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A historical perspective

CSP Hoare defined the semantics of CSP using an axiomatic approach (problem:
you cannot execute a program);

CCS Milner defined the operational semantics of CCS in term of a /labelled
transition system and associated bisimilarity;

...several attempts to handle mobility algebraically led to...

pi-calculus Milner, Parrow and Walker introduced the pi-calculus. They defined
its semantics along the lines of research on CCS, that is, before defining the
reduction semantics, they defined an LTS...




Lifting CCS techniques to name-passing
is not straightforward

Actually, the original paper on pi-calculus defines two LTSs (excerpts):

Early LTS Late LTS
XV T z(v)
#(v). P 2 p T(v).P —— P
z(v) v z(y)
2(y).P =" P{Y,} ()P —— 7P

Pi{vl_)P/ Q x(v) Q, Pﬂpf Qi(yl_)Q/
PIQ-P | @ PIQP | QY

These LTSs define the same 7-transitions, where is the problem?




Problem

Definition: Weak bisimilarity, denoted =, is the largest symmetric relation such

that whenever P ~ (Q and P £, P’ there exists ()’ such that Q N Q' and
P~ Q.

But the bisimilarity built on top of them observe all the labels: do the resulting
bisimilarities coincide? No!

Which is the right one? Which is the role of the LTS?




Back to CCS - reductions

Syntax:
P =0 | aP | aP | P||P | (vaP

Reduction semantics:

P — P P=P Q' =qQ
a.P || a.Q — P || Q
(va)P — (va)P’ P—Q
where = is defined as:
Pillo=r Pll@=Q|l P PN RrR=PI|Q@I] R)

(va)P || Q= (va)(P || Q) if a & (Q)




Back to CCS — observational equivalence

Let reduction barbed congruence, denoted ~, be the largest symmetric relation
over processes that is

preserved by contexts: if P ~ () then C|P] ~ C|Q)] for all contexts C'|—]|.

barb preserving: if P ~ () and P |, then QQ |,.

Remark:
Pl n holdsif P=wa)(n.P || P')orP=(a)mP || P") withn ¢ {a}
and P |l n holds if there exists P’ such that P —* P’ and P’ | n.

reduction closed: if P ~ () and P — P’, then there is a Q' such that () —* )’
and P’ ~ Q" (—* is the reflexive and transitive closure of —).




The role of bisimilarity

Observation:  the definition of bisimilarity does not involve a universal
quantification over all contexts!

Question: is there any relationship between (weak) bisimilarity and reduction
barbed congruence?

Theorem:

1. P~ Q implies P ~ Q (soundness of bisimilarity);

2. P~ implies P~ () (completeness of bisimilarity).

Point 2. does not hold in general.
Point 1. ought to hold (otherwise your LTS /bisimilarity is very odd!).




Soundness and completeness for a fragment of CCS

Consider the fragment of CCS without sums and replication:

PP QLqQ

a.P -2 P a.P -2 p
PllQ—P | Q
P p PP adf)
symmetric rules omitted.
Pl Q=P | Q (va)P — (va)P’

Barbs are defined as P | a iff P = (vn)(a.P' || P”) or P = (vi)(a.P’ || P")
for a & n.




Soundness of weak bisimilarity: P ~ () implies P ~ ().

Proof We show that ~ is contextual, barb preserving, and reduction closed.

Contextuality of = can be shown by induction on the structure of the contexts, and by case
analysis of the possible interactions between the processes and the contexts. (Congurence of

bisimilarity).

Suppose that P = @Q and P | a. Then P = (vn)(a.P; || P2), with a &€ nn. We derive
P 2 (vh)(Py || P2). Since P =~ Q, there exists Q' such that Q == @Q’, that is
Q I Q" -% ... But Q" must be of the form (vm)(a.Q1 || Q2) with a € m. This
implies that Q"' | a, and in turn Q | a, as required.

Suppose that P ~ @Q and P — P’. We have that P — P” = P’. Since P ~ Q, there
exists Q' such that Q — Q' and P’ = P” =~ @Q’. Since Q — Q' it holds that Q —* Q.
Since P’ = P” implies P’ ~ P", by transitivity of &~ we conclude P’ &~ Q’, as required. O




Completeness of weak bisimilarity: P ~ () implies P =~ ().

Proof We show that ~ is a bisimulation.

Suppose that P ~ @Q and P -~ P’ (the case P ~ @ and P —— P’ is easy). Let

Col=] = —llad Flip = d.(o® f)
Cal=] = =1l ad 10— = W2)(z. =1 [ 2. —2 || 2)

where the names z, o, f, d are fresh for P and Q).
Lemma 1. C,[P] —»* P’ || dif and only if P == P’. Similarly for Cz[—].

