ Env±, we
define

¬θ =

8<:{>} if θ = ⊥
{[x 67→ {v}] | v = θ+(x)} ∪ {[x 7→ v] | v ∈ θ−(x)}

otherwise

Notice that ¬θ ∈ P(Env±).

4.2 A bottom-up CTL-V model checking algorithm
The algorithm SAT for CTL-V takes as arguments a model and a
formula and returns result in the form of a set of pairs (s, θ) ∈
State × Env±. As compared to the definition of SAT in Figure
3, it is only necessary to redefine the element-level functions inj,d

, negone, existsone, shift, and same to take environments into
account. The new definitions are as follows:

inj(s, θ) = (s, θ)
(s1, θ1)

d
(s2, θ1) = (s1, θ1 u θ2), if s1 = s2 ∧ θ1 u θ2 6= ⊥

negone(s, θ) = {(s′, ∅) | s′ ∈ States− {s}} ∪
{(s, θ′) | θ′ ∈ ¬θ}

existsone(x, (s, θ)) = (s, θ − [x 7→ v]), if θ+(x) = v
(s, θ − [x 67→ V ]), if θ−(x) = V
(s, θ), otherwise

shift(s1, T, s2) = {(s2, θ) | (s1, θ) ∈ T}
same(T1, T2) = T1 = T2
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The function inj, used to inject the result of matching a predicate
into the codomain of SAT, now keeps both the state and the
environment argument, as the environment argument is now non-
trivial. The function

d
, used in computing a conjunction of results,

extends the CTL definition by taking the join of the associated
environments. The function negone, used in computing the negation
of a result, similarly extends the definition for CTL by including not
only each element of the complement of the given state, paired with
the empty environment, but also pairs for the current state combined
with each element of the negation of the current environment. These
pairs represent the least specific ones that are incompatible with the
given state and environment pair. The function shift selects the pairs
in T that have the same state as its first argument and replaces the
state in each pair with the state in its third argument, as is needed
to implement the operators AX and EX. Finally, the function same
simply checks whether the results it is given represent equivalent
sets, as in the CTL definition.

4.3 Examples
As examples of the CTL-V model checking process, we consider
again the models of Figure 2 and the formulas of Figure 4. In
checking the formula f(x)∧AX(g(y)∧AX(h(x, y))) with respect
the model in Figure 2b, the result for the subformula g(y) ∧
AX(h(x, y)) is

{(2, [x 7→ 1, y 7→ 2]), (4, [x 7→ 1, y 7→ 3])}
Model checking of the enclosing AX, however fails, because al-
though both of the neighbors of state 1 are in the above result, they
are associated with conflicting environments. On the other hand,
in checking the formula f(x) ∧ AX(∃y.(g(y) ∧ AX(h(x, y)))),
with respect to the same model, the same result is obtained for
g(y)∧AX(h(x, y)), but for ∃y.(g(y)∧AX(h(x, y))), the result is

{(2, [x 7→ 1]), (4, [x 7→ 1])}
in which the conflicting bindings of y have been dropped. This time,
the result of the enclosing AX is {(1, [x 7→ 1])}, which in turn is
the result of checking the entire formula.

4.4 Soundness and completeness
The model checking algorithm for CTL-V can return environments
that contain negative bindings, while the semantics for CTL-V only
accepts environments with positive bindings. Thus, the relationship
between them is not as direct as in the case of CTL (Theorem 1).
Instead, the soundness and completeness theorem for the CTL-V
model checking algorithm relates an environment produced by the
algorithm, which may contain negative bindings, to the set of more
specific environments that contain only positive bindings and are
accepted by the semantics:

THEOREM 2 (Soundness and completeness). Let φ be a formula,
and T ∈ P(State × Env±). Let us define ηφ(T ) = {(s, θ) ∈
State× Env+

φ | ∃(s′, θ′) ∈ T.s = s′ ∧ θ v θ′}. Then,

∀s∀θ (θ ∈ Env+
φ ∧ s |=θ φ) ⇔ (s, θ) ∈ ηφ(SAT(φ))

The proof of this theorem has been validated with Coq [3], and is
available [].

5. CTL-VW
CTL-V allows variables to have different values in different control-
flow paths, but discards their bindings, making it impossible to
refer to such variables in a subsequent transformation phase. The
goal of CTL-VW is to collect the bindings of such variables, as
witnesses, in a way that does not affect the rest of the matching
process. This satisfies the third of our requirements for Coccinelle

(Section 2.2). We first define witnesses, then give the semantics
and model checking algorithm of CTL-VW, and finally sketch the
proof of the soundness and completeness of the model checking
algorithm.

5.1 Witnesses
A witness is essentially a record of a state, a binding, and the set
of witnesses for other bindings that contributed to establishing the
binding in the given state. A witness thus has a tree structure, which
corresponds to the structure of the nested existential quantifiers in
the formula.

DEFINITION 7 (Witnesses). The set Wit of witnesses is defined as:

Wit = States×MetaVar× (Val + P(Val))×WitForest

A witness forest Ω ∈ WitForest is a multiset of witnesses,
i.e., a pair (W, f), where W ⊆ Wit is a set of witnesses, and
f : W → N∗ is a function that associates each witness with its
multiplicity (a nonnegative integer). We define WitForest+ as the
set of the witness forests in which all bindings are positive.

The operator ] produces the join of two multisets. For ease of
reading, we sometimes use the set-like notation {. . .} to enumerate
the elements of a multiset. Then, {a, a, b} represents the multiset
whose underlying set is {a, b}, and the multiplicities of a and b are
2 and 1, respectively.

