
Secure Information Flow

as a

Safety Property

Gérard Boudol

INRIA Sophia Antipolis

1

SOFTWARE SECURITY

To prevent application software from running into security violations:

◮ defensive attitude: protection of confidential information and

precious resources.

➥ analysis of binary code, run-time checks.

Severe limitations on possible interactions.

◮ constructive attitude: build and use software offering security

guarantees, that can be trusted.

➥ provide tools to design, develop and maintain secure software.

Aim: security-minded programming primitives and (static) analysis

techniques of programs to build “safe-by-construction” software.

2

FOCUS: CONFIDENTIALITY

(Integrity is dual.)

Information “containers” – files, database entries, library functions,

memory locations... – are classified into (ordered) security levels, e.g.

institution ≺ group(s) ≺ user(s) ≺ root

with

◮ access control: a program should only read information it has the

right to access.

◮ information flow control: a program should not disclose secret

information.

Flow policy: ℓ � ℓ′ says information is allowed to flow from level ℓ

to level ℓ′.

3

PROGRAMMING SECURITY (1/2)

Some security-minded programming constructs, to manage access

control:

◮ (enable ℓ in P) grants the (read) access right ℓ to P .

◮ (restrict P to ℓ) dual, restricts the access right of P by ℓ.

◮ (test ℓ then P else Q) tests whether access right ℓ is granted or

not, behaves accordingly as P or Q.

cf. JAVA “stack inspection.”

4

PROGRAMMING SECURITY (2/2)

and to manage information flow:

◮ [ℓ0ց ℓ1]P tests whether the confidentiality level of P is less than

ℓ0, if yes turn it into ℓ1 – declassification.

◮ (flow F in P) enrich the current flow policy by F for running P .

◮ (revoke F in P) dual, executes P without the flow policy F .

◮ (check F then P else Q) tests whether the flow policy F is

granted, and branches.

e.g. JIF has declassify(M, ℓ) = [⊤, ℓցM].

5

EXAMPLE (DECLASSIFICATION)

The governmental software for computing and collecting taxes (on

the salaries and revenues), while manipulating private data, should

be allowed to publish statistical informations, like

average tax amount = [gvtց public]

∑

individuals

tax amount i

nb individuals

with

public ≺ individual(s) ≺ gvt

6

STANDARD SEMANTICS

for secure information flow: non-interference – “variety in

secret input should not be conveyed to public output”.

◮ operational semantics: (P, µ) ⇓ ν. Starting from memory µ,

program P terminates with memory ν.

◮ memory: mapping program variables, with security levels, to

values.

◮ low equality of memories:

µ =� ℓ ν ⇔def ∀x.∀ℓ′. ℓ′ � ℓ ⇒ µ(xℓ′) = ν(xℓ′)

◮ non-interference: P is secure from the information flow point of

view iff for any security level ℓ

µ =� ℓ ν & (P, µ) ⇓ µ′ & (P, ν) ⇓ ν′ ⇒ µ′ =� ℓ ν′

7

PROBLEM

The non-interference property is inadequate:

◮ incompatible with declassification, inappropriate for revocation.

◮ does not formalize the intuitive notion of secure information flow,

which is

“one should not put in a public location a value elaborated

using confidential information,”

a safety property – “nothing bad will happen.”

Standard static analysis techniques (security type systems) guarantee

a stronger property than non-interference: no “programming error”,

unlike

P ; xpublic := ysecret ; Q

xpublic := (if ysecret then P else Q)

8

TOWARDS SECURE INFORMATION FLOW

as a safety property: define a monitored operational semantics

(cf. Fenton’s Data-Mark-Machine 1974) where

◮ one maintains the current reading clearance (cf. “stack inspection”)

and the current flow policy;

◮ one keeps track of the level of knowledge acquired while compu-

ting, i.e. the current confidentiality level;

◮ one checks that
◮◮ when reading in the memory, the current reading clearance is

enough;
◮◮ when writing in the memory, there is no illegal flow, i.e. the

level of acquired knowledge is less than the level to update.