Since ~ is contextual, we have C,[P] || Flip ~ C,[Q] || Flip. By Lemma 1. we have
C.[P] || Flip =" P, = P' || o || (w2)z.f.

Lemma 2. If P ~ @ and P —* P’ then there exists Q' such that Q@ —* Q' and P’ ~ Q’.




By Lemma 2. there exists Q1 such that C,[Q] || Flip —" Q1 and P, ~ Q1. Now, P; | o
and P, [/ f. Since ~~ is barb preserving, we have Q1 |} o and Q1 ¥ f. The absence of the barb
f implies that the @ operator reduced, and in turn that the d action has been consumed: this

can only occur if Q realised the a action. Thus we can conclude Q1 = Q' || o || (v2z)z.f, and
by Lemma 1. we also have Q = Q.

It remains to show that P’ ~ Q’.
Lemma 3. (vz)z.P ~ 0.

Since P; ~ @1 and ~~ is contextual, we have (rvo)P; ~ (rvo)@Q;. By Lemma 3., we have
P ~ P || (vo)o || (v2)z.f = (Wo)Pi ~ (vo)@Q: = Q' || (vo)o || (v2)z.f~ Q.

The equivalence P’ ~ @’ follows because = C ~ and ~ is transitive. O

Exercise: explain the role of the F'lip process.
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LTSs revisited

Reduction barbed congruence involves a universal quantification over all contexts.
Weak bisimilarity does not, yet bisimilarity is a sound proof technique for reduction
barbed congruence. How is this possible?

An LTS captures all the interactions that a term can have with an arbitrary
context. In particular, each label correspond to a minimal context.

For instance, in CCS, P — P’ denotes the fact that P can interact with the
context C|—] = — || @, yielding P’.

And T transitions characterises all the interactions with an empty context.
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Pi-calculus: labels

Given a process P, which are the contexts® that yield a reduction?

o if P= (vn)(T(v).P, || P») with x,v € n, then P interacts with the context

Cl-1=— || =(v)-Q

yielding:
ClP] = wi)(Py || Po) || @}

We record this interaction with the label Z(v): P T, pr,

Lo simplify the notations, we will not write the most general contexts.
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o if P= (vn)(x(y).Pr || Pz) with x € n, then P interacts with the context

Cl—]=— || z(v).Q for v & n, yielding:

ClP) = wi) (P} || P2) || @

P/

We record this interaction with the label z(v): P ) pr

e If P — P’, then P reduces without interacting with a context C|—] = — || Q:
clPl—P || Q

We record this interaction with the label 7: P —/—— P’.

13



Intermezzo

What if we define a labelled bisimilarity using the previous labels?

Consider the processes:
P=(vv)r{v) and Q=0

Obviously, P % () because P | x while Q | x.
But both P and () realise no labels: they are equated by the bisimilarity.

The bisimilarity is not sound!

Maybe we forgot a label...
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The missing interaction

o if P=(vn)(x(v).P, || P») with x ¢ n and v € n, then P interacts with the
context

Cl-1=—|| z).Q
yielding:
CIP] — (wo) (Wi \0)(P1 || P2) || Q(%))
P’
We record this interaction with the label (vv)z(v): P woTv) | pr

Intuition: in P’ the scope of v has been opened.
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Summary of actions

14 kind fn(/) bn(f) n(¢)

z(y) free output {z,y} 0 A{z,y}

(vy)z(y) bound output {z}  {y} A=y}

z(y)  input {z.y} 0 {z,y}
T internal ) 0 0
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Pi-calculus: LTS

z(v) P/ Q z(v) Q/

PllQ—P |

T x(v) P
—— P x(y).P—— P{}y}

PS5 P ba()nf(Q) =0 PP wgnl) PJ|'P-P

PllQ-5P|Q (vo)P - (vo) P p L, p
z(v) / (Lv)Z{v) , z(v) ,
P2V p gt j P Q——Q véMm(Q)

(vv)z(v)

(o) P P Pl Q- wo)(P || Q)

17



Pi-calculus: bisimilarity

We can define bisimilarity for pi-calculus in the standard way.

0 * 4
Let = be T

* . T * .
> if £ # 71, and — otherwise.

Definition: Weak bisimilarity, denoted =, is the largest symmetric relation such

that whenever P ~ (Q and P L, P’ there exists Q" such that @) N Q' and
P =~Q.
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Last week examples

. Z(y) % O0: trivial because T(y) —— Y, and 0 7L>
. (vz)x().R ~ 0: the relation R = {((vx)z().R,0)}~ is a bisimulation.