We use multisets rather than sets for technical reasons. However,
in order to specify a termination criterion in the model checking
algorithm, we need to reason about the underlying sets of witness
forests. We define the binary operator ' as follows:

Ω1 ' Ω2 iff wit red(Ω1) = wit red(Ω2)

wit red(Ω) translates Ω into the corresponding underlying set.
As for environments, we define an ordering on witnesses, and

witness forests. It is useful to relate results of the algorithm, which
can contain negative bindings, to witness forests that satisfy the
formula according to the semantics.

DEFINITION 8 (Witness ordering). Letw = (s, x, a,Ω) andw′ =
(s′, x′, a′,Ω′) be two witnesses. We define w v w′ iff s = s′ ∧x =
x′ ∧ [x 7→ a] v [x′ 7→ a′] ∧ Ω v Ω′.

The ordering for witness forests is defined as follows:
(W, f) v (W ′, f ′) iff there is a bijection h such that

1. h : {(w, i) | w ∈W ∧ i ∈ 1..f(w)} →
{(w′, j) | w′ ∈W ′ ∧ j ∈ 1..f ′(w′)}

2. ∀w ∈ W.∀i ∈ 1..f(w).w v w′, where there is some j such
that (w′, j) = h(w, i)

5.2 A semantics for CTL-VW
The new feature of the semantics of CTL-VW is to define what it
means to be a witness forest for a formula φ. If φ = ∃x.ψ, then a
witness forest for φ should record a binding of x that satisfies ψ, as
well as a witness forest that records information about the bindings
associated with any existential quantifiers in ψ. If φ = φ1 ∨ φ2,
then a witness forests for φ has to be either a witness forest for φ1

or a witness forest for φ2, because the information needed to satisfy
φ1 or φ2 also satisfies φ1 ∨ φ2.

A witness forest for φ = φ1 ∧ φ2 has to contain the information
that makes φ1 true and the information that makes φ2 true. Thus,
the semantics join a witness forest for φ1 and a witness forest for
φ2 to obtain a witness forest for φ1 ∧ φ2. Similarly, for AXψ, the
semantics collects, for each successor of the current state, a witness
forest that makes ψ true in this successor. In both cases, we collect
the bindings of the metavariables that make the subformulas true
at the relevant states. On the other hand, since EX is related to a
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s1 s2

s0

Figure 5. Illustration of finite unfolding

disjunction, a witness forest for EXψ is a witness forest of ψ in one
of the successors of the current state.

If φ = A[φ1 Uφ2], then we can define a witness forest for φ by
analogy with conjunction and AX. Then, the usual semantics of AU
implies that a witness forest of φ collects as many witnesses as there
are paths starting from the current state. This leads to an infinite
number of witness forests, carrying redundant information. In order
to collect only witness forests that are really necessary, we reason
about a finite unfolding of the model when defining the semantics of
AU, rather that reasoning about all the paths. Then, a witness forest
of A[φ1 Uφ2] collects a witness forest of φ1 for every state in the
finite unfolding that is not a leaf, and a witness forest of φ2 for every
leaf. A witness forest for φ = E[φ1 Uφ2] collects, for some path
leading to a leaf, a witness forest for φ1 in every non-leaf state in
this path, and a witness forest for φ2 in the leaf.

DEFINITION 9 (Finite paths). Given a model and a state s, we
define FPath(s) as the set of the finite paths starting from s. Given
a finite path π ∈ FPath(s), |π[ is the length of π, i.e., |π| + 1 is
the number of states in π, prefix(π) represents the set of the (finite)
proper prefixes of π, and π6n, for n 6 |π|, represents the prefix of
π containing the first n+ 1 states (from π[0] to π[n]).

DEFINITION 10 (Finite unfolding). Given a state s, a finite unfold-
ing from s is a set Σ ⊆ FPath(s) where every path π ∈ Σ satisfies
the following constraints:

• ∀π′ ∈ prefix(π). π′ /∈ Σ (no redundancy)
• ∀i ∈ 0..|π|. ∀s′ ∈ next(π[i]). ∃π′ ∈ Σ. π′6i = π6i

∧ s′ = π′[i+ 1] (full branching)

The set of the finite unfoldings starting from s is denoted Π(s). The
set of the states that appear in some path of Σ is denoted Σ.

Consider the model shown in Figure 5. Then {s0} and {s0 →
s1, s0 → s2 → s2} are two valid finite unfoldings starting from s0.
On the other hand, {s0 → s1, s0 → s2, s0 → s2 → s2} violates
the first constraint of Definition 10, and {s0 → s1} does not explore
the right branch, and thus does not satisfy the second constraint.

