
JoCaml: a Language for Concurrent
Distributed and Mobile Programming

Cédric Fournet1, Fabrice Le Fessant2

Luc Maranget2, and Alan Schmitt2

1 Microsoft Research
2 INRIA Rocquencourt

Abstract. In these lecture notes, we give an overview of concurrent,
distributed, and mobile programming using JoCaml. JoCaml is an ex-
tension of the Objective Caml language. It extends OCaml with support
for concurrency and synchronization, the distributed execution of pro-
grams, and the dynamic relocation of active program fragments during
execution.

The programming model of JoCaml is based on the join calculus. This
model is characterized by an explicit notion of locality, a strict adher-
ence to local synchronization, and a natural embedding of functional
programming à la ML. Local synchronization means that messages al-
ways travel to a set destination, and can interact only after they reach
that destination; this is required for an efficient asynchronous implemen-
tation. Specifically, the join calculus uses ML’s function bindings and
pattern-matching on messages to express local synchronizations.

The lectures and lab sessions illustrate how to use JoCaml to program
concurrent and distributed applications in a much higher-level fashion
than the traditional threads-and-locks approach.

1 An Overview of JoCaml

Wide-area distributed systems have become an important part of modern pro-
gramming, yet most distributed programs are still written using traditional lan-
guages designed for closed, sequential architectures. In practice, distribution is-
sues are typically relegated to system libraries, external scripts, and informal de-
sign patterns [4, 19], with little support in the language for asynchrony and con-
currency. Conversely, the distributed constructs, when present, are constrained
by the local programming model, with for instance a natural bias towards RPCs
or RMIs rather than asynchronous message passing, and a tendency to hide these
issues behind sequential, single-threaded interfaces.

Needless to say, distributed programs are usually hard to write, much harder
to understand and to relate to their specifications, and almost impossible to
debug. This is due to essential difficulties, such as non-determinism, asynchrony,
and node failures. Nonetheless, it should be possible to provide some language
support and tools to facilitate distributed programming.

JoCaml is an attempt to provide such a high-level language in a functional
setting, with linguistic support for asynchronous, distributed, and mobile pro-
gramming [6, 15] . JoCaml is based on the join calculus [7, 8], a simple and well-
defined model of concurrency similar to the pi calculus [22, 21] but more suitable
for programming. The join calculus is the core language for JoCaml and its pre-
decessors, and has inspired the design of several other languages [3, 23, 27, 28].
More formally, the join calculus is also a specification language, that can be
used to state and prove the properties of programs, such as the correctness of
an implementation [10, 1].

JoCaml is an extension of Objective Caml 1.07 [20], a typed programming
language in the ML family with a mix of functional, imperative, and object-
oriented features. JoCaml extends OCaml, in the sense that OCaml programs
and libraries are just a special kind of JoCaml programs and libraries. JoCaml
also implements strong mobility and provides support for distributed execution,
including a dynamic linker and a distributed garbage collector.

These notes give an overview of JoCaml, and how it can be used for both con-
current and distributed programming. First, we survey the basic ideas behind
JoCaml as regards concurrent and distributed programming. Then, we intro-
duce JoCaml constructs, their syntax, typing, and informal semantics, first in
a concurrent but local setting (Section 2), and finally in a distributed setting
(Section 3).

Starting from Objective Caml. High-level distributed programming mostly
relies on scripting languages (Agent-Tcl [11], TACOMA [14], Telescript [29]).
Such languages are often specialized for some specific task or architecture, and
may offer poor performances for other operations, typically relegated to external
calls in other languages. Besides, for the sake of flexibility, these languages don’t
provide much structure, such as modules, interfaces, classes, and user-defined
types, to develop and maintain complex software projects.

JoCaml is based on Objective Caml (OCaml), a compiled, general purpose,
high-level programming language, which combines functional, imperative and
object-oriented programming styles. OCaml is a great language, with several
features that are especially relevant for our purpose:

– Programs are statically typed, in a reasonably expressive type system with
parametric polymorphism, type inference, subtyping for objects, user-defined
data-types, and a rich module system.
This is especially important in distributed systems, where there are many op-
portunities to assemble inconsistent pieces of software, and where debugging
runtime type errors is problematic.

– As a programming environment, OCaml provides both native-code and byte-
code compilers, with separate compilation and flexible linking. The latter
compiler is important to implement code mobility at runtime.

– The OCaml runtime has good support for system programming, such as the
ability to marshal and unmarshal any data types, even between heteroge-
neous platforms; an efficient garbage collector, which we have extended for

distributed collection; and low-level access to the system, with many Unix
system calls (POSIX threads, sockets, . . .).

Indeed, OCaml has been used to develop many complex programs for distributed
systems, such as Web browsers with applets (MMM [26]), group communication
libraries (Ensemble [12]), and Active Networks (SwitchWare [2]), and to exper-
iment on a variety of parallel machines.

Adding Concurrent Programming. OCaml is a sequential language: ex-
pressions are evaluated in call-by-value, in a deterministic manner. As a first
language extension, JoCaml provides support for lightweight concurrency, mes-
sage passing, and message-based synchronization.

To begin with, we introduce a new expression, spawn process ; expression,
that executes process and evaluates expression in parallel. The respective op-
erations in process and expression run independently; their interleaving is a
first source of non-determinism. Also, process is not quite an expression—it is
not meant to return a result—so we introduce a new syntactic class for (asyn-
chronous) processes that is recursively defined with (synchronous) expressions.

Processes can be seen as virtual threads, running in parallel, in no particular
order. The JoCaml compiler and runtime are responsible for mapping these
processes to a few system threads.

Instead of producing values, processes interact by sending asynchronous mes-
sages on channels.3 Indeed, an asynchronous message is itself a process. Accord-
ingly, JoCaml also introduces channels and local channel definitions for processes,
much like functions and let fun bindings for expressions:

– Channels are first-class values, with a communication type, which can be
used to form expressions and send messages (either as the message address
or as message content).

– Channel definitions bind channel names, with a static scope, and associate
guarded processes with these names. Whenever messages are passed on these
names, copies of these processes are fired.

So far, our extension still lacks expressiveness. We can generate concurrent
computations but, conversely, there is no means of joining together the results of
such computations or, for that matter, of having any kind of interaction between
spawned processes. We need some synchronization primitives.

A whole slew of stateful primitives have been proposed for encapsulating var-
ious forms of inter-process interaction: concurrent variables, semaphores, mes-
sage passing, futures, rendez-vous, monitors, . . . just to name a few. JoCaml
distinguishes itself by using that basic staple of ML programming, definition
by pattern-matching, to provide a declarative means for specifying inter-process
synchronization, thus leaving state inside processes, where it rightfully belongs.
3 In addition to message passing, processes can still cause any OCaml side-effects,

such as writing a shared mutable cell in a sub-expression; however, these effects are
usually harder to trace than messages.

Concretely, this is done by allowing the joint definition of several channels by
matching concurrent message patterns on these channels; in a nutshell, by al-
lowing parallel composition on the left-hand-side of channel definitions.

These synchronization patterns, first introduced in the join calculus, are
equivalent to more traditional forms of message passing (with dynamic senders
and receivers on every channel) in terms of expressiveness, but offer several ad-
vantages from a programming language viewpoint.

1. For each channel definition, all synchronization patterns are statically known,
so they can be efficiently compiled using for instance state automata [17].

2. Similarly, type systems can analyze all contravariant occurrences of channels,
then generalize their types (cf. Section 2.5).