- (wa)(Z{y). Ry || #(2).Re) = (va)(Ry || R2tYz))

The relation

R = {(va)@{y)- R || 2(2)-Ro), (wa) (R || Rol?})}= U T

Is a bisimulation.

7 is the identity relation over processes, and R~ denotes the symmetric closure of R.
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Subtleties of pi-calculus LTS

Exercise: derive a T transition corresponding to this reduction:

(vz)a(z).P || a(y).Q — ()P || Q{*4})

Exercise: each side condition in the definition of the LTS is needed to have the
theorem

P—-Qiff P-15=Q

Remove on side condition at a time and find counter-examples to this theorem.
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Weak bisimulation is a sound proof technique
for reduction barbed congruence

e Prove that weak bisimulation is reduction closed.
...at the blackboard

e Prove that weak bisimulation is barb preserving.
...at the blackboard

e Prove that weak-bisimulation is a congruence.
...ahem, think twice...
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On soundness of weak bisimilarity

Exercise: Consider the terms (in a pi-calculus extended with +):

P = 7(v) || y(2)
Q = T()y(z) +y(2)TW)

1. Prove that P ~ Q°.

2. Does P ~ Q7°

2Does this hold if we replace + by —1 @ —o = (vw) (@) || w(). —1 || w().—2) in Q?
3Hint: define a context that equates the names x and y.

22



Bisimilarity is not a congruence

In pi-calculus, bisimilarity (both strong and weak) is not preserved by input
prefixes, that is contexts of the form C|—] = x(y).—. When we built the labels,
we forgot the contexts which can interact with the process by changing its internal
Structure.

Question: how to recover the soundness of the bisimilarity with respect to the
reduction barbed congruence? Two solutions:

1. close the reduction barbed congruence under all non input prefix contexts;

2. close the bisimilarity under substitution: let P ~¢ Q (P is fully bisimilar with
Q) if Po ~ Qo for all substitutions o.

Exercise: Show that P #° (), where P and () are defined in the previous slide.
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And completeness?

Completeness of bisimulation with respect to barbed congruence* (closed under
non-input prefixes, denoted ~7) holds in the strong case. In the weak case, we
have that for

P—ai) || B Q=1 || Ex
where
E.y =2(2).y(2) || ly(2).2(2)
it holds that P % @ but P ~~ @ for each context C|—].

Completeness (for image-finite processes) holds if a name-matching operator is
added to the language.

*barbed congruence is a variant of reduction-closed barbed congruence in which closure under context is allowed
only at the beginning of the bisimulation game.
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Asynchronous communication

CCS and pi-calculus (and many others) are based on synchronized interaction,
that is, the acts of sending a datum and receiving it coincide:

E.PHCL.Q—DPHQ.

In real-world distributed systems, sending a datum and receiving it are distinct
acts:
aP||aQ ...« . a||P|aQ. ..« . P|Q.

In an asynchronous world, the prefix . does not express temporal precedence.

25



Asynchronous interaction made easy

Idea: the only term than can appear underneath an output prefix is O.

Intuition: an unguarded occurence of Z(y) can be thought of as a datum y in an
implicit communication medium tagged with .

Formally:
#(y) || «(2).P — P{¥.}.

We suppose that the communication medium has unbounded capacity and
preserves no ordering among output particles.

26



Asynchronous pi-calculus

Syntax:

P =0 | 2@).P | =y | P||P | wa)P | P

The definitions of free and bound names, of structural congruence =, and of the
reduction relation — are inherited from pi-calculus.
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Examples

Sequentialization of output actions is still possible:
(vy,2)@(y) || 9(2) || 2(a) || R)-

Synchronous communication can be implemented by waiting for
acknoledgement:

[Z(y).P] = (vu)(@y,u) || u().P)

[z(v).Q] = z(v,w).(w() || Q) for w & @

Exercise: implement synchronous communication without relying on polyadic primitives.

an
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Contextual equivalence and asynchronous pi-calculus

It is natural to impose two constraints to the basic recipe:

e compare terms using only asynchronous contexts;

e restrict the observables to be co-names. To observe a process is to interact
with it by performing a complementary action and reporting it: in asynchronous
pi-calculus input actions cannot be observed.
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A peculiarity of synchronous equivalences

The terms

are not reduction barbed congruent, but they are asynchronous reduction barbed
congruent.

Intuition: in an asynchronous world, if the medium is unbound, then buffers do
not influence the computation.
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A proof method

Consider now the weak bisimilarity /4 built on top of the standard (early) LTS
for pi-calculus. As asynchronous pi-calculus is a sub-calculus of pi-calculus, = is
an equivalence for asynchronous pi-calculus terms.

It holds ~;, C ~, that is the standard pi-calculus bisimilarity is a sound proof
technique for ~.