DEFINITION 11 (Semantics). Given a model (States,→, Label),
a state s ∈ States, a formula φ, an environment θ ∈ Env+, and
a witness forest Ω ∈ WitForest+, the semantics is defined as the
following relation:

s |=θ,∅ p(x) ⇔ p(θ(x)) ∈ Label(s)
s |=θ,Ω1]Ω2 φ1 ∧ φ2 ⇔ s |=θ,Ω1 φ1 ∧ s |=θ,Ω2 φ2

s |=θ,Ω φ1 ∨ φ2 ⇔ s |=θ,Ω φ1 ∨ s |=θ,Ω φ2

s |=θ,∅ ¬φ ⇔ ∀Ω. s 6|=θ,Ω φ
s |=θ,{(s,x,v,Ω)} ∃x.φ ⇔ s |=θ,x,v,Ω φ
s |=θ,Ω AXφ ⇔ ∃(Ωs′)s′∈next(s).U

s′∈next(s)Ωs′ = Ω ∧ ∀s′ ∈ next(s). s′ |=θ,Ωs′ φ

s |=θ,Ω EXφ ⇔ ∃s′ ∈ next(s). s′ |=θ,Ω φ
s |=θ,Ω A[φ1 Uφ2] ⇔ ∃Σ ∈ Π(s). ∃(Ωs′)s′∈Σ.
∀π ∈ Σ. ∃i > 0. π[i] |=θ,Ωπ[i] φ2 ∧ ∀0 6 j < i. π[j] |=θ,Ωπ[j] φ1

∧
U

s′∈ΣΩs′ = Ω
s |=θ,Ω E[φ1 Uφ2] ⇔ ∃Σ ∈ Π(s). ∃π ∈ Σ.∃(Ωi)i∈1..|π|.

∃i > 0. π[i] |=θ,Ωi φ2 ∧ ∀0 6 j < i. π[j] |=θ,Ωj φ1

∧
U

j<|π|Ωj = Ω

Note that the semantics does not allow any witness to be satisfied
under a negation. This facilitates the proof of the soundness and
completeness of the model checking algorithm. Indeed, a negation
turns the nature of an existential quantification to a universal
quantification, for which witnesses would not make any sense.
However, one could justify the interest of a witness for an existential
quantifier that appears under an even number of negations. We do not
consider a special treatment for this case. Because of this constraint
on negation, we must include both AX and EX in the logic explicitly,
because a definition of e.g., EX in terms of AX and negation would
preclude witnesses under EX.

5.3 A model checking algorithm for CTL-VW
The algorithm SAT for CTL-VW takes as arguments a model and
a formula and returns a set of triples of the form (s, θ,Ω) ∈
States × Env± ×WitForest. The new definitions of the element-
level functions of Figure 3 are as follows:

inj(s, θ) = (s, θ, ∅)
(s1, θ1,Ω1)

d
(s2, θ2,Ω2) =

(s1, θ1 u θ2,Ω1 ] Ω2), if s1 = s2 ∧ θ1 u θ2 6= ⊥
negone(s, θ,Ω) =

{(s′, ∅, ∅) | s′ ∈ States− {s}} ∪ {(s, θ′, ∅) | θ′ ∈ ¬θ}
existsone(x, (s, θ,Ω)) =

(s, θ − [x 7→ v], {(s, x, v,Ω)}), if θ+(x) = v
(s, θ − [x 67→ V ], {(s, x, V,Ω)}), if θ−(x) = V
(s, θ, {(s, x, ∅,Ω)}), otherwise

shift(s1, T, s2) = {(s2, θ,Ω) | (s1, θ,Ω) ∈ T}
same(T1, T2) = triple red(T1) = triple red(T2)

where triple red(T ) = {(s, θ,wit red(Ω)) | (s, θ,Ω) ∈ T}

These definitions augment the corresponding definitions for CTL-
V to maintain the witnesses. As there are no existential quantifiers
under a predicate, the function inj just uses an empty witness forest.
The function

d
takes the join of the provided witness forests,

which always succeeds, if the provided states and environments
are compatible. The function existsone considers the same cases as
for CTL-V, but rather than discarding the binding of the quantified
variable converts it to a witness, encapsulating the current witness
forest. The function shift is analogous to the CTL-V definition.
Finally, the function same, used to identify a fixed point, first
converts all witness forests in its arguments to their underlying
sets, using wit red, and then compare the obtained results.

It remains to consider the definition of negone. This function
negates the state component, and then the environment component,
as in the CTL-V definition, but completely discards the witness
component. This strategy corresponds to the semantics of negation
presented in Section 5.2, where the subformula should not be
satisfiable at the given state and environment for any witness forest.

5.4 Examples
As in Section 4.3, we consider the models of Figure 2 and the
formulas of Figure 4. In checking the formula f(x) ∧ AX(g(y) ∧
AX(h(x, y))) with respect the model in Figure 2b, the result for the
subformula g(y) ∧ AX(h(x, y)) is

{(2, [x 7→ 1, y 7→ 2], ∅), (4, [x 7→ 1, y 7→ 3], ∅)}

Model checking for the enclosing AX fails as before, because the
environments are incompatible. Similarly, in checking the formula
f(x) ∧ AX(∃y.(g(y) ∧ AX(h(x, y)))), with respect to the same
model, the same result is obtained for g(y)∧AX(h(x, y)), but now
for ∃y.(g(y) ∧ AX(h(x, y))), the result is

{(2, [x 7→ 1], {〈2, y, 2, ∅〉}), (4, [x 7→ 1], {〈4, y, 3, ∅〉})}
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in which the information about the various bindings of y is still
available. The result of the enclosing AX is then

{(1, [x 7→ 1], {〈2, y, 2, ∅〉, 〈4, y, 3, ∅〉})}
which is in turn the result for the entire formula. This result includes
the possible bindings of y and the states at which those bindings are
applicable.

5.5 Soundness and completeness
As for CTL-V, the CTL-VW model checking algorithm may return
an environment with negative bindings. We thus extend the η
function of Section 4.4 to take witnesses into account.

