Secure Information Flow

dS d

Safety Property

Gérard Boudol
INRIA Sophia Antipolis



SOFTWARE SECURITY

To prevent application software from running into security violations:

» defensive attitude: protection of confidential information and
pPrecious resources.

[1 analysis of binary code, run-time checks.
Severe limitations on possible interactions.

» constructive attitude: build and use software offering security
guarantees, that can be trusted.

[1 provide tools to design, develop and maintain secure software.

Aim: security-minded programming primitives and (static) analysis

techniques of programs to build “safe-by-construction” software.



Focus: CONFIDENTIALITY

(Integrity is dual.)
Information “containers’ — files, database entries, library functions,
memory locations... — are classified into (ordered) security levels, e.g.

institution < group(s) < user(s) < root
with
» access control: a program should only read information it has the
right to access.
» information flow control: a program should not disclose secret

information.

Flow policy: € < #" says information is allowed to flow from level ¢
to level £/,



PROGRAMMING SECURITY (1/2)

Some security-minded programming constructs, to manage access
control:

» (enable /in P) grants the (read) access right £ to P.
» (restrict P to /) dual, restricts the access right of P by .

» (test / then P else () tests whether access right £ is granted or
not, behaves accordingly as P or Q).

cf. JAVA “stack inspection.”



PROGRAMMING SECURITY (2/2)

and to manage information flow:

» o\ [1] P tests whether the confidentiality level of P is less than
Co, if yes turn it into £1 — declassification.

» (flow F'in P) enrich the current flow policy by F' for running P.
» (revoke I'in P) dual, executes P without the flow policy F"
» (check F' then P else () tests whether the flow policy F'is

granted, and branches.

e.g. JIF has declassify(M, 0) = [T, 0\, M].



ExXAMPLE (DECLASSIFICATION)

The governmental software for computing and collecting taxes (on
the salaries and revenues), while manipulating private data, should
be allowed to publish statistical informations, like

Z tax amount;

individuals
nb individuals

average tax amount = [gut\, public]

with

public < individual(s) < gut



STANDARD SEMANTICS

for secure information flow: non-interference — "variety in
secret input should not be conveyed to public output'.

» operational semantics: (2, ;1) |} . Starting from memory pu,
program P terminates with memory v.

» memory: mapping program variables, with security levels, to
values.

» low equality of memories:

==Ly S VN U <0 = pzy) = vizy)

» non-interference: P is secure from the information flow point of
view iff for any security level £

p="t v & Pp)lpy & (Pv)|v = ==t



PROBLEM

The non-interference property is inadequate;

» incompatible with declassification, inappropriate for revocation.

» does not formalize the intuitive notion of secure information flow,
which is
“one should not put in a public location a value elaborated
using confidential information,”

a safety property — "nothing bad will happen.”

Standard static analysis techniques (security type systems) guarantee
a stronger property than non-interference: no ‘programming error
unlike
P; Lpublic +— Ysecret Q
Tpuptic *= (if Yseerer then P else Q)



T owARDS SECURE INFORMATION FLOW

as a safety property: define a monitored operational semantics
(cf. Fenton's Data-Mark-Machine 1974) where

» one maintains the current reading clearance (¢f. "stack inspection”)
and the current flow policy;
» one keeps track of the level of knowledge acquired while compu-
ting, i.e. the current confidentiality level;
» one checks that
» when reading in the memory, the current reading clearance is
enough;
» when writing in the memory, there is no illegal flow, i.e. the
level of acquired knowledge is less than the level to update.



OBJECTIVES

Given a “security programming language:”

» define the monitored semantics:
[] a notion of run-time security violation: being stuck on a security

check.

A program is secure when it successfully passes, for any execution,
all the security checks (Fenton 74).

» define static analysis methods — a security type and effect system:;

» prove type safety: no run-time error for typable programs.
[] run-time monitoring is not needed for typable programs.

» show that, without security programming constructs, the safety
property implies non-interference.



10

A LANGUAGE

3 la ML: functional and imperative (~ JAVA: methods and mutable
fields) with programming constructs for security:

ViW... u= x| u | XeM | tt | ff | ( values
M, N... == V | (if M then N else N') | (MN) expressions
MiN | (refeN) | (IN) | (M :=N)
(restrict M to £) | (enable £ in M)

(test ¢ then M else N)
(flow F'in M) | (revoke F'in M)

where £ is a security level, and F' a flow policy.

Note: the construct [{o\ ¢1]M is derivable from (flow F'in M). We omit
(check F' then M else N).



11

SECURITY POLICIES

» security levels £ are sets of principals.

Reverse inclusion ordering: hierarchy for access rights and
information flow.

¢ DO V' means ¢’ is more restrictive than £.

» flow policies I are binary relations on principals: it p F'q

information accessible by principal p may flow, according to policy
F', to principal q.

