
A Deadlo
k-Free Semanti
sforShared Memory Con
urren
y

1MOTIVATION

Shared memory
on
urren
y:

◮ traditional algorithmi
 programming style
◮ not far from the ma
hine ar
hite
ture
➥ needed at some implementation stage.Problem: not modular (data-ra
es, deadlo
ks...)
➥ keep the model, restri
t the semanti
s, avoiding deadlo
ks.

2An EXAMPLE (1/3)

Bank a

ounts: a module where an a

ount is a referen
e (pointer)to an integer, with some fun
tions:

◮ to deposit some amount x on a

ount y: λxλy(y := ! y + x).In
orre
t:

(
{a 7→ 0}, (deposit 100 a) ‖ (deposit 100 a)

) ∗
→ ({a 7→ 100}, ())

➥ needs an ex
lusive a

ess to y:
deposit = λxλy(lock y in y := ! y + x)where (lock y in e) takes the [lo
k asso
iated with℄ referen
e y, andrelease it upon termination of e.

3An EXAMPLE (2/3)
◮ to withdraw an amount x from a

ount y:

withdraw = λxλy(lock y in (if ! y ≥ x then (y := ! y − x)

else error))

◮ to transfer x from y to z:
transfer = λxλyλz(lock y in (withdraw xy) ; (depositxz))

Noti
e: reentrant lo
ks.

4An EXAMPLE (3/3)

One may transfer money in any dire
tion:
(transfer 100 a b) ‖ (transfer 10 b a)where ! a ≥ 100 and ! b ≥ 10.

4An EXAMPLE (3/3)

One may transfer money in any dire
tion:
(transfer 100 a b) ‖ (transfer 10 b a)where ! a ≥ 100 and ! b ≥ 10.

➥ potential deadlo
k:

∗
→ (lock b in b := ! b+ 100)

︸ ︷︷ ︸
holding a

‖ (lock a in a := ! a+ 10)
︸ ︷︷ ︸

holding b

5DEADLOCKS: SOLUTIONS

◮ deadlo
k prevention: only run
ode that is guaranteed to be freeof deadlo
ks;

◮ deadlo
k avoidan
e: monitoring the exe
ution so as to avoiddangerous states;

◮ deadlo
k dete
tion and re
overy: supervise exe
ution and rollba
k(undoing operations) in
ase of deadlo
k.Prevention: by means of stati
 analysis,
he
king that lo
ks are takenin some order.
➥ a unique lo
k for all the bank a

ounts!

6Our SOLUTION

Deadlo
k avoidan
e:

◮ stati
 analysis by means of a type and e�e
t system, anti
ipatingthe pointers to lo
k as the e�e
t,
◮ translation of sour
e programs into annotated programs

(lock e0 in e1) ⇒ (lockψ e0 in e1)where ψ is the e�e
t of e1 = set of pointers to be lo
ked by e1,

◮ prudent semanti
s: to exe
ute (lockψ p in e) one does not lo
k

p if some pointer in ψ is already held by another thread.

➥ type safety: the annotated programs obtained by translationfrom typable sour
e programs, exe
uted in the prudent semanti
s,are free of deadlo
ks.

7TECHNICALLY

In analysing (lock e0 in e1) one has to have some information aboutthe pointer to be lo
ked, i.e. the value of e0, to be re
orded in thee�e
t, and then used in the types.
◮ repla
e (ref e) with (cref e), a fun
tion f to
reate a pointer withinitial value the value of e,
◮ restri
ted, by typing, to be used in a parti
ular
ontext, namely

(let x = (f()) in e)

➥ singleton referen
e types θ refx, i.e. lo
ks univo
ally asso
iatedwith pointers.

8SOURCE LANGUAGE

fun
tional + imperative +
on
urrent:
v, w . . . ::= x | λxe | () | (cref v) values

e ::= v | (e1e0) expressions

| (cref e) | (! e) | (e0 := e1)

| (thread e) | (lock e0 in e1)Notation: (ref e) for ((cref e)()).