3. As regards distributed implementations, the static definition of channels
(also known as locality in concurrency) enables an efficient implementation
of routing: for a given channel, there exists a single definition that can han-
dle the message, and the machine that hosts the definition is the only place
where the message can participate to a synchronous step.

(Section 2 will illustrate the use of join patterns, and relate them to several other
synchronization primitives.)

At this stage, we have a natural extension of (impure) functional program-
ming with lightweight concurrency and synchronization. Next, we explain how
this language can be used across several machines on an asynchronous network,
with distributed message passing and process mobility.

Adding Distribution and Mobility. Before discussing any form of commu-
nication between JoCaml programs, we refine our model and give an explicit
account of locality. In particular, we must be able to represent several runtimes
and their local processes on the same network. In the join calculus, the basic
unit of locality is called a “location”.

Locations have a nested structure, so that a given location can recursively
contain sub-locations. This model is adequate to represent a network architec-
ture, where OS processes are running inside a computer, computers are gathered
inside LANs, themselves included inside Autonomous Systems, themselves orga-
nized in a hierarchical model.

In a JoCaml executable, the whole program is itself a location, called the
root location, and implicitly managed by the runtime. Additional locations can
be explicitly created, within an existing location, using a special declaration
that describes the content of the new location (running processes, channels,
even sub-locations) and gives it a fresh location name. Hence, a distributed
configuration of machines running JoCaml programs can be seen as a location
tree, each location hosting its own definitions and processes.

As a first approximation, locations are transparent: channels have a global
lexical scope, so that any process that has received a channel name can use it
to send messages, and can forward it to other processes, independently of the
location that defines the name. Said otherwise, from any given configuration,

we could in principle erase all location boundaries and obtain a single “global
location” that contains all definitions and processes, and we would still get the
same communications.

In addition, locations can be used to control locality. Specifically, locations
and location names have multiple roles in JoCaml programs:

– Locations represent units of mobility. At any time, a location and its live
content can decide to migrate from its current machine to another one; this
can be used to model mobile objects, threads, applets, agents . . . Conversely,
location names can be passed in messages, then used as “target addresses” for
such migrations. This is especially convenient to relocate parts of a program
as part of the computation.

– Locations represent atomic units of failure, and can be used as targets for
failure detection. It is possible to halt a location, atomically stopping the
execution of all the processes and sub-locations included in the location. This
can be used to discards parts of the computation without restarting the whole
configuration. Besides, low-level system failures can be cleanly reflected in
terms of “spontaneous” halts of root locations. Conversely, location names
can also be used to detect the failure of remote locations, and trigger some
failure recovery code.

Further reading. The latest JoCaml release contains a reference manual, a
series of sample programs, and a more extensive tutorial [15]. Some aspects of the
implementation are described elsewhere in more details: the distributed garbage
collector [18, 16]; the type system [9]; the compilation of join patterns [17].

A gentle introduction to the more formal aspects of the join calculus can be
found in [8], which further discusses its relation to functional programming, sur-
veys its equational theory and proof techniques, and gives operational semantics
for concurrency, distribution, and mobility.

2 Concurrent Programming

This section introduces the concurrent and asynchronous aspects of JoCaml,
using a series of programming examples. Section 3 will deal with the distributed
and mobile aspects. We assume some familiarity with functional programming
languages, and in particular Objective Caml.

Notations for Programs. The JoCaml top-level provides an interactive envi-
ronment, much as the OCaml top-level. Programs consist of a series of top-level
statements, terminated by an optional “;;” that triggers evaluation in interac-
tive mode. Accordingly, our examples are given as JoCaml statements, followed
by the output of the top-level. For instance:

let x = 1 ;;
val x : int

print_int (x+1) ;;
⇒ 2

In order to experiment with the examples, you can either type them in a
top-level, launched by the command joctop, or concatenate program fragments
in a source file a.ml, compile it with the command joc -i a.ml (-i enables
the output of inferred types), and finally run the program with the command
./a.out, as performed by the scripts that generate these proceedings.

2.1 Expressions and Processes

JoCaml programs are made of expressions and processes. Expressions are eval-
uated synchronously, as usual in functional languages. Indeed, every OCaml
expression is also a JoCaml expression.

Processes are executed asynchronously and do not produce any result value,
but they can communicate by sending messages on channels (a.k.a. port names).
Messages carried by channels are made of zero or more values, which may in turn
contain channels.

Simple Channel Declarations. Channels, or port names, are the main new
primitive values of JoCaml. Port names are either asynchronous or synchronous,
depending on their usage for communications: an asynchronous channel is used
to send a message; a synchronous channel is used to send a message and wait
for an answer.

Channels are introduced using a new let def binding, which should not
be confused with the ordinary value let binding. The right hand-side of the
definition of a channel is the process spawned for every message sent on that
channel, after substituting the content of the message for the formal parameters
on the left hand-side: in short, channels are process abstractions.

For instance, we can define an asynchronous echo channel as follows:

let def echo! x = print_int x; ;;
val echo : <<int>>

The new channel echo has type <<int>>, the type of asynchronous channels
carrying values of type int. Sending an integer i on echo fires an instance of the
guarded process print_int i; which prints the integer on the console. Since
echo is asynchronous, the sender does not know when the actual printing takes
place. Syntactically, the presence of ! in the definition of the channel indicates
that this channel is asynchronous. This indication is present only in the channel
definition, not when the channel is used. Also, on the right hand-side, print_int
i is an expression that returns the unit value (), so it is necessary to append
a “;” to obtain a process that discards this value.

The definition of a synchronous print channel is as follows:

let def print x = print_int x; reply ;;
val print : int -> unit

The new channel print has type int -> unit, the functional type that takes
an integer and returns a void result. However, print is introduced by let def
binding (with no !), so it is a synchronous channel, and its process on the right
hand-side must explicitly send back some (here zero) values as results using a
reply process. This is an important difference with functions, which implicitly
return the value of their main body. Message sending on print is synchronous,
in the sense that the sender knows that console output has occurred when print
returns ().

Message sending on synchronous channels occurs in expressions, as if they
were functions, whereas message sending on asynchronous channels occurs in
processes. (The type-checker flags an error whenever a channel is used in the
wrong context.) In contrast with value bindings in OCaml, channel definitions
always have recursive scopes.

In contrast with traditional channels in process calculi such as CCS, CSP [13],
or the pi calculus [22, 21], channels and the processes that receive messages on
those channels are statically defined in a single let def language construct. As
a result, channels and functions become quite similar.

Processes. Processes are the new core syntactic class of JoCaml. The most basic
process sends a message on an asynchronous channel, such as the channel echo
defined above. Since only declarations and expressions are allowed at top-level,
processes are turned into expressions by “spawning” them : they are introduced
by the keyword spawn followed by a process in braces “{ }”.

spawn { echo 1 } ;;
spawn { echo 2 } ;;
⇒ 12

Spawned processes run concurrently. The program above may echo 1 and 2
in any order, so the output above may be 12 or 21, depending on the imple-
mentation. Concurrent execution may also occur within a process built using
the parallel composition operator “|”. For instance, an equivalent, more concise
alternative to the example above is

spawn { echo 1 | echo 2 } ;;
⇒ 21

Composite processes also include conditionals (if then else), functional
matching (match with) and local bindings (let in and let def in). Process
grouping is done by using braces “{ }”. For instance, the top-level statement

spawn { let x = 1 in
{ let y = x+1 in echo y | echo (y+1) } | echo x } ;;
⇒ 132

may output 1, 2, and 3 in any order. Grouping around the process let y = x+1
in . . . restricts the scope of y, so that echo x can run independently of the
evaluation of y.

