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Distributed systems

Alice
A distributed system

Independent programs that
realise a global task through
network interactions

Bob

They need to agree

on data semantics
Misunderstanding

on protocols
Miscommunication

Charlie

There is little trust

Errors (Safety)
Typing system

Corruption (Security)
Cryptographic protocol
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Improving Distributed Programming

Different from sequential programming

Independent programs need to cooperate: safety.

Complicated interactive software: easier to generate/prove than to program/debug.

No control over the execution environment (peers, network): security.

Most existing tools are not well-suited

Compilers and type systems are local.

Security and networking libraries are low-level, binary.

Contribution I: Abstract Type Safety

How to enforce local semantics in
a distributed environment

Contribution II: Session Security

How to secure a distributed execution
despite compromised parties

Computer science = Engineering ∩ Mathematics

industrial objects: prototyping

experiments and measures:

experimental method

logical objects: mathematical definition

theorems and proofs:

formal method
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Part I

Abstraction preservation and
subtyping
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Abstract type preservation
Alice’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t

let value x = x val value : t → int
end end

Bob’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t
let decr x = x-1 val decr : t → t
let value x = x val value : t → int

end end

Alice↔ Bob

1. Alice sends Counter.init 0:Counter.t−−−−−−−−→ Bob

2. Bob applies Counter.decr

3. Alice −1:Counter.t←−−−−−−−−− Bob sends the result

4. Alice applies Counter.value

5. Alice fails! (broken invariant)

Abstract types refer to local modules.

Type safety requires more than comparing names.

different internal invariants

different concrete types

different dependencies

Pierre-Malo Deniélou (PhD Defense) 5 / 23



Abstract type preservation
Alice’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t

let value x = x val value : t → int
end end

Bob’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t
let decr x = x-1 val decr : t → t
let value x = x val value : t → int

end end

Alice↔ Bob

1. Alice sends Counter.init 0:Counter.t−−−−−−−−→ Bob

2. Bob applies Counter.decr

3. Alice −1:Counter.t←−−−−−−−−− Bob sends the result

4. Alice applies Counter.value

5. Alice fails! (broken invariant)

Abstract types refer to local modules.

Type safety requires more than comparing names.

different internal invariants

different concrete types

different dependencies

Pierre-Malo Deniélou (PhD Defense) 5 / 23



Abstract type preservation
Alice’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t

let value x = x val value : t → int
end end

Bob’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t
let decr x = x-1 val decr : t → t
let value x = x val value : t → int

end end

Alice↔ Bob

1. Alice sends Counter.init 0:Counter.t−−−−−−−−→ Bob

2. Bob applies Counter.decr

3. Alice −1:Counter.t←−−−−−−−−− Bob sends the result

4. Alice applies Counter.value

5. Alice fails! (broken invariant)

Abstract types refer to local modules.

Type safety requires more than comparing names.

different internal invariants

different concrete types

different dependencies

Pierre-Malo Deniélou (PhD Defense) 5 / 23



Abstract type preservation
Alice’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t

let value x = x val value : t → int
end end

Bob’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t
let decr x = x-1 val decr : t → t
let value x = x val value : t → int

end end

Alice↔ Bob

1. Alice sends Counter.init 0:Counter.t−−−−−−−−→ Bob

2. Bob applies Counter.decr

3. Alice −1:Counter.t←−−−−−−−−− Bob sends the result

4. Alice applies Counter.value

5. Alice fails! (broken invariant)

Abstract types refer to local modules.

Type safety requires more than comparing names.

different internal invariants

different concrete types

different dependencies

Pierre-Malo Deniélou (PhD Defense) 5 / 23



Abstract type preservation
Alice’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t

let value x = x val value : t → int
end end

Bob’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t
let decr x = x-1 val decr : t → t
let value x = x val value : t → int

end end

Alice↔ Bob

1. Alice sends Counter.init 0:Counter.t−−−−−−−−→ Bob

2. Bob applies Counter.decr

3. Alice −1:Counter.t←−−−−−−−−− Bob sends the result

4. Alice applies Counter.value

5. Alice fails! (broken invariant)

Abstract types refer to local modules.

Type safety requires more than comparing names.

different internal invariants

different concrete types

different dependencies

Pierre-Malo Deniélou (PhD Defense) 5 / 23



Abstract type preservation
Alice’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t

let value x = x val value : t → int
end end

Bob’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t
let decr x = x-1 val decr : t → t
let value x = x val value : t → int

end end

Alice↔ Bob

1. Alice sends Counter.init 0:Counter.t−−−−−−−−→ Bob

2. Bob applies Counter.decr

3. Alice −1:Counter.t←−−−−−−−−− Bob sends the result

4. Alice applies Counter.value

5. Alice fails! (broken invariant)

Abstract types refer to local modules.