But
lx(2).7(2) %50 .

Question: can a labelled bisimilarity recover the natural contextual equivalence?
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A problem and two solutions

Transitions in an LTS should represent observable interactions a term can engage
with a context:

o if P "L, P’ then P can interact with the context — || z(u).beep, where
beep is activated if and only if the output action has been observed;

o if P NN P’ then in no way beep can be activated if and only if the input

action has been observed!

Solutions:
1. relax the matching condition for input actions in the bisimulation game;

2. modify the LTS so that it precisely identifies the interactions that a term can
have with its environment.

32



Amadio, Castellani, Sangiorgi - 1996

Idea: relax the matching condition for input actions.

Let asynchronous bisimulation ~, be the largest symmetric relation such that
whenever P =, () it holds:

1.if P -5 P and ¢ # x(y) then there exists )’ such that @ SN Q' and
P’ ~a Q/;

2. if P -0, P’ then there exists Q' such that Q || Z(y) = Q" and P’ ~, Q)".

Remark: P’ is the outcome of the interaction of P with the context — || Z(y).
Clause 2. allows () to interact with the same context, but does not force this
Interaction.
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Honda, Tokoro - 1992

w(y) P{y/u} 0 ﬂ §<y>
P2 P y&a

(vy) P — (vy) P’

W)TY) | pr o AN AN Q' y <& Mm(Q)

z(y) /
P— P zx#uy
(yy)P (vy)z(y) , p
z(y) / z(y) /
PllQ->P|Q
P 5 P' bn(a)Nfn(Q) =0

PllQ-=>P | Q

Pl Q= (wy)(P' || Q)

P=P P -5Q Q=Q

P2 Q
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Honda, Tokoro explained

Ideas:

e modify the LTS so that it precisely identifies the interactions that a term can
have with its environment:

e rely on a standard weak bisimulation.

Amazing results: asynchrounous bisimilarity in ACS style, bisimilarity on top of
HT LTS, and barbed congruence coincide.”

5ahem, modulo some technical details.
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Properties of asynchronous bisimilarity in ACS style

e Bisimilarity is a congruence;

it is preserved also by input prefix, while it is not in the synchronous case;
e bisimilarity is an equivalence relation (transitivity is non-trivial);
e bisimilarity is sound with respect to reduction barbed congruence;

e bisimilarity is complete with respect to barbed congruence.®

Ofor completeness the calculus must be equipped with a matching operator.




Some proofs about ACS bisimilarity... on asynchronous CCS

Syntax:
P:u:=0 | aP | a| P||P | (vaP.

Reduction semantics:

P=P Q' =qQ
P —Q

a.Pl|la — P

where = is defined as:

Plle=Qll P (Pl QI R=P[(QI] R)
(va)P || Q= (va)(P || Q) if a & n(Q)
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Background: LTS and weak bisimilarity for asynchronous CCS

PLpP Q% Q

a.P 25 P a0
PllQ— P | Q
P-4t p PP agf)
symmetric rules omitted.
P|lQ->P|Q (va)P — (va)P’

Definition: Asynchronous weak bisimilarity, denoted =, is the largest symmetric
relation such that whenever P =~ () and

e P 5. P’ ¢ € {r,a}, there exists ()’ such that ) N Q' and P' ~ Q'
e P> P’ there exists Q' such that Q || @ = Q' and P' =~ Q'.
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Sketch of the proof of transitivity of ~

Let R ={(P,R): P~ Q = R}. We show that R C =.

e Suppose that P R R because P ~ Q =~ R, and that P — P’.

/

The definition of & ensures that there exists Q' such that Q || @ = Q' and P' = Q’.

Since /5 is a congruence and Q = R, it holdsthat Q || @ = R || @.

A simple corollary of the defintion of the bisimilarity ensures that there exists R’ such that

R||a=— R and Q' = R'.
Then P’ R R’ by construction of R.

® [ he other cases are standard.

Remark the unusual use of the congruence of the bisimilarity.
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Sketch of the proof of completeness

We show that ~ C =.

e Suppose that P ~ Q and that P - P’

We must conclude that there exists Q' such that Q || @ = Q' and P’ ~ Q.
Since ~ is a congruence, it holds that P || @ >~ Q || @.

Since P = P’ it holds that P || @ — P’.

Since P || @ >~ Q || @, the definition of ~ ensures that there exists Q' such that Q || @ — Q'
and P’ ~ @Q’, as desired.

e The other cases are analogous to the completeness proof in synchronous CCS.

The difficulty of the completeness proof is to construct contexts that observe the actions of a
process. The case P — P’ is straightforward because “there is nothing to observe”.
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