Expressions. As usual, expressions run sequentially (in call-by-value) and,
when they converge, produce some values. They can occur at top-level, on the
right-hand side of value bindings, and as arguments to message sending. Expres-
sion grouping is done by using parentheses “()”. Apart from OCaml expressions,
the most basic expression sends values on a synchronous channel and waits for
some reply:

let x = 1 in print x ; print (x+1) ;;
⇒ 12

Both expressions print x and print (x+1) evaluate to the empty result (),
which can be used for synchronization: the program above always outputs 12.

Sequences may also occur inside processes. The general form of a sequence
inside a process is expression ; process, where the result of expression will be
discarded. As expression can itself be a sequence, we can write for instance spawn
{ print 1 ; print 2 ; echo 3 }.

Channels as Values. Channel names are first-class values in JoCaml, which
can be locally created, then sent and received in messages. (From a concurrency
viewpoint, this is often called name mobility [21], and this provides much of the
expressiveness to the pi calculus and the join calculus.)

In particular, we can write higher order functions and ports, such as

let async f = let def a! x = f x; in a
let filter f ch = let def fch! x = ch (f x) in fch
let def multicast clients =
let def mch! x =
let cast client = spawn{client x} in
{ List.iter cast clients; } in
reply mch ;;
val async : (’a -> ’b) -> <<’a>>
val filter : (’c -> ’d) -> <<’d>> -> <<’c>>
val multicast : <<’e>> list -> <<’e>>

async turns a synchronous channel (or a function) into an asynchronous channel,
by discarding its result; filter f ch creates a channel that applies f to every
received message then forwards the result on ch; multicast clients creates a
channel that forwards messages to all client channels.

The types for these names and channels are polymorphic: they include type
variables such as ’a that can be replaced with any type. In the example below,
for instance, ’a is instantiated to string. (^ is OCaml string concatenation.)

let echo_string = async print_string
let tell n = filter (fun x -> x^", "^n^"\n") echo_string
let yell = multicast [tell "Cedric"; tell "Fabrice"]
;;
spawn { yell "Ciao" | yell "Hi" } ;;

val echo_string : <<string>>
val tell : string -> <<string>>
val yell : <<string>>
⇒ Hi, Cedric

⇒ Hi, Fabrice

⇒ Ciao, Cedric

⇒ Ciao, Fabrice

2.2 Synchronization by Pattern Matching

Join patterns extend port name definitions with synchronization. A pattern de-
fines several ports simultaneously and specifies a synchronization condition to
receive messages on these ports. For instance, the following statement defines
two synchronizing port names fruit and cake:

let def fruit! f | cake! c = print_string (f^" "^c^"\n"); ;;
val cake : <<string>>
val fruit : <<string>>

To trigger the guarded process print_string (f^" "^c^"\n");, messages must
be sent on both channels fruit and cake.

spawn { fruit "apple" | cake "pie" } ;;
⇒ apple pie

The parallel composition operator “|” appears both in join-patterns and in
processes. This highlights the message combinations consumed by the pattern.
The same pattern may be used many times, as long as there are enough messages
to consume. When several matches are possible, which messages are consumed
is left to the implementation.

spawn { fruit "apple" | fruit "raspberry" |
cake "pie" | cake "crumble" | cake "jelly" } ;;
⇒ raspberry pie

⇒ apple crumble

Composite join-definitions can also specify several synchronization patterns
for the same defined channels.

let def
tea! () | coin! () = print_string "Here is your tea\n";
or coffee! () | coin! () = print_string "Here is your coffee\n";
;;
spawn { tea() | coffee() | coin() } ;;
val coin : <<unit>>
val tea : <<unit>>
val coffee : <<unit>>
⇒ Here is your coffee

The name coin is defined only once, but can take part in two synchronization
patterns. This co-definition is expressed by the keyword or. As illustrated here,
there may be some internal choice between several possible matches for the same
current messages.

Join-patterns are the programming paradigm for concurrency in JoCaml.
They allow the encoding of many concurrent data structures. For instance, the
following code defines a counter:

let def count! n | inc () = count (n+1) | reply to inc
or count! n | get () = count n | reply n to get ;;
#
spawn {count 0} ;;
val inc : unit -> unit
val count : <<int>>
val get : unit -> int

This definition calls for two remarks. First, join-pattern may mix synchronous
and asynchronous message, but when there are several synchronous message,
each reply construct must specify the name to which it replies, using the new
reply . . . to name construct. When there is a single synchronous name in the
pattern, as in the example above, the to construct is optional.

Second, the usage of name count is a typical way of ensuring mutual ex-
clusion. For the moment, assume that there is at most one active invocation
on count. When one invocation is active, count holds the counter value as a
message and the counter is ready to be incremented or examined. Otherwise,
some operation is being performed on the counter and pending operations are
postponed until the operation being performed has left the counter in a consis-
tent state. As a consequence, the counter may be used consistently by several
threads.

let def wait! t =
if get()<3 then wait (t+1) else {print_int t;} in
spawn { wait 0 | {inc(); inc();} | inc(); } ;;
⇒ 1

Ensuring the correct counter behavior in the example above requires some
programming discipline: only one initial invocation on count has to be made.
If there are more than one simultaneous invocations on count, then mutual
exclusion is lost. If there is no initial invocation on count, then the counter is
deadlocked. This can be prevented by making the count, inc and get names
local to a new_counter definition and then exporting inc and get while hiding
count, inside the internal lexical scope of the definition:

let def new_counter () =
let def count! n | inc0 () = count (n+1) | reply
or count! n | get0 () = count n | reply n in
count 0 | reply inc0, get0 ;;
let inc,get = new_counter () ;;

val new_counter : unit -> (unit -> unit) * (unit -> int)
val inc : unit -> unit
val get : unit -> int

This programming style is reminiscent of imperative “object-oriented” program-
ming: a counter is a thing called an object, it has some internal state (count
and its argument), and it exports some methods to the external world (here,
inc and get). The constructor new_counter creates a new object, initializes its
internal state, and returns the public methods. Then, a program may allocate
and use several counters independently.

2.3 Concurrency Control

Join-pattern synchronization can express many common programming styles,
either concurrent or sequential. Next, we give basic examples of abstractions for
concurrency.