[] A lattice structure:
(<pll g Vgeldpel pF*q

with join £ Y g ¢/ and meet £ Ap ¥



MONITORED SEMANTICS (1/4)

In the context of a reading clearance rc and a flow policy F', and
starting with a knowledge level pc (initially L) and a memory p, the
expression M reduces to a value V', having acquired knowledge level

¢, and updates the memory into v:
rc; F' = (pe, M, ) U™ (€, V,v)

Some cases:
rc; ' (pe, M p) 4™ (0, tt, ')
rc; FF = (07, No, ') U™ (4, V, v)
rc; '+ (pc, (if M then Ny else Ny),u) 4™ (¢, V,v)




MONITORED SEMANTICS

(2/4)

rc; ' (pe, M, p) U™ (&, A M, ')
rc; F' = (pe, N, /) 4™ (0", V', V)
re; FF E ( Ax—=VIIM V) ™ (4, V, v)

re; F' = (pe, (MN), ) §™ (€, V,v)

rc; F'i= (pe, M p) 4™ (6, V7, 1)
re; F' = (pe, N,y 4™ (4, V,v)
re; F = (pe, M N, p) 4™ (4, V,v)

differs from (AxNM).



MONITORED SEMANTICS (3/4)

rc; F' (pC,N, M) 4 (glvuﬁa V) V(W) =V

¢ < rc
re; F - (pe, (1 V), 1) I ( Vi)
r¢; F = (pe, M, 1) U™ (£o, ug, 1)
L N. )™ (0. V
rc, (PC, s U ) U’ ( 1 ’V) KQYFgl =t

rc; ' 1= (pe, (M == N), ) ™ (pc, (), v]ug == V])



MONITORED SEMANTICS (4/4)

B (pe, M, p) 4™ (4, V, v)
rc; F' = (pc, (enable v in M), ) $™ (¢, V,v)

rc; = (pc, M, ) 4™ (£, V,v)
rc; F' F (pc, (flow F"in M), ) U™ (pc Yr (Ul g mr), Vi 1)

where

llp={q|3Ipecl pFq}



16

SECURE PROGRAMS

» uncontrolled semantics: rc; F' = (pc, M, u) { (¢, V,v) the same
semantics without security check (F', pc and £ are useless). More
permissive:

rc; B = (pe, M, ) L7 (6, V,v) = re; F = (pe, M, p) U (€, V,v)
» M is secure w.rt. rc, F' and a class M of memories iff
i F b (L, M, 1) 4 (6, V) = 1 FE (L M, ) 47 (6, V, )

for any p € M.



EXAMPLES

17

>

>

>

>

(
(
(
(

enable ¢'in M) rc-secure iff M rc Y f-secure.
restrict M to /) rc-secure iff M rc A f-secure.
flow £ in M) F-secure iff M F'U F'-secure.
revoke I in M) F-secure iff M F* — F’-secure.



T YPES and EFFECTS

18

Typing judgments:
rc; F; ' M e, 1

where

» ['is a typing context: variables — types;

» e is a security effect (r,w), where
» 1 is the reading level, an upper bound of the level of
significant reads M performs;
» w is the writing level, a lower bound of the level of updates
M performs;

» T IS a type:

7,50, 0... =t | bool | unit | Oref, | (Tﬁ}(j)



Some T YPING RULES (1/31)9

re; F; T M @ (r,w), bool
re; F5 T Ny (ry,w;), ™ 17 =p wy A w;
rc; F; T (if M then Ngelse Ny) @ (v, w'), 7

where ¥’ =r Yprog Ypry and w' = w A wg A wy.

re; 5T M : (r,w), T (rl’w1)>a ro <rc F' CF*

ro,F’
re; 5T N (rg,wg), T rYrrg <p Wi

re; ;T (MN) (v w'), o




Some TYPING RULES

(2/3)

re; 5T N (ryw),0refy £ =< rc
re; 5T (FIV) : ( ,w), 0

re; F; T M 2 (rg, wq), 0 refy
I’C;F;Fl—Ni(Tl,wl),H roYpry pd

re; 5T (M = N) , unit



Some T YPING RULES (3/32)1

FT =M e, T
rc; F;T F (enable rin M) 1 e, T

rc; =M :(ryw), 7 rpup 1’
rc; F; T F (flow F"in M) : (r',w), T




22

RESULTS

» Type Safety: if M is typable in the context of rc and F’ then
M is secure w.r.t. rc, F', and the class of typable memories.

[J no run-time security checks for typable configurations.

» forthe "usual’ language, without the security-minded programming
constructs, if M is secure then M satifies the non-interference
property.

[1 a proof that typability implies non-interference for simple

programs.

Does not hold for programs with declassification. The implication is
strict:
T pupiic = (if 1 Yseerer then M else N)

where M and N always reduce to the same value.