Let φ be a formula, and T ∈ P(States× Env± ×WitForest).
Let us define ηφ(T ) = {(s, θ,Ω) ∈ States×Env+

φ×WitForest+ |
∃(s′, θ′,Ω′) ∈ T. s = s′ ∧ θ v θ′ ∧ Ω v Ω′}.

THEOREM 3 (Soundness). ∀s, θ,Ω.
(s, θ,Ω) ∈ ηφ(SAT(φ)) =⇒ s |=θ,Ω φ

Proof sketch The proof is by structural induction on φ. We present
the case φ = A[φ1 Uφ2]. We first define a bounded semantics for
AU, and a bounded SAT algorithm for AU. s |=θ,Ω A[φ1 Uφ2]6N

iff there is a finite unfolding Σ whose maximum length is less
than N , and such that the semantic definition of AU is satisfied
with Σ. SATAU(φ1, φ2)6N corresponds to N iterations of the
algorithm described in SATAU(φ1, φ2). The following lemma relates
the bounded semantics to the bounded algorithm.

LEMMA 1. Let φ = A[φ1 Uφ2]. Then, ∀s, θ,Ω, N
(s, θ,Ω) ∈ ηφ(SATAU(φ1, φ2)6N ) ⇒ s |=θ,Ω A[φ1 Uφ2]6N

We omit the proof of this lemma, also done by induction.
Let (s, θ,Ω) ∈ ηφ(SATAU(φ1, φ2)). Then, ∃N. (s, θ,Ω) ∈

ηφ(SATAU(φ1, φ2)6N ). By Lemma 1, s |=θ,Ω A[φ1 Uφ2]6N , so
s |=θ,Ω A[φ1 Uφ2]. �

The completeness theorem cannot be stated as directly as the
soundness theorem. Indeed, if φ contains AU (resp. EU), a witness
forest accepted by the semantics may contain more witnesses than
are generated by SATAU (resp.SATEU) in reaching a fixed point. In
this case, the witness forest is not returned by the algorithm in its
exact form, but the algorithm produces a shorter and equivalent (in
the sense of ') witness forest.

THEOREM 4 (Completeness). ∀s, θ,Ω.
s |=θ,Ω φ =⇒ ∃Ω′ ' Ω. (s, θ,Ω′) ∈ ηφ(SAT(φ))

Proof sketch The proof is done by induction. In the AU case, we
use a lemma analogous to Lemma 1. �

To conclude, we consider the relationship between CTL-VW
and CTL-V. CTL-VW is a conservative extension of CTL-V: the
collection of witnesses does not have any impact on the satisfiability
of a formula.

PROPERTY 1 ∀s, θ.s |=θ
CTL-V

φ ⇐⇒ ∃Ω ∈ WitForest+. s |=θ,Ω
CTL-VW

φ

6. Applying CTL-VW in the context of Coccinelle
In this section, we define a core SmPL language, that is sufficient
to treat the example shown in Figure 1, present its translation
into CTL-VW, describe the matching and transformation process,
and then present a few benchmarks. Many more examples of the
use of SmPL and the associated performance are available in our
previous work [18, 20]. The section concludes with a brief example
illustrating the benefit of being able to mix existential and universal
path quantification, as provided by temporal logics based on CTL.

For the purposes of this presentation, we have slightly simplified
the semantics of SmPL, in that our encoding in CTL-VW allows dots

(“...”) to match any path, while in SmPL dots represent the shortest
path terms matching the preceding and following patterns. This
shortest path constraint can be encoded straightforwardly in CTL-
VW. Furthermore, it is possible to drop the shortest path constraint
in full SmPL by annotating the dots with when any.

6.1 Syntax of a simplified SmPL
In the transformation specification part of a semantic patch, -
and + annotations can be freely mixed. In this specification, the
combination of the unannotated code and the - code represents the
pattern to match against, and the combination of the unannotated
code and the + code represents the code to generate. Each must
have the structure of valid C code. Expressing these constraints,
however, is complex, and unrelated to the use of CTL-VW. Instead,
we define the grammar of patterns to match against, and assume
that the elements of these patterns are implicitly annotated with the
transformation to perform. For example, in the type ref semantic
patch of Figure 1, the pattern return -C; would be annotated to
indicate that of node put(n); should be inserted before it.

In our simplified SmPL, the transformation specification part of
a semantic patch has the form of a sequence S, as defined by the
following grammar:

S ∈ Sequences ::= E S | ε
E ∈ Elements ::= T | D | (S|S)
T ∈ Terms ::= Atomic | if (exp) T
D ∈ Dots ::= ... | D when != S

A Sequence should not contain consecutive dots (D), but we do not
complicate the grammar with this constraint. Atomic is an arbitrary
atomic term, such as an assignment or function call and exp is an
arbitrary expression. Atomic and exp may contain metavariables. We
consider conditionals with only one branch, because that is all that
is required for our example. The treatment of a conditional with two
branches is similar.

6.2 Quantification of metavariables
The first step in the translation of SmPL to CTL-VW is to introduce
existential quantifiers to delimit the scope of each metavariable. For
this, we extend the syntax of Sequences, Elements, and Terms with
existential quantifiers, as shown below:

S ∈ Sequences ::= E S | ε | ∃x.S
E ∈ Elements ::= T | D | (S|S) | ∃x.E
T ∈ Terms ::= Atomic | if (exp) T | ∃x.T
D ∈ Dots ::= ... | D when != S

The scope of a metavariable is the smallest Sequence, Element,
or Term that contains all references to it, including references in +
code. Inserting existential quantifiers according to this strategy is
straightforward. For the semantic patch in Figure 1, the scope of the
metavariable n extends around the entire semantic patch, but the
scope of the other metavariables is only the immediate containing
Term. In particular, the scope of the metavariable C in the modified
term return -C; is local to the pattern itself, i.e., ∃C. return
-C;, allowing it to match a return of any negative constant within
the different control-flow paths. This property is essential, as the
matched code may need to return an error code for many reasons,
returning a different value in each case.