Synchronization Barriers. A barrier is a common synchronization mecha-
nism. Basically, barriers represent explicit synchronization points, also known as
rendez-vous, in the execution of parallel tasks.

let def sync1 () | sync2 () = reply to sync1 | reply to sync2 ;;
val sync2 : unit -> unit
val sync1 : unit -> unit

The definition includes two reply constructs, which makes the mention of a
port mandatory. The example below illustrates how the barrier can be used to
constrain the interleaving of concurrent tasks. The possible outputs are given by
the regular expression {12|21}∗.
spawn { for i = 0 to 9 do sync1(); print_int 1 done; };
spawn { for i = 0 to 9 do sync2(); print_int 2 done; } ;;
⇒ 12121212121212121212

Fork/Join Parallelism. Our next example is similar but more general. Con-
sider the sequential function let evalSeq (f,g) t = (f t, g t). We define
define a variant, evalPar, that performs the two computations f t and g t in
parallel, then joins the two results. We use local channels cf and cg to collect
the results, we spawn an extra process for cf (f t), and evaluate g t in the
main body of evalPar:

let evalPar (f,g) t =
let def cf! u | cg v = reply (u,v) in
spawn { cf (f t) }; cg (g t) ;;
#
let xycoord = evalPar (cos,sin) ;;
val evalPar : (’a -> ’b) * (’a -> ’c) -> ’a -> ’b * ’c
val xycoord : float -> float * float

Bi-directional Channels. Bi-directional channels appear in most process cal-
culi, and in programming languages such as PICT [24] and CML [25]. In the
asynchronous pi calculus, for instance, and for a given channel c, a value v can
be sent asynchronously on c (written c![v]) or received from c and bound to
some variable x in some guarded process P (written c?x.P). Any process can
send and receive on the channels they know. Finally, the scope of a pi calculus
channel name c is defined by the “new” binding νc.P . In JoCaml, a process
can only send messages whereas, for a given name, a unique definition binds the
name and receives messages on that name. Nonetheless, bi-directional channels
can be defined as follows:

type ’a pi_channel = { snd : <<’a>> ; rcv : unit -> ’a }
let def new_pi_channel () =
let def send! x | receive () = reply x in
reply {snd=send; rcv=receive} ;;
type ’a pi_channel = { snd: <<’a>>; rcv: unit -> ’a }
val new_pi_channel : unit -> ’b pi_channel

A pi calculus channel is implemented by a join definition with two port names.
The port name send is asynchronous and is used to send messages on the channel.
Such messages can be received by making a synchronous call to the other port
name receive. Finally, the new pi calculus channel is packaged as a record of
the two new JoCaml names. (Processes and OCaml records both use braces, but
in different syntactic contexts.)

Let us now “translate” the pi calculus process

νc, d.
(

c![1] | c![5] | c?(x).d![x + x] | d?(y).print int(y)
)

We obtain a similar (but more verbose) process:

spawn {
let c,d = new_pi_channel(),new_pi_channel() in
c.snd 1 | c.snd 5 |
{let x = c.rcv() in d.snd (x+x)} |
{let y = d.rcv() in print_int y ;} } ;;
⇒ 2

Synchronous pi calculus channels are encoded just as easily as asynchronous
ones: it suffices to make send synchronous:

type ’a pi_sync_channel = { snd : ’a -> unit; rcv: unit -> ’a }
let def new_pi_sync_channel () =
let def send x | receive () =
reply x to receive | reply to send in
reply {snd=send; rcv=receive} ;;
type ’a pi_sync_channel = { snd: ’a -> unit; rcv: unit -> ’a }
val new_pi_sync_channel : unit -> ’b pi_sync_channel

2.4 Concurrent Data structures

We continue our exploration of message passing in JoCaml, and now consider
some concurrent data structures. (In practice, one would often use the built-in
data structures inherited from OCaml rather than their JoCaml internal encod-
ings.)

A Reference Cell. Mutable data structures can be encoded using internal
messages that carry the state of the object. A basic example is the imperative
variable, also known as reference cell. One method (get) examines the content
of the cell, while another (set) alters it.

type ’a jref = { set: ’a -> unit; get: unit -> ’a }
#
let def new_ref u =
let def state! v | get () = state v | reply v
or state! v | set w = state w | reply in
state u | reply {get=get; set=set}
#
let r0 = new_ref 0 ;;
type ’a jref = { set: ’a -> unit; get: unit -> ’a }
val new_ref : ’b -> ’b jref
val r0 : int jref

Here, the internal state of a cell is its content, its is stored as a message v on
channel state. Lexical scoping is used to keep the state internal to a given cell.

Also, note that the type ’a jref and ’a pi_sync_channel are isomor-
phic; indeed, objects such as mutable references, bi-directional channels, n-place
buffers, queues, . . .may have the same method interface and implement diverse
concurrent behaviors.

A concurrent FIFO. Our second example is more involved. A concurrent
FIFO queue is a data structure that provides two methods put and get to
add and retrieve elements from the queue. Unlike a functional queue, however,
getting from an empty queue blocks until an element is added, instead of raising
an exception.

We give below an implementation that relies (as usual) on two internal lists
to store the current values in the queue, but also supports concurrent gets and
puts operations. We use local asynchronous messages to represent the state of
the lists, with different messages for empty lists (inN, outN) and non-empty lists
(inQ, outQ).

– Requests on put are always processed at once, using one of the first two
patterns, according to the state of the input list.

– Requests on get proceed if the output list is non-empty (third pattern)—the
auxiliary outX channel then returns the head value and updates the state

of the output list. get requests can also proceed if the output list is empty
and the input list is non-empty. To this end, the input list is reversed and
transferred to the output list.

– There is no pattern for get when both lists are empty, so get requests are
implicitly blocked in this case.

– Initially, both lists are empty.

The queue is polymorphic, but its usage is briefly illustrated using integers and
series of concurrent puts and gets.

type ’a buffer = { get : unit -> ’a ; put : ’a -> unit }
let def new_fifo () =
let def
put i | inN!() = inQ [i] | reply
or put i | inQ! is = inQ (i::is) | reply
or get() | outQ! os = reply outX os
or get() | outN!() | inQ! is =
inN () | reply outX (List.rev is)
or outX os =
reply List.hd os | let os’ = List.tl os in
{ if os’ = [] then outN() else outQ os’ }
in
inN() | outN() | reply {get=get;put=put} ;;
#
let f = new_fifo() in
spawn { for i = 1 to 9 do f.put i done; };
spawn { for i = 1 to 5 do print_int (f.get()) done; } ;;
type ’a buffer = { get: unit -> ’a; put: ’a -> unit }
val new_fifo : unit -> ’b buffer
⇒ 12345

2.5 Types and Exceptions

A word on typing. The JoCaml type system is derived from ML and it should
be no surprise to functional programmers. In particular, it extends parametric
polymorphism to the typing of channels. We refer to [9] for a detailed discussion.

Experienced ML programmers may wonder how the JoCaml type system
achieves mixing parametric polymorphism and mutable data structures. There
is no miracle here. Consider, again, the JoCaml encoding of a reference cell:

let def state! v | get () = state v | reply v
or state! v | set w = state w | reply ;;
val get : unit -> ’_a
val state : <<’_a>>
val set : ’_a -> unit

The type variable ’_a that appears inside the types for state, get and set
is prefixed by an underscore. Such variables are non-generalized type variables
that can be instantiated only once. That is, all the occurrences of state must
have the same type. Operationally, once ’_a is instantiated with some type, this
type replaces ’_a in any other types where it occurs (here, the types for get
and set). This guarantees that the various port names whose type contains ’_a
(state, get and set here) are used consistently.

For instance, in the following program, state 0 and print_string(get())
force two incompatible instantiations, which leads to a type-checking error (and
actually avoids printing an integer while believing it is a string).

let def state! v | get () = state v | reply v
or state! v | set w = state w | reply ;;
#
spawn {state 0} ; print_string (get()) ;;
File "ex26.ml", line 6, characters 32-37:
This expression has type int but is here used with type string

More generally, whenever the type of several co-defined port names share a type
variable, this variable is not generalized. (In ML, the same limitation occurs
in the types of identifiers defined by a value binding.) A workaround is to en-
capsulate the definition into another one, which gives another opportunity to
generalize type variables:

let def new_ref v =
let def state! v | get () = state v | reply v
or state! v | set w = state w | reply
in spawn {state v} ; reply (get,set) ;;
val new_ref : ’a -> (unit -> ’a) * (’a -> unit)

Exceptions. Exceptions and exception handling within expressions behave as
in OCaml. If an exception is not caught in the current expression, however, its
handling depends on the synchrony of the process.