9

OBJECTIVES

Given a “security programming language:”

◮ define the monitored semantics;

➥ a notion of run-time security violation: being stuck on a security

check.

A program is secure when it successfully passes, for any execution,

all the security checks (Fenton 74).

◮ define static analysis methods – a security type and effect system;

◮ prove type safety: no run-time error for typable programs.

➥ run-time monitoring is not needed for typable programs.

◮ show that, without security programming constructs, the safety

property implies non-interference.

10

A LANGUAGE

à la ML: functional and imperative (∼ JAVA: methods and mutable

fields) with programming constructs for security:

V, W . . . ::= x | uℓ | λxM | tt | ff | () values

M, N . . . ::= V | (if M then N else N ′) | (MN) expressions

| M ; N | (refℓ N) | (!N) | (M := N)

| (restrict M to ℓ) | (enable ℓ in M)

| (test ℓ then M else N)

| (flow F in M) | (revoke F in M)

where ℓ is a security level, and F a flow policy.

Note: the construct [ℓ0ց ℓ1]M is derivable from (flow F in M). We omit

(check F then M else N).

11

SECURITY POLICIES

◮ security levels ℓ are sets of principals.

Reverse inclusion ordering: hierarchy for access rights and

information flow.

ℓ ⊇ ℓ′ means ℓ′ is more restrictive than ℓ.

◮ flow policies F are binary relations on principals: if pF q

information accessible by principal p may flow, according to policy

F , to principal q.

➥ A lattice structure:

ℓ �F ℓ′ ⇔def ∀q ∈ ℓ′ ∃p ∈ ℓ. p F ∗ q

with join ℓ gF ℓ′ and meet ℓ fF ℓ′.

12

MONITORED SEMANTICS (1/4)

In the context of a reading clearance rc and a flow policy F , and

starting with a knowledge level pc (initially ⊥) and a memory µ, the

expression M reduces to a value V , having acquired knowledge level

ℓ, and updates the memory into ν:

rc;F ⊢ (pc,M, µ) ⇓m (ℓ, V, ν)

Some cases:

rc;F ⊢ (pc,M, µ) ⇓m (ℓ′, tt , µ′)

rc;F ⊢ (ℓ′, N0, µ
′) ⇓m (ℓ, V, ν)

rc;F ⊢ (pc, (if M then N0 else N1), µ) ⇓m (ℓ, V, ν)

13

MONITORED SEMANTICS (2/4)

rc;F ⊢ (pc,M, µ) ⇓m (ℓ′, λxM ′, µ′)

rc;F ⊢ (pc, N, µ′) ⇓m (ℓ′′, V ′, ν′)

rc;F ⊢ (ℓ′ gG ℓ′′, {x 7→V ′}M ′, ν′) ⇓m (ℓ, V, ν)

rc;F ⊢ (pc, (MN), µ) ⇓m (ℓ, V, ν)

rc;F ⊢ (pc,M, µ) ⇓m (ℓ′, V ′, µ′)

rc;F ⊢ (pc, N, µ′) ⇓m (ℓ, V, ν)

rc;F ⊢ (pc,M ; N,µ) ⇓m (ℓ, V, ν)

differs from (λxNM).

14

MONITORED SEMANTICS (3/4)

rc;F ⊢ (pc, N, µ) ⇓m (ℓ′, uℓ, ν) ν(uℓ) = V

rc;F ⊢ (pc, (!N), µ) ⇓m (ℓ gF ℓ′, V, ν)
ℓ � rc

rc;F ⊢ (pc,M, µ) ⇓m (ℓ0, uℓ, µ
′)

rc;F ⊢ (pc, N, µ′) ⇓m (ℓ1, V, ν)

rc;F ⊢ (pc, (M := N), µ) ⇓m (pc, (), ν[uℓ := V])
ℓ0gF ℓ1 �F ℓ

15

MONITORED SEMANTICS (4/4)

rc g r;F ⊢ (pc,M, µ) ⇓m (ℓ, V, ν)