6.3 Translation to CTL-VW
Figure 6 defines the translation of a pattern into CTL-VW. The entry
point of the translation is the function Cs, which takes as arguments
a Sequence and a formula describing how to match the remainder
of the semantic patch. Initially, a transformation specification S is
translated as Cs[[S]] true.3

3 We define true as an abbreviation for p ∨ ¬p, for an arbitrary predicate p.
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Cs[[E S]] a = Ce[[E]] (Cs[[S]] a)
Cs[[ε]] a = a

Cs[[∃x.S]] a = ∃x.Cs[[S]] a

Ce[[T ]] a = Ct[[T ]]a
Ce[[D]] a = A[Gd[[D]] a U a]

Ce[[(S1|S2)]] a = Cs[[S1]] a ∨ (¬(Cs[[S1]] a) ∧ Cs[[S2]] a)
Ce[[∃x.E]] a = ∃x.Ce[[E]] a

Ct[[Atomic]]a = (Atomic ∧ ∃ v. v = “Atomic”) ∧ AX a
Ct[[if (exp) T ]]a = (if (exp) ∧ ∃ v. v = “if (exp)”) ∧

AX((trueBranch ∧ AX(Gt[[T ]])) ∨
fallThrough ∨ (after ∧ AXAX a)) ∧ EX(after)

Ct[[∃x.T ]]a = ∃x.Ct[[T ]]a

Gs[[E]] a = Ge[[E]] a
Gs[[E S]] a = Ge[[E]] (Gs[[S]] a)

Gs[[ε]] a = true
Gs[[∃x.S]] a = ∃x.Gs[[S]] a

Ge[[T ]] a = Gt[[T ]]
Ge[[D]] a = A[Gd[[D]] a U a]

Ge[[(S1|S2)]] a = Gs[[S1]] a ∨ (¬(Gs[[S1]] a) ∧ Gs[[S2]] a)
Ge[[∃x.E]] a = ∃x.Ge[[E]] a

Gt[[Atomic]] = Atomic ∧ ∃ v. v = “Atomic”
Gt[[if (exp) T ]] = (if (exp) ∧ ∃ v. v = “if (exp)”) ∧

AX((trueBranch ∧ AX(Gt[[T ]])) ∨
fallThrough ∨ after)

Gt[[∃x.T ]] = ∃x.Gt[[T ]]

Gd[[...]] a = true
Gd[[D when != S]] a = Gd[[D]] a ∧ ¬(Gs[[S]] a)

Figure 6. A simplified translation of semantic patches to CTL-VW

The translation contains two sets of rules: 1) the C rules Cs, Ce,
and Ct, for translating Sequences, Elements, and Terms, respectively
at the top level, and 2) the G rules Gs, Ge, Gt, for Sequences,
Elements, Terms, and Dots, respectively, when these occur under
a when clause. The connection between the two sets of rules is
made by the rule Gd, which is used in the translation of “...”
and processes each of the associated when clauses. The difference
between the two sets of rules is only in the use of the argument a,
describing the rest of the SmPL code. For the C rules, a represents a
pattern at the same level as the pattern being translated, which thus
must be matched after the current pattern, while for the G rules, a
represents the code that follows the associated dots, and thus only
serves to delimit any dots that appear at the end of the when code.
In particular, the rule Gt for Terms does not have an argument a,
because a Term cannot end in dots.

We examine in more detail the C translation rules for dots,
disjunctions, atomic patterns, and conditionals. These rules illustrate
the main concepts of the translation process.

Dots Dots represent a sequence of arbitrary code, possibly con-
strained by when clauses, along a control-flow path. In the trans-
lation, the end of this sequence is indicated by the formula a that
describes the rest of the SmPL code. Such a delimited path can be
expressed by an “until,” U, path operator. Our simplified language
only supports universal quantification over paths, and thus we use
the operator AU.4 The left argument of AU is constructed using the
rule Gd, which creates a formula checking that none of the patterns
in the when clauses are matched within the path. The right argument
of AU is the formula a matching the rest of the semantic patch.

Disjunction A disjunction (S1|S2) matches S1 if possible, and
otherwise S2. The translation reflects the priority of S1 over S2 by
encoding S2 as ¬(Cs[[S1]] a)∧Cs[[S2]] a. This translation duplicates

4 Coccinelle automatically converts AU to AW, which can be defined using
EU and negation, when the source program is found to contain a loop. AW
can ignore a path that goes around a loop infinitely, but is implemented much
less efficiently than AU.