If the process is asynchronous, the exception is printed on the standard out-
put and the asynchronous process terminates. No other process is affected.

spawn { failwith "Bye"; }; print_string "Done" ;;
⇒ Uncaught exception: Failure("Bye")

⇒ Done

If the process is synchronous, every joint call terminates with the exception
instead of a reply. In particular, when a pattern contains several synchronous
channels, the exception is replicated and thrown to all blocked callers:

let catch x = try x() with Failure s -> print_string s in
let def a () | b () =
failwith "Bye "; reply to a | reply to b in

spawn { {catch a;} | {catch b;} } ;;
⇒ Bye Bye

Exercise 1. The “core join calculus” consists only of asynchronous channels and
processes. Sketch an encoding of synchronous channels and expressions into this
subset of JoCaml. (Hint: this essentially amounts to a call-by-value continuation-
passing encoding.)

Exercise 2 (Fairness). What kind of fairness is actually provided by JoCaml
when several messages are available on the same channel? When different pat-
terns could be used for the same messages? Try to define stronger fairness prop-
erties and to implement them for some examples of join patterns.

3 Distributed Programming

JoCaml has been designed to provide a simple and well-defined model of dis-
tributed programming. Since the language entirely relies on asynchronous mes-
sage passing, programs can either be used on a single machine (as described in
the previous section), or they can be executed in a distributed manner on several
machines.

In this section, we give a more explicit account of distribution. We describe
support for execution on several machines and new primitives that control local-
ity, migration, and failure. To this end, we interleave a description of the model
with a series of examples that illustrate the use of these primitives.

3.1 The Distributed Model

The execution of JoCaml programs can be distributed among several machines,
possibly running different systems; new machines may join or quit the compu-
tation. At any time, every process or expression is running on a given machine.
However, they may migrate from one machine to another, under the control of
the language. In this implementation, the runtime support consists of several
system-level processes that communicate using TCP/IP over the network.

In JoCaml, the execution of a process (or an expression) does not usually
depend on its localization. Indeed, it is equivalent to run processes P and Q
on two different machines, or to run the compound process { P | Q } on a
single machine. In particular, the scope for defined names and values does not
depend on their localization: whenever a port name appears in a process, it
can be used to form messages (using the name as the address, or as the message
content) without knowing whether this port name is locally- or remotely-defined,
and which machine will actually handle the message. As a first approximation,
locality is transparent, and programs can be written independently of their run-
time distribution.

Of course, locality matters in some circumstances: side-effects such as printing
values on the local console depend on the current machine; besides, efficiency

can be affected because message sending over the network takes much longer
than local calls; finally, the termination of some underlying runtime will affect
all its local processes. For these reasons, locality is explicitly controlled by the
programmer, and can be adjusted using migration. Conversely, resources such
as definitions and processes are never silently relocated by the system—the pro-
grammer interested in dynamic load-balancing must code relocation as part of
his application.

An important issue when passing messages in a distributed system is whether
the message content is copied or passed by reference. This is the essential differ-
ence between functions and synchronous channels.

– When a function is sent to a remote machine, a copy of its code and values
for its local variables are also sent there. Afterwards, any invocation will be
executed locally on the remote machine.

– When a synchronous port name is sent to a remote machine, only the name
is sent (with adequate routing information) and invocations on this name
will forward the invocation to the machine where the name is defined, much
as in a remote procedure call.

The name-server. Since JoCaml has lexical scoping, programs being executed
on different runtimes do not initially share any port name; therefore, they would
normally not be able to interact with one another. To bootstrap a distributed
computation, it is necessary to exchange a few names, and this is achieved using
a built-in library called the name server. Once this is done, these first names can
be used to communicate some more values (and in particular port names) and
to build more complex communication patterns.

The interface of the name server mostly consists of two functions to regis-
ter and look up arbitrary values in a “global table” indexed by plain strings.
Pragmatically, when a JoCaml program (or top-level) is started, it takes as pa-
rameters the IP address and port number of a name server. The name server
itself can be launched using the command jocns.

The following program illustrates the use of the name server, with two pro-
cesses running in parallel (although still in the same runtime). One of them
locally defines some resource (a function f that squares integers) and registers it
under the string square. The other process is not within the scope of f; it looks
up for the value registered under the same string, locally binds it to sqr, then
uses it to print something.

spawn{ let def f x = reply x*x
in Ns.register "square" f vartype; };;
#
spawn{ let sqr = Ns.lookup "square" vartype
in print_int (sqr 2); };;
Warning: VARTYPE replaced by type (int -> int) metatype
Warning: VARTYPE replaced by type (int -> int) metatype
⇒ 4

The vartype keyword stands for the (runtime representation of the) type of
the value that is being registered or looked up, which is automatically inserted
by the compiler. When a value is registered, its type is explicitly stored with it.
When a value is looked up, the stored type is compared with the inferred type in
the receiving context; if these types do not match, an exception TypeMismatch
is raised. This limited form of dynamic typing is necessary to ensure type safety.
To prevent (and explain) runtime TypeMismatch exceptions, the compiler also
issues a warning that provides the inferred vartype at both ends of the name
server, here int -> int. (When writing distributed program fragments, it is
usually a good idea to share the type declarations in a single .mli file and to
explicitly write these types when calling the name server.)

Of course, using the name server makes sense only when the two processes
are running as part of stand-alone programs on different machines, and when
these processes use the same conventional strings to access the name server. To
avoid name clashes when using the same name server for unrelated computations,
the indexed string is prefixed by a local identifier Ns.user; by default, Ns.user
contains the local user name.

3.2 Locations and Mobility

So far, the localization of processes and expressions is entirely static. In some
cases, a more flexible control is called for. Assume that “square computations”
are best performed only on the server machine that exports the square port,
and that a client machine needs to compute sums of squares. If the client uses a
loop to compute the sum by remote calls on square, each call within the loop
would result in two messages on the network (one for the request, and another
one for the answer). It would be better to run the loop on the machine that
actually computes the squares. Yet, we would prefer not to modify the program
running on the server every time we need to run a different kind of loop that
involves numerous squares.

To this end, we introduce a unit of locality called “location”. A location
contains a bunch of definitions and running processes “at the same place”. Every
location is given a name, and these location names are first-class values. They can
be communicated as content of messages and registered to the name server. These
location names can also be used as arguments to primitives that dynamically
control the relations between locations.

Basic examples. Locations can be declared either locally or as a top-level
statement. For instance, we create a new location named here:

let loc here
def square x = reply x*x
and cubic x = reply (square x)*x
do { print_int (square 2); }
;;

print_int (cubic 2)
val here : Join.location
val cubic : int -> int
val square : int -> int
⇒ 48

This let loc declaration binds a location name here and two port names square
and cubic whose scope extends to the location and to the following statements.
Here, the location also has an initial process print_int (square 2); intro-
duced by do {} (much like spawn {} in expressions). This process runs within
the location, in parallel with the remaining part of the program. As a result, we
can obtain either 84 or 48.

Distributed computations are organized as trees of nested locations; every
definition and every process is permanently attached to the location where it
appears in the source program. Since let locs can occur under guards, processes
and expressions can create new locations at runtime, with their initial content
(bindings and processes) and a fresh location name. The new location is placed
as a sub-location of the location that encloses the let loc. Once created, there
is no way to add new bindings and processes to the location from outside the
location.

