A Deadlock-Free Semantics

for

Shared Memory Concurrency

MoTIVATION

Shared memory concurrency:

» traditional algorithmic programming style
» not far from the machine architecture

[1 needed at some implementation stage.

Problem: not modular (data-races, deadlocks...)

[1 keep the model, restrict the semantics, avoiding deadlocks.

An EXAMPLE (1/3)2

Bank accounts: a module where an account is a reference (pointer)
to an integer, with some functions:

» to deposit some amount x on account y: AxAy(y =y + x).

Incorrect:
({a — 0}, (deposit 100 a) || (deposit 100a)) = ({a — 100}, ()
[1 needs an exclusive access to y:

deposit = AxAy(lock y iny =1y + x)

where (lock g in e) takes the [lock associated with| reference g, and
release it upon termination of e.

An EXAMPLE (2/3)3

» to withdraw an amount x from account y:

withdraw = AzAy(lock y in (if 'y > x then (y := 1y — x)
else error))

» to transfer x from y to z:
transfer = AzAyAz(lock y in (withdraw xy) ; (depositxz))

Notice: reentrant locks.

An EXAMPLE (3/3)4

One may transfer money in any direction:

(transfer 100 a b) || (transfer 10ba)

where 'a > 100 and 16 > 10.

An EXAMPLE (3/3)4

One may transfer money in any direction:

(transfer 100 a b) || (transfer 10ba)
where 'a > 100 and 16 > 10.

[1 potential deadlock:

*

— (lock binb:=1b+100) || (lock aina:="'a+ 10)

holdzyng a hold\ﬂrzg b

DEADLOCKS: SOLUTIONS

» deadlock prevention: only run code that is guaranteed to be free

of deadlocks:

» deadlock avoidance: monitoring the execution so as to avoid
dangerous states;

» deadlock detection and recovery: supervise execution and rollback
(undoing operations) in case of deadlock.

Prevention: by means of static analysis, checking that locks are taken
In some order.

[1 a unique lock for all the bank accounts!

Our SOLUTION

Deadlock avoidance:

» static analysis by means of a type and effect system, anticipating
the pointers to lock as the effect,

» translation of source programs into annotated programs
(lock eg ine;) = (locky &g in €7)
where 1) is the effect of e; = set of pointers to be locked by eq,
» prudent semantics: to execute (locky, p in e) one

p if some pointer in v is already held by another thread.

[1 type safety: the annotated programs obtained by translation
from typable source programs, executed in the prudent semantics,
are free of deadlocks.

T ECHNICALLY

In analysing (lock eq in e1) one has to have some information about
the pointer to be locked, i.e. the value of eg, to be recorded in the
effect, and then used in the types.

» replace (ref e) with (cref e), a function f to create a pointer with
initial value the value of e,

» restricted, by typing, to be used in a particular context, namely

(let x = (f() in e)

[1 singleton reference types @ ref,, i.e. locks univocally associated
with pointers.

SOURCE LANGUAGE

functional + imperative + concurrent:

v, W .. x| Axe | () | (crefo) values

e v | (ereo) expressions

(crefe) | (e) | (eg:=eq)
(threade) | (lock eg in eq)

Notation: (ref e) for ((crefe)()).

T ARGET LANGUAGE

p, q.-. pointers
v, wW... n= D values
e 1= expressions

(|0Ck90 €0 In 61)

(e\p) | (new z in e)

where ¢ is an effect, that is a finite set of pointer names (either
constant or variable)

TYPING and T RANSLATION (1/3)

Types:

7,0, 0... == unit | Oref, | Gcref | (15 0)

In (fref, = o) the variable x is universally quantified, with scope
@ and 0.
Judgements:

I'Fe:p,7 = €

TYPING and T RANSLATION (2/3)

Main (unusual) rules:

Fl—seozgoo,(erefxﬂa) = €
Fl—selzgpl,é’refy = €]

I |—3 (6061) ol U L1 U L2, g = (6_() 6_1)

I'Fse:p, 0 = €
[(crefe) : ¢, 0 cref =

(crefe) = (letx=¢€in \y((y :==x);y))
Ocref = (Oref, LNy ref,)

TYPING and T RANSLATION (3/3)

I' =5 eq: @o,0cref =
[o:Oref, Fgep 1,7 =

S
= -

['Fs (Azer(eg()) : o U (01 — {x}), 7 =

where y is fresh and x & I', o9, 7. Notice: the only way to create a
reference is (let = (eg()) in e1) where e has type 6 cref.

I'F5e9: o, 0ref, = e
I'Fser:pq,T = €]
['Fs (lock eginey) : {x} UpogUep, 7 = (lock,, €y in €7)

13

EXAMPLE

[' - deposit :), int 9, (int ref,, vk, unit)

[transfer : (), int LN (int ref,, LN (intref, w2k, unit))
(polymorphic types) with translations

AxAy(locky yiny:=1y+x)
A AyAz(locky, .y y in (withdraw xy) ; (deposit zz))

and one can type

let create_account = Ax(cref x) in
let @ = (create_account 100)() in
let b = (create_account 10)() in ---

where a and b have distinct types, intref, and int refy,

14

PRUDENT SEMANTICS

Main (unusual) rules:

(S, L, E[(locky pine)| | T) — (5, L, Ele] | T) pe B
(S, L, E[(locky pin e)] | T) — (5, L, El(e\p)] | T) p ¢ [E]
& (M)

(S, L E[(v\p)| | T) — (S, L —1p}, B[] || T)

where p € | EE| means that p is currently locked by the thread, and

(&) LO({pru(y—E]) =0, L'=LU{p}

vs standard condition: L N {p} =0

15

RESULTS

» lype Safety: f I'Fe: @, 7 = € then evaluating € in the
prudent semantics is free of deadlocks.

» modularity: composing systems of (typable) threads is safe — no

deadlock.

» fine grained locking policy: each pointer has its own lock (the
programmer does not have to think about locks at run time —

only pointers).

» simple “pessimistic’ semantics: only local (i.e. per thread) condi-
tions, no global analysis of the current state, no rollback.