∃n.(n = of find node by type(...) ∧ ∃ v. v = . . .) ∧
AXA[true U

((if (n == NULL)|if (NULL == n)|if (!n)) ∧ ∃ v. v = . . .) ∧
AX((trueBranch ∧ AX(∃S.(S ∧ ∃ v. v = . . .))) ∨

fallThrough ∨
(after ∧ AXAX(A[¬(of node put(n); ∧ ∃ v. v = . . .) ∧

¬(∃n1.∃f1.(n1 = f1(n,...)) ∧ ∃ v. v = . . .) ∧
¬(∃E1.(E1 = n ∧ ∃ v. v = . . .))
U
∃C.(return -C; ∧ ∃ v. v = . . .) |
(of node put(n); ∧ ∃ v. v = . . .) |
∃n2.∃f2.(n2 = f2(n,...) ∧ ∃ v. v = . . .) |
∃E2.(E2 = n ∧ ∃ v. v = . . .) |
∃E2.(return E2; ∧ ∃ v. v = . . .)]))) ∧

EX(after)]

Figure 7. CTL-VW translation of the semantic patch type ref. The
right argument of the equality constraint on v is elided in each case,
for conciseness.

the previous processing of S1. In the implementation, we use instead
a “sequential disjunction” operator, that uses the negation of the
previously computed result of processing S1, and thus eliminates
this duplication. The translation of a disjunction propagates the
formula a separately into the translation of each branch. In this way,
the rest of the semantic patch is matched at a point starting from the
end of the code matching S1 or S2.

Atomic An atomic pattern may involve a transformation, as illus-
trated in line 18 of our type ref semantic patch (Figure 1). Thus, the
matching process must remember information about the position
at which each atomic pattern matches. To collect this information,
which is our fourth requirement for Coccinelle (Section 2.2), we use
witnesses. Specifically, we introduce a new existentially quantified
metavariable v and create a predicate “=” that simply matches this
variable to a textual representation of the atomic pattern, including
any annotations about the transformation required. For example,
the pattern return -C; with the annotation that of node put(n);
should be inserted before it would be translated as follows:

return -C; ∧ ∃ v. v = "+ of node put(n);return -C;"

The witnesses for v will contain the current node and the binding
of v to the textual representation of the atomic pattern, indicating
where and how to perform the transformation.

Conditionals The translation of a conditional ide determined by
the representation of a conditional in a Coccinelle control-flow graph.
For conciseness, we omit further details. Note, however, that the
translation of the header of a conditional introduces a metavariable
v, as in the translation of an atomic pattern, thus making it possible

to find and transform the matched code.

Figure 7 shows the result of translating the semantic patch
type ref into CTL-VW. The formula uses the “sequential disjunc-
tion” operator, denoted as |, that was described above. The pattern n
== NULL has been expanded into a variety of ways to make a NULL
test, using Coccinelle’s isomorphisms [20]. For type ref, the size
of the formula is comparable to the size of the semantic patch. In
general, however, subformulas can be duplicated in the branches of
a disjunction, when a when clause ends in dots, and in full SmPL to
implement the shortest path constraint, although in the latter case,
only the atomic terms immediately preceding and following the dots
are duplicated. In practice, however, we have found that it is the
complexity of the source code rather than the size of the formula
that has an impact on the performance [20].
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np = of find node by type(NULL, "smu"); 1
if (np == NULL) 2

return −ENODEV; 3
printk(KERN INFO "SMU: Driver %s %s\n", VERSION, AUTHOR); 4
if (smu cmdbuf abs == 0) { 5

printk(KERN ERR "SMU: Command buffer not allocated !\n"); 6
return −EINVAL; 7

} 8
smu = alloc bootmem(sizeof(struct smu device)); 9
if (smu == NULL) { 10

return −ENOMEM; 11
} 12
. . . // unrelated straightline code 13
smu−>of node = np; 14

Figure 8. An extract of the function smu init in the file
drivers/macintosh/smu.c

6.4 Matching and transformation
As illustrated by the CTL-VW formula in Figure 7, a formula result-
ing from the translation always has the following properties: 1) All
metavariables are existentially quantified, 2) The existential quan-
tifiers for the introduced metavariables v recording the positions
of the atomic terms are always innermost, and 3) The translation
of an atomic term, including the quiantifier of its v variable, is
nested within quantifiers for all of its free metavariables. The first
point implies that in the result of matching the CTL-VW formula
against the source code, the environment component of each triple is
always empty. The second and third points imply that the witnesses
are trees in which the leaves are the bindings of the v metavari-
ables, representing the nodes to transform, and the path from the
root of a witness to a given leaf contains the bindings of the free
metavariables that may be involved in the transformation process.

As a concrete example, Figure 8 shows an extract of the function
smu init in the file drivers/macintosh/smu.c,5 which is matched
by the type ref semantic patch, and Figure 9 shows the single
triple that results from the matching process. In Figure 9, we
have replaced the node numbers generated by Coccinelle by the
corresponding line numbers in Figure 8 for easy reference. The
result shows that the various atomic terms of the semantic patch
match on lines 1, 2, 3, 7, 11, and 14. Only the pattern return -C;
encapsulates a transformation, as shown in Figure 1: adding the code
of node put(n);. There are two matches of this pattern, on lines
7 and 11. For the former, tracing up from the v to the root of the
witness gives the binding of C to EINVAL and n to np. For the latter,
this gives the binding of C to ENOMEM and n to np. In each case, this
is sufficient information needed to carry out the transformation.

Based on the result of the matching process, Coccinelle collects
the set of sequences of bindings leading from the root of a witness
to each of its leaves that contain a transformation. Coccinelle only
accepts a set of transformations if the nodes involved are disjoint and
are only reachable from the states associated with the set of triples.
These conditions help avoid ambiguity in the transformation process.
If the set of transformations are acceptable, code is generated
accordingly, in our case adding a call to of node put above line 6
of Figure 8. Otherwise, Coccinelle aborts.