Type safety requires more than comparing names.

different internal invariants

different concrete types

different dependencies

Pierre-Malo Deniélou (PhD Defense) 5 / 23



Abstract type preservation
Alice’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t

let value x = x val value : t → int
end end

Bob’s counter

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t
let decr x = x-1 val decr : t → t
let value x = x val value : t → int

end end

Alice↔ Bob

1. Alice sends Counter.init 0:Counter.t−−−−−−−−→ Bob

2. Bob applies Counter.decr

3. Alice −1:Counter.t←−−−−−−−−− Bob sends the result

4. Alice applies Counter.value

5. Alice fails! (broken invariant)

Abstract types refer to local modules.

Type safety requires more than comparing names.

different internal invariants

different concrete types

different dependencies
Pierre-Malo Deniélou (PhD Defense) 5 / 23



A solution using hashes and colour brackets

Leifer, Peskine, Sewell, Wansbrough:
“Global abstraction-safe marshalling with hash types”, ICFP 2003

. . . used in Acute (ICFP 2005) and HashCaml (’ML 2006).

Idea: hash the source code of modules

We use the hash as a unique identifier for each abstract type.

Thus, the compiler replaces the local type name Counter.t by the global h.t
where h is the hash of Counter (recursively dealing with dependencies).

Each change yields a new hash.

We can easily compare abstract types dynamically at unmarshall time by a simple
equality check on hashes. Thus, type errors are detected at the earliest possible
moment.

Coloured brackets are used to track abstract values during evaluation.
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Present contributions

Motivation: More flexibility

We want to exchange values between executables running different versions of
modules (upgrades, bug fixes, . . . ).

Compatibility after a module upgrade is not necessarily symmetric!

=⇒We model this by a subtyping relation.

Our contributions:

We give a sound semantics for subtyping with hashing, coloured brackets and
marshalling.

1 Records and structural subtyping for concrete types
2 User-declared subtyping between abstract types
3 Partial abstract types (bounded existentials)

Pierre-Malo Deniélou (PhD Defense) 7 / 23



User-declared Subtyping

Alice’s counter

module CounterA =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t

let value x = x val value : t → int
end end

Bob’s counter

module CounterB =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x+1 val incr : t → t
let decr x = x-1 val decr : t → t
let value x = x val value : t → int

end end

The invariants of CounterA.t and CounterB.t are different but they are compatible
in one direction.

Problem: No way in general to infer the invariant compatibility, thus preventing
potentially useful and safe communications. Solution:

Bob’s counter

module CounterB extends CounterA =
...

Then we’ll only be able to use
CounterA.t <: CounterB.t.
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Summary (1/2): final semantics

Type system (85 rules)

Singleton kinds (à la Harper & Lillibridge) and bounded kinds

Subtyping

Type equivalence

...

Operational semantics (30 rules)

Machines (compilation): H, m −→c H ′, m′ (2 rules)

Expressions (run-time execution): H, e −→c H ′, e (21 rules)

Networks (communication): n −→ n′ (7 rules)
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Summary (2/2): Theorems

Abstraction preservation is a combination of two results.

Type Preservation

If `H
c e : T and H, e −→c H ′, e′ then `H′

c e′ : T .

Typing Unicity

If `H
c e : T0 and `H

c e : T1, then `H
c T0 == T1

Progress

If `H
c e : T then one of the following holds:

e is a value in the colour c, blocked on I/O, or an exception.

e reduces, i.e. there exist e′ and H ′ such that H, e −→c H ′, e′.
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Part II

Compiler for secure sessions
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Securing distributed languages

Uncertainty over the execution environment

The programmer has little control over:

the network

the remote peers

⇒

Only realistic security assumption

Everyone is potentially malicious.

Designing a (correct) security protocol is hard

Involves low-level, error-prone coding below communication abstractions.

Depends on global message choreography.

Should handle compromised peers.

Our goal

To automatically generate taylored cryptographic protocols protecting against the
network and compromised peers;

To hide implementation details with a clear semantics and proofs of correctness
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Sessions (protocols, contracts, conversations, workflows, ...)

How do we specify a message flow between several roles?

They can be represented as global graphs;

w c
Reply

c
Request

or as local processes (our concrete syntax).

session Rpc =
role c : int =

send Request : string ;
recv Reply : int

role w : unit =
recv Request : string →
send Reply : int

Active area of research
Pi-calculus, web services, operating systems

Common strategy: type systems enforce protocol compliance
if every site program is well-typed, sessions follow their specification
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Secure compilation of session abstractions

Contributions
Design of a high-level session language
Automated generation of a secure implementation from the specification

Results
Functional result: Well-typed programs play their role
Security theorem: A role using our generated implementation can
assume that remote peers play their role without having to trust them.