9TARGET LANGUAGE

p, q . . . pointers
v, w . . . ::= x | λxe | () | p values

e ::= v | (e1e0) expressions

| (! e) | (e0 := e1)

| (thread e) | (lockϕ e0 in e1)

| (e\p) | (new x in e)where ϕ is an e�e
t, that is a �nite set of pointer names (either
onstant or variable)

10TYPING and TRANSLATION (1/3)

Types:

τ, σ, θ . . . ::= unit | θ refx | θ cref | (τ
ϕ
−→ σ)In (θ refx

ϕ
−→ σ) the variable x is universally quanti�ed, with s
ope

ϕ and σ.Judgements:

Γ ⊢ e : ϕ, τ ⇒ e

11TYPING and TRANSLATION (2/3)

Main (unusual) rules:

Γ ⊢s e0 : ϕ0, (θ refx
ϕ2−→ σ) ⇒ e0

Γ ⊢s e1 : ϕ1, θ refy ⇒ e1

Γ ⊢s (e0e1) : ϕ0 ∪ ϕ1 ∪ {x 7→y}ϕ2, {x 7→y}σ ⇒ (e0 e1)

Γ ⊢s e : ϕ, θ ⇒ e

Γ ⊢s (cref e) : ϕ, θ cref ⇒ (λxλy((y := x) ; y)e)i.e.

(cref e) ⇒ (let x = e in λy((y := x) ; y))
θ cref ⇒ (θ refy

∅
−→ θ refy)

12TYPING and TRANSLATION (3/3)
Γ ⊢s e0 : ϕ0, θ cref ⇒ e0

Γ, x : θ refx ⊢s e1 : ϕ1, τ ⇒ e1

Γ ⊢s (λxe1(e0())) : ϕ0 ∪ (ϕ1 − {x}), τ ⇒ (new y in (λxe1(e0y)))

where y is fresh and x 6∈ Γ, ϕ0, τ . Noti
e: the only way to
reate areferen
e is (let x = (e0()) in e1) where e0 has type θ cref.

Γ ⊢s e0 : ϕ0, θ refx ⇒ e0

Γ ⊢s e1 : ϕ1, τ ⇒ e1

Γ ⊢s (lock e0 in e1) : {x} ∪ ϕ0 ∪ ϕ1, τ ⇒ (lockϕ1
e0 in e1)

13EXAMPLE

Γ ⊢ deposit : ∅, int
∅
−→ (int refy

{y}
−−→ unit)

Γ ⊢ transfer : ∅, int
∅
−→ (int refy

∅
−→ (int refz

{y,z}
−−−→ unit))(polymorphi
 types) with translations

λxλy(lock∅ y in y := ! y + x)

λxλyλz(lock{y,z} y in (withdraw xy) ; (depositxz))and one
an type
let create account = λx(cref x) in

let a = (create account 100)() in

let b = (create account 10)() in · · ·where a and b have distin
t types, int refa and int refb.

14PRUDENT SEMANTICS

Main (unusual) rules:

(S,L,E[(lockψ p in e)] ‖T) → (S,L,E[e] ‖ T) p ∈ ⌈E⌉

(S,L,E[(lockψ p in e)] ‖T) → (S,L′,E[(e\p)] ‖ T) p 6∈ ⌈E⌉

& (♠)

(S,L,E[(v\p)] ‖ T) → (S,L− {p},E[v] ‖ T)where p ∈ ⌈E⌉ means that p is
urrently lo
ked by the thread, and

(♠) L ∩ ({p} ∪ (ψ − ⌈E⌉)) = ∅, L′ = L ∪ {p}

vs standard
ondition: L ∩ {p} = ∅.

15RESULTS

◮ Type Safety: if Γ ⊢ e : ϕ, τ ⇒ e then evaluating e in theprudent semanti
s is free of deadlo
ks.
◮ modularity:
omposing systems of (typable) threads is safe � nodeadlo
k.

◮ �ne grained lo
king poli
y: ea
h pointer has its own lo
k (theprogrammer does not have to think about lo
ks at run time �only pointers).
◮ simple �pessimisti
� semanti
s: only lo
al (i.e. per thread)
ondi-tions, no global analysis of the
urrent state, no rollba
k.