5 This code comes from http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=summary, using the version of Linux from just before the commit
bad5232ba266ae2c666c17be236152fb2d8ada3b, in which the first of the
patches based on this semantic patch was accepted. This version dates from
June, 2008. To simplify the example, we have added the braces around
the return on line 11, so that it is valid to add code before this statement.
Coccinelle automatically adds such braces, when needed, but for simplicity
this issue is not addressed in the translation presented in Figure 6.

state: 1
environment: ∅
witnesses: {〈1, n, np,

{〈1, v, n = of find node by type(...), ∅〉,
〈2, v, if (n == NULL), ∅〉,
〈3, S, return -ENODEV;, {〈3, v, S, ∅〉}〉,
〈7, C, EINVAL, {〈7, v, return -C;, ∅〉}〉,
〈11, C, ENOMEM, {〈11, v, return -C;, ∅〉}〉,
〈14, E2, smu->of node, {〈14, v, E2 = n, ∅〉}〉}

Figure 9. Result of applying the semantic patch of Figure 1 to the
function smu init. The node numbers correspond to the line numbers
in Figure 8

6.5 Experiments
The type ref semantic patch shown in Figure 1 transforms four
files in the Linux kernel: arch/powerpc/platforms/pseries/nvram.c,
drivers/macintosh/smu.c, drivers/macintosh/therm pm72.c, and dri-
vers/video/fsl-diu-fb.c.6 Figure 10 summarizes the sizes of these files
and the performance of Coccinelle when applying the type ref se-
mantic patch to them. All experiments were performed on a 1.4GHz
uniprocessor Centrino laptop with 635MB of RAM. Execution times
are the average of five runs. The result of applying the semantic
patch to nvram.c and smu.c has been integrated into the Linux
kernel. The result for fsl-diu-fb.c has been validated by a Linux
developer. We observed that the result of applying the semantic
patch to therm pm72.c is a probable false positive, due to an inter-
procedural effect that the semantic patch does not take into account.
Nevertheless, the code structure in this case is typical, and thus it
also serves as a representative example.

The files range in size from 149 to over 2000 lines of C code,
including comments and whitespace. In each case there is a single
function that is relevant to the semantic patch, and this function
ranges in size from 27 to 94 lines. Coccinelle skips over irrelevant
functions quickly, essentially only parsing them, and thus the CTL-
VW algorithm is only applied to the relevant functions. Because
the files are much larger than the relevant functions in this case, the
time for parsing dominates the overall running time for most files.
We can nevertheless get a sense of the performance of the CTL-VW
algorithm in practice, by considering its performance on the relevant
functions, in terms of both time and space usage.

We consider two implementations of the model checking algo-
rithm for CTL-VW: an unoptimized one that closely follows the
algorithm presented in Section 5.3, and the optimized one that is
implemented in the Coccinelle tool. The optimizations affect both
the encoding in CTL-VW and the execution of the algorithm, and
are summarized as follows:

Optimizations to the translation These optimizations seek to
reduce the number of witnesses, and thus the amount of information
that the algorithm has to propagate.

• Some metavariables, such as n1, E1, and f1 in Figure 1, only
occur under a negation. The CTL-VW algorithm drops witnesses
created under a negation, so as an optimization, we augment the
translation of Figure 6 to quantify such metavariables using a
variant of ∃ that does not create any witnesses.

• Some patterns, such as n1 = f1(n,...), are used in matching,
but are not affected by the transformation. In this case, we do not
need to introduce a metavariable v to record where the pattern
has matched, thus eliminating a further set of witnesses.

Optimizations to the algorithm These optimizations seek to re-
duce the number of triples that are manipulated.

6 This code comes from the same source as mentioned in Footnote 5.
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File total lines in the unoptimized optimized
lines relevant total CTL steps triples total CTL steps triples

function time time time time
nvram.c 149 27 0.309 0.009 77+29 541 0.306 0.005 67+14 261

therm pm72.c 2279 32 1.466 0.010 77+29 678 1.457 0.006 67+12 276
fsl-diu-fb.c 1721 57 1.226 0.039 77+47 1093 1.205 0.011 67+27 532

smu.c 1323 94 7.707 6.818 77+81 2270 0.888 0.043 67+61 1176

Figure 10. The performance of applying the semantic patch of Figure 1 to the files that it affects in Linux. Times are in seconds. Steps is the
number of CTL operators considered in processing the formula added to the number of steps involved in computing fixpoint iterations for the
operator AU. Triples is the sum of the number of triples in the result of processing each CTL operator. The unoptimized and optimized variants
both use an implementation of disjunction that does not duplicate the processing of subformulas.

• The CTL-VW formulas generated by our translation algorithm
often have the form φ1 ∧ AX(φ2) (see Figure 7). Information
about the processing of φ1 is propagated into the processing
of φ2, to ensure that the states considered for the subformulas
of φ2 are reachable from the states at which φ1 is satisfied,
and the environments considered for the subformulas of φ2 are
compatible with the environments that satisfy φ1.

• The path operator AU is implemented by an incremental al-
gorithm that considers only the newly added triples on each
iteration. Various optimizations are also integrated into the im-
plementations of conjunction and negation, as compared to the
specifications shown in Figure 3.

• There is no need to keep track of multisets of witnesses in
the implementation, as these are just a device to facilitate
proofs; the set of witness is sufficient to support matching and
transformation.