For instance, the following program defines three locations such that the lo-
cations named kitchen and living_room are sub-locations of house. As regards
the scopes of names, the locations kitchen, living_room and the ports cook,
switch, on, off all have the same scope, which extends to the whole house
location (between the first do { and the last }). Only the location name house
is visible from the rest of the source file.

let loc house do {
let loc kitchen
def cook() = print_string " Cooking... "; reply
do {}
and living_room
def switch()| off!() = print_string "Music on."; reply | on()
or switch()| on!() = print_string "Music off."; reply | off()
do { off() }
in
switch(); cook(); switch(); }
val house : Join.location
⇒ Music on. Cooking... Music off.

Mobile Agents. While processes and definitions are statically attached to
their location, locations can move from one enclosing location to another. Such
migrations are triggered by a process inside of the moving location (a “subjective
move”, in Cardelli’s terminology [5]). As a result of the migration, the moving
location becomes a sub-location of its target location. Note that locations can

be used for several purposes: as destination addresses, as mobile agents, or as a
combination of the two.

Our next example is an agent-based program to compute a sum of squares.
On the server side, we create an empty location, here, and we register it on the
name-server; its name will be used as the target address for our mobile agent.

let loc here do {} in Ns.register "here" here vartype
;;
Join.server()

(The call to Join.server() prevents the immediate termination of the JoCaml
runtime, even if it has no active process or expression: further local activity can
occur later, as the result of remote messages and migrations.)

On the client side, we create another location, mobile, that wraps the loop
computation that should be executed on the square side; the process within
mobile first looks up the name here, then moves itself inside of “here”, and
finally performs the computation.

let loc mobile
do {
let there = Ns.lookup "here" vartype in
go there;
let sqr = Ns.lookup "square" vartype in
let def sum (s,n) =
reply (if n = 0 then s else sum (s+sqr n, n-1)) in
print_string (sum(0,5));
}

The go there expression migrates the mobile location with its current con-
tent to the server machine, as a sub-location of location here, then completes
and returns (). Afterwards, the whole computation (calls to the name server, to
sqr and to sum) is local to the server. There are only three messages exchanged
between the machines: one for Ns.lookup, one for the answer, and one for the
migration.

Applets. The next example shows how to define applets. An applet is a pro-
gram that is downloaded from a remote server, then used locally. As compared
to the previous examples, migration operates the other way round, from the
server to the client. For our purposes, the applet implements a mutable cell with
destructive reading:

let def new_cell there =
let def log s = print_string ("cell "^s^"\n"); reply in
let loc applet
def get() | some! x = log ("is empty"); none() | reply x
and put x | none!() = log ("contains "^x); some x | reply
do { go there; none () } in

reply get,put
;;
Ns.register "cell" new_cell vartype;
Join.server

Our applet has two states: either none()or some s where s is a string, and
two methods get and put. Each time cell is called, it creates a new applet in
its own location. Thus, numerous independent cells can be created and shipped
to callers. The name cell takes as argument the location (there) where the
new cell should reside. The relocation is controlled by the process go there;
none () that first performs the migration, then sends an internal message to
activate the cell. Besides, cell defines a log function outside of the applet. The
latter therefore remains on the server and, when called from within the applet
on the client machine, keeps track of the usage of its cell. This is in contrast
with applets à la Java: the location migrates with its code, but also with its
communication capabilities unaffected.

We supplement our example with a basic user that allocates and uses a local
cell:

let cell = Ns.lookup "cell" vartype
#
let loc user
do {
let get, (put : string -> unit) = cell user in
put "world";
put ("Hello, "^get ());
print_string (get ());
}

On the client machine, we observe “Hello, world” on the console, as could be
expected. Besides, on the server side, we observe the log:

⇒ cell is empty

⇒ cell contains world

⇒ cell is empty

⇒ cell contains Hello, world

⇒ cell is empty

On the client machine, there are no more go primitives in the applet after its
arrival, and this instance of the location name applet does not appear anywhere.
As a result, the contents of the applet can be considered part of the host location,
as if this content had been defined locally in the beginning. (Some other host
location may still move, but then it would carry the cell applet as a sub-location.)

Exercise 3 (Local State). What is the experimental distributed semantics of mu-
table references? What about global references and modules? Write a function
that allocates a “correct” distributed reference with an interface for reading,
writing, and relocating the reference.

3.3 Termination, Failures, and Failure Recovery

As a matter of fact, some parts of a distributed computation may fail (e.g.,
because a machine is abruptly switched off). The simplest solution would be to
abort the whole computation whenever this is detected, but this is not realistic
in case numerous machines are involved. Rather, we would like our programs
to detect such failures and take adequate measures, such as cleanly report the
problem, abort related parts of the computation, or make another attempt on
a different machine. To this end, JoCaml provides an abstract model of failure
and failure detection expressed in terms of locations:

– a location can run a primitive process halt() that, when executed, atom-
ically halts every process inside of this location (and recursively every sub-
location);

– a location can detect that another location with name there has halted, us-
ing a primitive expression of the form fail there;P . The expression blocks,
until the failure of location there is detected. When the process P runs, it
is guaranteed that location there is halted for any other location trying to
access there.

The halt primitive can be seen as a way to reflect, in the model, the abrupt
failure of a machine that hosts the halted locations. For instance, a fallible
machine running a process P can be seen as a top-level location

let loc runtime do { P | halt() }

Since locations fail only as a whole, the programmer can define locations
as suitable units of failure recovery, pass their names to set up remote failure
detection, and even use halt and fail primitives to control the computation.
By design, however, no silent recovery mechanism is provided: the programmer
must figure out what to do in case of partial failure.

The fail primitive is tricky to implement (it cannot be fully implemented on
top of an asynchronous network, for instance). On the other hand, it does provide
the expected negative guarantees: the failed location is not visible anymore, from
any part of the computation, on any machine. In the current implementation,
halting is detected only when (1) the halt () primitive is issued in the same
runtime as the fail, or (2) the JoCaml runtime containing the location actually
stops. (Thus, simply running halt () does not trigger matching fails in other
runtimes, but exit 0; will trigger them.)

A Computation Supervisor. There is usually no need to halt locations that
completed their task explicitly (the garbage-collector should take care of them).
However, in some case we would like to be sure that no immigrant location is
still running locally.

Let us assume that job is a remote function within location there that may
create mobile sub-locations and migrate them to the caller’s site. To this end,
the caller should supply a host location, as in the previous examples. How can

we make sure that job is not using this location to run other agents after the
call completes ? This is handled using a new temporary location box for each
call, and halting it once the function call has completed.

let def safe! (job,arg,success,failure) =
let loc box
def kill!() = halt();
and start() = reply job (box,arg) in
let
def got! x | live!() = got x | kill()
or got! x | halted!() = success x
or live!() | halted!() = failure () in
got (start()) | live() | fail box; halted()
val safe :
<<((Join.location * ’a -> ’b) * ’a * <<’b>> * <<unit>>)>>

Our supervising protocol either send a result on success or a signal on
failure. In both cases, the message guarantees that no alien computation may
take place afterward on the local machine.

The protocol consists of a host location and a supervisor definition. Initially,
there is a live() message and the supervisor waits for either a result on got or
some failure report on halted. Depending on the definition of job, the expression
job(box,arg) can create and move locations inside of the box, communicate
with the outside, and eventually reply some value within the box. Once this
occurs, got forwards the reply to the control process, and the first join-pattern is
triggered. In this case, the live() message is consumed and eventually replaced
by a halted() message (once the kill() message is handled, the box gets
halted, and the fail guard in the control process is triggered, releasing a message
on halted).

