
A Deadlok-Free SemantisforShared Memory Conurreny

1MOTIVATION

Shared memory onurreny:

◮ traditional algorithmi programming style
◮ not far from the mahine arhiteture
➥ needed at some implementation stage.Problem: not modular (data-raes, deadloks...)
➥ keep the model, restrit the semantis, avoiding deadloks.

2An EXAMPLE (1/3)

Bank aounts: a module where an aount is a referene (pointer)to an integer, with some funtions:

◮ to deposit some amount x on aount y: λxλy(y := ! y + x).Inorret:

(
{a 7→ 0}, (deposit 100 a) ‖ (deposit 100 a)

) ∗
→ ({a 7→ 100}, ())

➥ needs an exlusive aess to y:
deposit = λxλy(lock y in y := ! y + x)where (lock y in e) takes the [lok assoiated with℄ referene y, andrelease it upon termination of e.

3An EXAMPLE (2/3)
◮ to withdraw an amount x from aount y:

withdraw = λxλy(lock y in (if ! y ≥ x then (y := ! y − x)

else error))

◮ to transfer x from y to z:
transfer = λxλyλz(lock y in (withdraw xy) ; (depositxz))

Notie: reentrant loks.

4An EXAMPLE (3/3)

One may transfer money in any diretion:
(transfer 100 a b) ‖ (transfer 10 b a)where ! a ≥ 100 and ! b ≥ 10.

4An EXAMPLE (3/3)

One may transfer money in any diretion:
(transfer 100 a b) ‖ (transfer 10 b a)where ! a ≥ 100 and ! b ≥ 10.

➥ potential deadlok:

∗
→ (lock b in b := ! b+ 100)

︸ ︷︷ ︸
holding a

‖ (lock a in a := ! a+ 10)
︸ ︷︷ ︸

holding b

5DEADLOCKS: SOLUTIONS

◮ deadlok prevention: only run ode that is guaranteed to be freeof deadloks;

◮ deadlok avoidane: monitoring the exeution so as to avoiddangerous states;

◮ deadlok detetion and reovery: supervise exeution and rollbak(undoing operations) in ase of deadlok.Prevention: by means of stati analysis, heking that loks are takenin some order.
➥ a unique lok for all the bank aounts!

6Our SOLUTION

Deadlok avoidane:

◮ stati analysis by means of a type and e�et system, antiipatingthe pointers to lok as the e�et,
◮ translation of soure programs into annotated programs

(lock e0 in e1) ⇒ (lockψ e0 in e1)where ψ is the e�et of e1 = set of pointers to be loked by e1,

◮ prudent semantis: to exeute (lockψ p in e) one does not lok

p if some pointer in ψ is already held by another thread.

➥ type safety: the annotated programs obtained by translationfrom typable soure programs, exeuted in the prudent semantis,are free of deadloks.

7TECHNICALLY

In analysing (lock e0 in e1) one has to have some information aboutthe pointer to be loked, i.e. the value of e0, to be reorded in thee�et, and then used in the types.
◮ replae (ref e) with (cref e), a funtion f to reate a pointer withinitial value the value of e,
◮ restrited, by typing, to be used in a partiular ontext, namely

(let x = (f()) in e)

➥ singleton referene types θ refx, i.e. loks univoally assoiatedwith pointers.

8SOURCE LANGUAGE

funtional + imperative + onurrent:
v, w . . . ::= x | λxe | () | (cref v) values

e ::= v | (e1e0) expressions

| (cref e) | (! e) | (e0 := e1)

| (thread e) | (lock e0 in e1)Notation: (ref e) for ((cref e)()).

9TARGET LANGUAGE

p, q . . . pointers
v, w . . . ::= x | λxe | () | p values

e ::= v | (e1e0) expressions

| (! e) | (e0 := e1)

| (thread e) | (lockϕ e0 in e1)

| (e\p) | (new x in e)where ϕ is an e�et, that is a �nite set of pointer names (eitheronstant or variable)

10TYPING and TRANSLATION (1/3)

Types:

τ, σ, θ . . . ::= unit | θ refx | θ cref | (τ
ϕ
−→ σ)In (θ refx

ϕ
−→ σ) the variable x is universally quanti�ed, with sope

ϕ and σ.Judgements:

Γ ⊢ e : ϕ, τ ⇒ e

11TYPING and TRANSLATION (2/3)

Main (unusual) rules:

Γ ⊢s e0 : ϕ0, (θ refx
ϕ2−→ σ) ⇒ e0

Γ ⊢s e1 : ϕ1, θ refy ⇒ e1

Γ ⊢s (e0e1) : ϕ0 ∪ ϕ1 ∪ {x 7→y}ϕ2, {x 7→y}σ ⇒ (e0 e1)

Γ ⊢s e : ϕ, θ ⇒ e

Γ ⊢s (cref e) : ϕ, θ cref ⇒ (λxλy((y := x) ; y)e)i.e.

(cref e) ⇒ (let x = e in λy((y := x) ; y))
θ cref ⇒ (θ refy

∅
−→ θ refy)

12TYPING and TRANSLATION (3/3)
Γ ⊢s e0 : ϕ0, θ cref ⇒ e0

Γ, x : θ refx ⊢s e1 : ϕ1, τ ⇒ e1

Γ ⊢s (λxe1(e0())) : ϕ0 ∪ (ϕ1 − {x}), τ ⇒ (new y in (λxe1(e0y)))

where y is fresh and x 6∈ Γ, ϕ0, τ . Notie: the only way to reate areferene is (let x = (e0()) in e1) where e0 has type θ cref.

Γ ⊢s e0 : ϕ0, θ refx ⇒ e0

Γ ⊢s e1 : ϕ1, τ ⇒ e1

Γ ⊢s (lock e0 in e1) : {x} ∪ ϕ0 ∪ ϕ1, τ ⇒ (lockϕ1
e0 in e1)

13EXAMPLE

Γ ⊢ deposit : ∅, int
∅
−→ (int refy

{y}
−−→ unit)

Γ ⊢ transfer : ∅, int
∅
−→ (int refy

∅
−→ (int refz

{y,z}
−−−→ unit))(polymorphi types) with translations

λxλy(lock∅ y in y := ! y + x)

λxλyλz(lock{y,z} y in (withdraw xy) ; (depositxz))and one an type
let create account = λx(cref x) in

let a = (create account 100)() in

let b = (create account 10)() in · · ·where a and b have distint types, int refa and int refb.

14PRUDENT SEMANTICS

Main (unusual) rules:

(S,L,E[(lockψ p in e)] ‖T) → (S,L,E[e] ‖ T) p ∈ ⌈E⌉

(S,L,E[(lockψ p in e)] ‖T) → (S,L′,E[(e\p)] ‖ T) p 6∈ ⌈E⌉

& (♠)

(S,L,E[(v\p)] ‖ T) → (S,L− {p},E[v] ‖ T)where p ∈ ⌈E⌉ means that p is urrently loked by the thread, and

(♠) L ∩ ({p} ∪ (ψ − ⌈E⌉)) = ∅, L′ = L ∪ {p}

vs standard ondition: L ∩ {p} = ∅.

15RESULTS

◮ Type Safety: if Γ ⊢ e : ϕ, τ ⇒ e then evaluating e in theprudent semantis is free of deadloks.
◮ modularity: omposing systems of (typable) threads is safe � nodeadlok.

◮ �ne grained loking poliy: eah pointer has its own lok (theprogrammer does not have to think about loks at run time �only pointers).
◮ simple �pessimisti� semantis: only loal (i.e. per thread) ondi-tions, no global analysis of the urrent state, no rollbak.