As shown in Figure 10, the combination of these optimizations
reduces the CTL-VW processing time by up to over 150 times,
due to reduced memory requirements, and the sum of the number
of triples manipulated at each step by around 50%. In other work
[20], we have created over 60 semantic patches based on collateral
evolutions that have taken place in Linux 2.5 and Linux 2.6. In
applying these semantic patches to a total of over 5800 relevant
Linux files on a 3.4GHz uniprocessor Pentium 4 PC with 1024MB
of RAM, the time for applying a semantic patch to a relevant file is
rarely more than 0.5 seconds. Thus, our optimizations for CTL-VW
model checking provide acceptable performance for interactive use
without resorting to efficient but more complex encoding strategies
such as BDDs [5].

6.6 An extension: Mixing path quantifiers
A advantage of CTL is the ability to mix universal and existential
quantification over paths within a single formula. To conclude,
we consider how full SmPL can take advantage of this facility.
By default, SmPL uses universal quantification when a semantic
patch performs transformation, as indicated by - and + annotations,
and existential quantification when a semantic patch performs only
searching (making it instead a semantic match), in which lines are
annotated with * to indicate items of interest. These conventions can
be overridden, by indicating forall or exists at the beginning
of the rule. But the quantifier used for individual dots can also be
controlled locally using when forall or when exists.

The semantic match shown in Figure 11 mixes path quantifiers.
This semantic match searches for cases where there exists a derefer-
ence of the result of the Linux kernel memory allocation function
kmalloc without first checking that the result is valid. As the se-
mantic match marks lines using *, paths are existentially quantified
by default. In lines 7-10, however, we would like to identify a condi-
tional that always aborts if the allocated value is NULL, as subsequent

@kmalloc ref@ expression x,E; identifier fld; statement S; @@ 1
2

x = kmalloc(. . .) 3
. . . when != x = E 4

when != x−>fld 5
( 6

if ((x == NULL) | | . . .) { 7
. . . when forall 8
return . . .; 9

} else S 10
| 11
* x−>fld 12
) 13

Figure 11. A semantic patch that mixes universal and existential
path quantification

dereferences are known to be safe. Thus, the dots in the body of this
conditional are annotated with when forall.

7. Related Work
Lacey and De Moor write CTL-FV formulas to specify compiler op-
timizations [16]. In this setting, a CTL formula describes properties
of the context of a term that allow an optimization such as constant
propagation to be applied to the term. Åberg et al. used CTL to spec-
ify the transformations required to integrate the run-time system
of the Bossa scheduling framework into the Linux kernel source
code [1]. In both cases, the node affected by the transformation is
the one that satisfies the entire formula, so there is no need for our
witnesses. Furthermore, the specifications are fairly simple, so it
is possible to write CTL code directly. De Moor et al. observed
that full CTL was not always necessary for such specifications, and
proposed universal regular path queries, which are based on regular
expressions [9]. Such queries, however, do not permit mixing univer-
sal and existential path quantifiers and also do not permit specifying
transformations within formulas.

Other approaches to bug finding that take program control-flow
into account include Metal [10] and SDV [2]. Metal is based on
specifications expressed as state machines. The expressiveness of
state machines and CTL is incomparable. SDV focuses mainly on
eliminating false positives by taking possible run-time values into
account. Coccinelle does not currently address this issue.

Bohn et al. also propose a variant of CTL with universal and
existentially quantified variables [4]. Their goal is to reason about
properties involving variables that range over very large or infinite
domains, and they provide a syntactic approach to model checking
that allows constraints about such variables to be simplified in ad
hoc ways. Their semantics is somewhat different than ours in that
environments are explicit in the semantics of state operators, but
integrated into the labelling function of a specialized version of
the initial model in the semantics of path operators. Our use of
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constructive negation can be viewed as a restricted version of their
more general predicates on variable values.

Since SmPL can be translated into CTL-VW, they could also
be written using CTL-VW directly. Doing so, however, would
be extremely tedious for complex semantic patches, as already
illustrated by Figure 7. The difficulty of creating CTL specifications
has been recognized in other domains. Corbett et al. propose a high
level language for describing desired properties of Java programs,
for use with the Bandera model checking framework [8].

Jones and Hansen present a translation of a simplified SmPL into
CTL-V [13]. They concentrate on matching, and do not provide sup-
port for transformation, as is enabled by CTL-VW. They implement
CTL-V by translation into CTL, at the cost of increasing the size of
the formula exponentially in the size of Val.

8. Conclusion
In this paper, we have identified four requirements for a logic that is
to serve as the foundation of a control-flow based program matching
language, and incrementally derived from CTL the logic CTL-
VW that meets these requirements. In practice, we have found the
decision to base the implementation of Coccinelle on an extension
of CTL very beneficial, as it naturally separates the specification
of the semantics of the program matching language, represented by
the translation into the logic, from the implementation, represented
by the model checking algorithm. Indeed, in the case of Coccinelle,
we iterated many times over the language semantics, but modified
the implementation of the model checking algorithm only rarely, to
improve performance. Our extensive experiments [20] show that the
approach is efficient enough for practical use, on a standard PC.

A limitation of the formalization of CTL-VW presented here
is that it does not allow for collecting witnesses under negation.
While this feature is not needed in the examples we have considered
in practice with Coccinelle, there could be other contexts in which
such witnesses would be useful. We want to extend the formalization
to accommodate them. Currently, only the proof of soundness and
completeness of the CTL-V model checking algorithm has been
validated by a proof assistant. We plan to validate the proof for the
CTL-VW model checking algorithm as well.

Availability Coccinelle is available from the following URL:
http://www.emn.fr/x-info/coccinelle/.
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