At this stage, we know for sure that no binding or computation introduced
by job remains on the caller’s machine, and we can return the value as if a plain
RPC had occurred.

This “wrapper” is quite general. Once a location-passing convention is chosen,
the safe function does not depend on the actual computation performed by job
(its arguments, its results, and even the way it uses locations are parametric
here). We could further refine this example to transform unduly long calls to
job into failure (by sending a kill () message after an external timeout), and
to delegate some more control to the caller (by returning kill at once).

Exercise 4 (Mobility). Starting from your favorite functional program, add lo-
cations and mobility control to distribute the program on several machines, and
speed up the computation.

A Concurrent Programming (Lab Session)

We suggest a series of exercices to experiment with asynchronous message pass-
ing in JoCaml, including classic programming examples. We also provide some
solutions. One may also begin with the examples in the previous sections, or
even try to implement one’s favorite concurrent algorithm.

Exercise 5 (Fibonacci). Assume we are computing the Fibonacci series on values
with a slow (but parallel) addition, rather than integers. For example:

type slow = int
#
let delay = ref 0.1
let add (a:slow) (b:slow) =
Thread.delay !delay; (a+b : slow)
#
let rec fib = function
| 0 -> 0 | 1 -> 1 | n -> add (fib (n-1)) (fib(n-2)) ;;
type slow = int
val delay : float ref
val add : slow -> slow -> slow
val fib : int -> slow

Write a faster, parallel version of fib. What kind of speedup should we
obtain? What is actually observed? Does that depend on delay?

Exercise 6 (Locks). Write a JoCaml implementation of locks, with the following
interfaces:

1. basic lock, with a synchronous get channel to acquire the lock and an asyn-
chronous release channel to release the lock.

2. n-user lock, with the same interface but up to n concurrent holders for the
lock.

3. reader-writer locks, with interface
– acquire_shared to get a non-exclusive lock (or block until available),
– release_shared to release the non-exclusive lock,
– acquire_exclusive to get an exclusive lock (or block until available),
– release_exclusive to release it.

4. reader-writer locks with fairness between writers and readers: provided all
locks are eventually released, any acquire request is eventually granted.

Solutions

Fibonacci (Exercise 5). We can use fork/join parallelism, e.g.

let rec pfib = function
| 0 -> 0 | 1 -> 1 | n ->
let def a! v | b u = { reply (add u v) } in
spawn {a (pfib (n-2))}; b(pfib(n-1))
val pfib : int -> Ex1.slow

We obtain (on a laptop running Windows XP):

let time f v =
let t = Unix.gettimeofday () in let r = f v in
let t’ = Unix.gettimeofday () in t’ -. t in
let test size =
let t0,t1 = time fib size, time pfib size in
Printf.printf
"delay=%1.1e size=%2d base=%4.2f fj=%4.2f speedup=%f"
!delay size t0 t1 ((t0-. t1)/. t0) ; print_newline() in
delay:= 0.001 ; test 12;
delay:= !delay /. 10.; test 16;
delay:= !delay /. 10.; test 17;
delay:= !delay /. 10.; test 18;
delay:= !delay /. 10.; test 19;
delay:= !delay /. 10.; test 19;
delay:= !delay /. 10.; test 20;
⇒ delay=1.0e-03 size=12 base=0.54 fj=0.02 speedup=0.953618

⇒ delay=1.0e-04 size=16 base=3.73 fj=0.08 speedup=0.978815

⇒ delay=1.0e-05 size=17 base=5.53 fj=0.13 speedup=0.975786

⇒ delay=1.0e-06 size=18 base=4.61 fj=0.22 speedup=0.951420

⇒ delay=1.0e-07 size=19 base=7.57 fj=0.45 speedup=0.940275

⇒ delay=1.0e-08 size=19 base=0.19 fj=0.38 speedup=-1.059140

⇒ delay=1.0e-09 size=20 base=0.31 fj=0.91 speedup=-1.999999

Locks (Exercise 6).

type lock = { acquire : unit -> unit ; release : <<unit>> } ;;
#
let new_lock() =
let def acquire() | release!() = reply in
spawn{ release() };
{acquire=acquire; release=release} ;;
#
let new_nlock n =
let def acquire() | token!() = reply in
for i = 1 to n do spawn{ token() } done;
{acquire=acquire; release=token} ;;
#
let new_rwlock() =
let def
acquire_exclusive() | idle!() = reply
or acquire_shared() | idle!() = shared 1 | reply
or acquire_shared() | shared! n = shared (n+1) | reply
or release_shared!() | shared! n =
if n==1 then idle() else shared (n-1) in

spawn { idle() };
{acquire=acquire_shared; release=release_shared},
{acquire=acquire_exclusive; release=idle} ;;
#
let new_rwfairlock() =
let def
acquire_exclusive() | idle!() = reply
or acquire_shared() | idle!() = shared 1 | reply
or acquire_shared() | shared! n = shared (n+1) | reply
or release_shared!() | shared! n =
if n==1 then idle() else shared (n-1)
#
or acquire_exclusive() | shared! n = waiting n | reply wait()
or release_shared!() | waiting! n =
if n==1 then ready() else waiting (n-1)
or wait() | ready!() = reply in
spawn { idle() };
{acquire=acquire_shared; release=release_shared},
{acquire=acquire_exclusive; release=idle} ;;
type lock = { acquire: unit -> unit; release: <<unit>> }
val new_lock : unit -> lock
val new_nlock : int -> lock
val new_rwlock : unit -> lock * lock
val new_rwfairlock : unit -> lock * lock

In all these examples, we rely on the caller to enforce the lock discipline:
only release once, after acquiring the lock. We could also provide abstractions
to enforce it, e.g.

let synchronized lock job v =
lock.acquire(); let r = job v in spawn{ lock.release() }; r ;;
val synchronized : Ex4.lock -> (’a -> ’b) -> ’a -> ’b

B Distributed and Mobile Programming (Lab Session)

Exercise 7. Use the nameserver to exchange a simple string between two run-
times: write a first program to register your name using the string ”name”, and
a second one to lookup the string ”name”, and print it on the terminal.

Exercise 8 (Remote Shell Command).

1. Write a program that registers a synchronous channel on the nameserver.
The channel takes a string as argument, calls Sys.command to execute it,
and returns the error code for the command.
Write a second program to lookup this channel and execute some commands
remotely.

2. Write a program that registers a synchronous channel on the nameserver.
The channel returns a new location that can be used to send an agent on
the computer.
Write a second program that sends an agent to the location, lists all files in
the ”/tmp” directory (use Unix.opendir, Unix.readdir[raises an exception
at end] and Unix.closedir), and returns the list on the caller machine.

Exercise 9. Write a “chat” program with JoCaml:

1. Write a channel of type: <<string * string>>—the first string is a user
name, the second string is a message from that user. Register the channel on
the name server under your name (use Ns.user := "pub" in your program
for all users to be able to access your name).

2. Write a function that sends a message to a friend: the function should lookup
a channel on the nameserver from the friend name, then send a message on
this channel.

3. Add chat rooms to your program:
– Write a chat rooms server, that will manage all the chat rooms.
– Write different programs:

• To list all the existing chat rooms
• To add a new chat room
• To join a chat room: this client should be able to read the user input

(use the function read_line for this), send the message to the chat
room, and display messages received from other users of the chat
room.