Outline:

1 Session programming & examples
2 Security threats
3 Generated protocol
4 Theorem
5 Performance evaluation

Pierre-Malo Deniélou (PhD Defense) 14 / 23



Architecture

ML
Application

code
Concrete
Model

F+S

Networking &
Cryptography

ML compiler

ML
Application

code

Session
declarations

An extension of ML
with sessions

S2ml,
A secure 
session 
compiler

Concrete

Executable

Session
implementation
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Session expressiveness

Ws: 2 roles, 3 messages, 1 choice

w

cFault

c

Replyc
Request

Wsn: 2 roles, 4 messages, 1 choice, 1 loop

w

cFault

c

Reply

Extra

c
Request

Shopping: 3 roles, 8 messages, 1 choice, 1 loop
c o

Abort

w

Reject

c

Offer

w o
Confirm

Change
Accept

o
Contract

c
Request
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Programming with continuations

w c
Reply

c
Request

File Rpc.mli

(* Function for role w *)
type result_w = unit
type msg3 = {

hRequest : (prins * string → msg4)}
and msg4 =

Reply of (int * result_w)
val w : principal → msg3 → result_w
[...]

Arbitrary ML code can be used to run the session and produce the message content.

Sample user file to play w’s role

Rpc.w "Bob"
{hRequest = function (_,x) → match x with "Cheese" → Reply(24,())

| "Wine" → Reply(53,())}
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Threats against session integrity

Powerful Attacker model

can spy on transmitted messages

can join a session as any role

can initiate sessions

can access the librairies
(networking, crypto)

cannot forge signatures

c o
Abort

w

Reject

c

Offer

w o
Confirm

Change
Accept

o
Contract

c
Request

Attacks against an unsecure implementation

Message integrity (Offer by Reject)

Message replay (Offer triggers a new
iteration)

Control integrity (from Reject to
Change)

Sender authentication (c could send
Confirm to o)
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Protocol outline

Principles of our
protocol generation

1 Each edge is implemented by a unique concrete message.
2 We want static message handling for efficiency.

Against replay attacks

between session executions: session nonces

between loop iterations: time stamps

at session initialisations: anti-replay caches

w c
Reply

p
Forward

c
Request

Against session flow attacks

Signatures of the entire message history (optimisations possible ...)
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Visibility

Optimising the protocol

Signing and countersigning the full history
1 Using time stamps to avoid countersigning
2 Using local states to remember past achievements

c o
Abort

w

Reject

c

Offer

w o
Confirm

Change
Accept

o
Contract

c
Request

Execution paths: which signatures to convince the receiver?

Request-Contract-Reject-Abort

Request-Contract-Offer-Change-Offer-Change

Request-Contract-(Offer-Change)n-Reject-Abort

Visibility: at most one signature from each of the previous roles is enough.
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Session integrity

Our formalism:
F+S is our high-level language where sessions are primitive;
F is our low-level language without sessions (ie ML);
F⊆ F+S.

Theorem (Session integrity)

If L MeS U O′ may fail in F then L S̃ U O may fail in F+S.

Intuition
L is the set of libraries.
S̃ is a set of session declarations and MeS their generated session
implementation.
Failure is a barb raised by the user code U.
U is the same code in F+S and F.
O cannot make U see an observable difference between F+S and F.
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Evaluation

Performance of the code generation

Fichier Appli- Graphes Compi-
Session S Rôles .session cation Graphe Locaux S.mli S.ml lation

(loc) (loc) (loc) (loc) (loc) (loc) (s)
Single 2 5 21 8 12 19 247 1.26
Rpc 2 7 25 10 18 23 377 1.35
Forward 3 10 33 12 25 34 632 1.66
Auth 4 15 45 16 38 49 1070 1.86
Ws 2 7 33 12 24 25 481 1.36
Wsn 2 15 44 13 42 29 782 1.50
Wsne 2 19 45 15 48 31 881 1.90
Shopping 3 29 70 21 85 49 1780 2.43
Conf 3 48 86 37 181 78 3451 3.32
Loi 6 101 189 57 310 141 7267 6.29

Performance of the generated code (10000 messages)

Authentication using signatures MACs
Total execution time 93.92 s 1.77 s
Without verification 90.80 s 1.66 s

Without cryptography 1.43 s
Unprotected 1.31 s
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Conclusion

I. Abstraction preservation
Design of a distributed language with abstract data types and subtyping.
Semantics to ensure abstract type safety.
Soundness, typing unicity and progress proofs.

II. Compiler for secure session
Design of a high-level session language
Automated generation of a secure implementation from the specification
Generic proof of the security protocol correctness

Thank you!
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