rc;F ⊢ (pc, (enable r in M), µ) ⇓m (ℓ, V, ν)

rc;F ∪ F ′ ⊢ (pc,M, µ) ⇓m (ℓ, V, ν)

rc;F ⊢ (pc, (flow F ′ in M), µ) ⇓m (pc gF (ℓ↓F ∪F ′), V, ν)

where

ℓ↓F = { q | ∃p ∈ ℓ. p F ∗ q }

16

SECURE PROGRAMS

◮ uncontrolled semantics: rc;F ⊢ (pc,M, µ) ⇓ (ℓ, V, ν) the same

semantics without security check (F , pc and ℓ are useless). More

permissive:

rc;F ⊢ (pc,M, µ) ⇓m (ℓ, V, ν) ⇒ rc;F ⊢ (pc,M, µ) ⇓ (ℓ, V, ν)

◮ M is secure w.r.t. rc, F and a class M of memories iff

rc;F ⊢ (⊥,M, µ) ⇓ (ℓ, V, ν) ⇒ rc;F ⊢ (⊥,M, µ) ⇓m (ℓ, V, ν)

for any µ ∈ M.

17

EXAMPLES

◮ (enable ℓ in M) rc-secure iff M rc g ℓ-secure.

◮ (restrict M to ℓ) rc-secure iff M rc f ℓ-secure.

◮ (flow F ′ in M) F -secure iff M F ∪ F ′-secure.

◮ (revoke F ′ in M) F -secure iff M F ∗ − F ′-secure.

18

TYPES and EFFECTS

Typing judgments:

rc;F ; Γ ⊢ M : e, τ

where

◮ Γ is a typing context: variables 7→ types;

◮ e is a security effect (r, w), where
◮◮ r is the reading level, an upper bound of the level of

significant reads M performs;
◮◮ w is the writing level, a lower bound of the level of updates

M performs;

◮ τ is a type:

τ, ;σ, θ . . . ::= t | bool | unit | θ refℓ | (τ
e

−−→
ℓ,F

σ)

19

Some TYPING RULES (1/3)

rc;F ; Γ ⊢ M : (r, w), bool

rc;F ; Γ ⊢ Ni : (ri, wi), τ r �F w0 f w1

rc;F ; Γ ⊢ (if M then N0 else N1) : (r′, w′), τ

where r′ = r gF r0 gF r1 and w′ = w f w0 f w1.

rc;F ; Γ ⊢ M : (r, w), τ
(r1,w1)
−−−−→

r2,F ′
σ r2 � rc F ′ ⊆ F ∗

rc;F ; Γ ⊢ N : (r0, w0), τ r gF r0 �F w1

rc;F ; Γ ⊢ (MN) : (r′, w′), σ

20

Some TYPING RULES (2/3)

rc;F ; Γ ⊢ N : (r, w), θ refℓ ℓ � rc

rc;F ; Γ ⊢ (!N) : (r gF ℓ, w), θ

rc;F ; Γ ⊢ M : (r0, w0), θ refℓ

rc;F ; Γ ⊢ N : (r1, w1), θ r0 gF r1 �F ℓ

rc;F ; Γ ⊢ (M := N) : (⊥, w0 f w1 f ℓ), unit

21

Some TYPING RULES (3/3)

rc g r;F ; Γ ⊢ M : e, τ

rc;F ; Γ ⊢ (enable r in M) : e, τ

rc;F ∪ F ′; Γ ⊢ M : (r, w), τ r �F ∪F ′ r′

rc;F ; Γ ⊢ (flow F ′ in M) : (r′, w), τ

22

RESULTS

◮ Type Safety: if M is typable in the context of rc and F then

M is secure w.r.t. rc, F , and the class of typable memories.

➥ no run-time security checks for typable configurations.

◮ for the “usual” language, without the security-minded programming

constructs, if M is secure then M satifies the non-interference

property.

➥ a proof that typability implies non-interference for simple

programs.

Does not hold for programs with declassification. The implication is

strict:

xpublic := (if ! ysecret then M else N)

where M and N always reduce to the same value.