Name Server (Exercise 7). First program:

Ns.register "name" "My Name" vartype;;

Second program:

let name = Ns.lookup "name" vartype;;
print_string name; print_newline ();;

RSH (Exercise 8.1). First program:

let def rsh(command) = reply (Sys.command command);;
Ns.register "my computer name" rsh vartype;;

Second program:

let rsh = Ns.lookup "my computer name" vartype ;;
print_int (rsh "xterm"); print_newline () ;;

RSH (Exercise 8.2). First program:

let def rsh_loc () =
let loc new_location do {} in
reply new_location ;;

Ns.register "my computer name" rsh_loc vartype ;;

Second program:

let (rsh_loc : unit -> Join.location) =
Ns.lookup "my computer name" vartype ;;

let def print_list! list =
{ List.iter (fun s -> print_string s; print_newline()) list; };;

let loc listdir_agent do
{ Join.go (rsh_loc ());
let list = ref [] in
(let dir = Unix.opendir "/tmp" in
try
while true do
list := (Unix.readdir dir) :: !list

done
with _ -> Unix.closedir dir);
print_list !list

};;

Chat (Exercise 9). A complete implementation can be found at
http://pauillac.inria.fr/jocaml/afp2002/chat.ml.

Acknowledgement.. Many thanks to the members of the Moscova project at
INRIA, and in particular Georges Gonthier, James J. Leifer, and Jean-Jacques
Lévy.

References

[1] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel ab-
stractions. Information and Computation, 2000.

[2] D. S. Alexander, M. W. Hicks, P. Kakkar, A. D. Keromytis, M. Shaw, J. T.
Moore, C. A. Gunter, T. Jim, S. M. Nettles, and J. M. Smith. The switchware
active network implementation. In The ML Workshop, International Conference
on Functional Programming (ICFP), Sept. 1998. ACM SIGPLAN.

[3] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C#.
In B. Magnusson, editor, ECOOP 2002 – Object Oriented Programming, volume
2374 of LNCS, pages 415–440. Springer-Verlag, jun 2002.

http://pauillac.inria.fr/jocaml/afp2002/chat.ml

[4] A. D. Birrell, J. V. Guttag, J. J. Horning, and R. Levin. Synchronization primi-
tives for a multiprocessor: A formal specification. Research Report 20, DEC SRC,
Aug. 1987.

[5] L. Cardelli and A. Gordon. Mobile ambients. In Proceedings of FoSSaCS’98,
volume 1378 of LNCS, pages 140–155. Springer-Verlag, 1998.

[6] S. Conchon and F. Le Fessant. Jocaml: Mobile agents for objective-caml. In
ASA/MA’99, pages 22–29. IEEE Computer Society, Oct. 1999.

[7] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proceedings of POPL’96, pages 372–385. ACM, Jan. 1996.

[8] C. Fournet and G. Gonthier. The join calculus: a language for distributed mobile
programming. In G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva, editors, Applied
Semantics. International Summer School, APPSEM 2000, Caminha, Portugal,
Sept. 2000, volume 2395 of LNCS, pages 268–332. Springer-Verlag, 2002. Also
available from http://research.microsoft.com/~fournet.

[9] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit typing à la ML for
the join-calculus. In A. Mazurkiewicz and J. Winkowski, editors, 8th Interna-
tional Conference on Concurrency Theory, volume 1243 of LNCS, pages 196–212.
Springer-Verlag, July 1997.

[10] C. Fournet, J.-J. Lévy, and A. Schmitt. An asynchronous, distributed implemen-
tation of mobile ambients. In J. van Leeuwen, O. Watanabe, M. Hagiya, P. Mosses,
and T. Ito, editors, Proceedings of IFIP TCS 2000, volume 1872 of LNCS. IFIP
TC1, Springer-Verlag, Aug. 2000.

[11] R. S. Gray. Agent tcl: A transportable agent system. In CIKM Workshop on Intel-
ligent Information Agents, Baltimore, Maryland, dec 1995. Fourth International
Conference on Information and Knowledge Management (CIKM 95).

[12] M. Hayden. Distributed communication in ML. Technical Report TR97-1652,
Cornell University, Computer Science, Nov. 11, 1997.

[13] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666–677, 1978.

[14] D. Johansen, R. V. Renesse, and F. B. Schneider. An introduction to the tacoma
distributed system version 1.0. Technical Report 95-23, University of TromsO,
Norway, June 1995.

[15] F. Le Fessant. The JoCAML system prototype (beta 1.08). Software and docu-
mentation available from http://pauillac.inria.fr/jocaml, 1998–2002.

[16] F. Le Fessant. Detecting distributed cycles of garbage in large-scale systems. In
Principles of Distributed Computing (PODC), Rhodes Island, Aug. 2001.

[17] F. Le Fessant and L. Maranget. Compiling join-patterns. In U. Nestmann and
B. C. Pierce, editors, HLCL ’98: High-Level Concurrent Languages, volume 16(3)
of Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
Sept. 1998.

[18] F. Le Fessant, I. Piumarta, and M. Shapiro. An implementation of complete,
asynchronous, distributed garbage collection. In Conf. on Prog. Lang. Design and
Impl. (PLDI), Montreal (Canada), June 1998. ACM SIGPLAN.

[19] D. Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, second edition edition, 1999.

[20] X. Leroy and al. The Objective CAML system 3.05. Software and documentation
available from http://caml.inria.fr.

[21] R. Milner. Communication and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge, 1999.

[22] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and
II. Information and Computation, 100:1–40 and 41–77, Sept. 1992.

http://research.microsoft.com/~fournet
http://pauillac.inria.fr/jocaml
http://caml.inria.fr

[23] M. Odersky. Functional nets. In Proceedings of the European Symposium on
Programming, volume 1782 of LNCS, pages 1–25. Springer Verlag, 2000.

[24] B. C. Pierce and D. N. Turner. Pict: A programming language based on the
pi-calculus. In G. D. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language
and Interaction: Essays in Honour of Robin Milner. MIT Press, May 2000.

[25] J. H. Reppy. Concurrent ML: Design, application and semantics. In Programming,
Concurrency, Simulation and Automated Reasoning, volume 693 of LNCS, pages
165–198. Springer-Verlag, 1992.

[26] F. Rouaix. A web navigator with applets in caml. In Fifth WWW Conference,
Paris, May 1996.

[27] A. Schmitt. Safe dynamic binding in the join calculus. In IFIP TCS’02, Montreal,
Canada, 2002.

[28] A. Schmitt and J.-B. Stefani. The M-calculus: A higher order distributed process
calculus. In Proceeding 30th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2003). ACM, 2003.

[29] J. White. Telescript technology: Mobile agents. In Software Agents. J. Bradshaw,
editor, AAAI Press/MIT Press, 1996.

	 JoCaml: a Language for Concurrent Distributed and Mobile Programming
	1 An Overview of JoCaml
	2 Concurrent Programming
	2.1 Expressions and Processes
	2.2 Synchronization by Pattern Matching
	2.3 Concurrency Control
	2.4 Concurrent Data structures
	2.5 Types and Exceptions

	3 Distributed Programming
	3.1 The Distributed Model
	3.2 Locations and Mobility
	3.3 Termination, Failures, and Failure Recovery

	A Concurrent Programming (Lab Session)
	B Distributed and Mobile Programming (Lab Session)

