
Permission Based Verification of Dara Race Freeness for
Lock Free Programs

Christian Haack 1 Clément Hurlin 2

University of Nijmegen 1

Inria Sophia-Antipolis 2

June 20, 2007

Introduction
1

Writing correct multithreaded programs software is:
1 difficult (Flanagan and Qadeer).
2 notoriously difficult (Jacobs et al.).
3 notoriously tricky (Peyton Jones et al.).

Difficulties arise when objects are shared.
Read/write or write/write conflicts: data race.

2

Introduction
1

Writing correct multithreaded programs software is:
1 difficult (Flanagan and Qadeer).
2 notoriously difficult (Jacobs et al.).
3 notoriously tricky (Peyton Jones et al.).

Difficulties arise when objects are shared.
Read/write or write/write conflicts: data race.

2

Permissions Against Races
2

Boyland’s Checking interferences with fractional permissions:
Associate each location with a permission.
Full permission 1 permits to read and write.
Split permissions 1

2 , 1
4 , . . . permit only to read.

Our goal:
Lift this to a Java-like language.
To handle lock free algorithms (possibly with arrays).

I Proof obligations related to array index arithmetic.
I We will delegate them to a theorem prover in an implementation.

3

Permissions Against Races
2

Boyland’s Checking interferences with fractional permissions:
Associate each location with a permission.
Full permission 1 permits to read and write.
Split permissions 1

2 , 1
4 , . . . permit only to read.

Our goal:
Lift this to a Java-like language.
To handle lock free algorithms (possibly with arrays).

I Proof obligations related to array index arithmetic.
I We will delegate them to a theorem prover in an implementation.

3

Permissions Against Races
2

π ::= permissions
1 full permission (needed for writing)
split(π) split permission (needed for reading)
α permission variable

P,Q,R ::= permissions formulas
e (Boolean) expression
Perm(r[κ],π) reference r has permission π to r.κ
Final(r[κ]) full permission to r.κ is lost forever
fa(x;e;P) for all x, e implies P
P * Q permission-splitting conjunction

κ is a field or ∗.
r is a final reference path.

4

Permissions Against Races
2

π ::= permissions
1 full permission (needed for writing)
split(π) split permission (needed for reading)
α permission variable

P,Q,R ::= permissions formulas
e (Boolean) expression
Perm(r[κ],π) reference r has permission π to r.κ
Final(r[κ]) full permission to r.κ is lost forever
fa(x;e;P) for all x, e implies P
P * Q permission-splitting conjunction

κ is a field or ∗.
r is a final reference path.

4

Permissions Against Races
2

Requirements/assumptions are written as methods pre/postconditions:

class DoubleTwoRows extends Thread{
int a[][];

int row;

//@ requires Perm(a[row..row+1][*],1);

//@ ensures Perm(a[row..row+1][*],1);

void run(){
int j = 0;

while(j < a.length){
//@ loop_invariant Perm(a[row..row+1][*],1);

a[row][j] = 2*a[row][j];

a[row+1][j] = 2*a[row+1][j];

j++;

}
}

}

5

Permission Splitting/Combination
3

Permission splitting is not idempotent:

Perm(r[κ],π) 6≡ Perm(r[κ],π) * Perm(r[κ],π)

However, non Final permissions can be split into two smaller permissions:

Perm(r[κ],π) ≡ Perm(r[κ],split(π)) * Perm(r[κ],split(π))

6

Permission Splitting/Combination
3

Permission splitting is not idempotent:

Perm(r[κ],π) 6≡ Perm(r[κ],π) * Perm(r[κ],π)

However, non Final permissions can be split into two smaller permissions:

Perm(r[κ],π) ≡ Perm(r[κ],split(π)) * Perm(r[κ],split(π))

6

Permission Splitting/Combination
3

Final(r[κ]) means that r[κ] is readonly forever.
Final permissions can be split an infinite number of times but cannot be
recombined to a full permission:

Final(r[κ]) ≡ Final(r[κ]) * Final(r[κ])

This extends Java’s final: fields can be finalized at any point (not only during
constructor).

7

Permission Splitting/Combination
3

Splitting an array into different parts:

Perm(r[*],π) ≡ fa(x; 0 <= x & x < r.length; Perm(r[x],π))

!e | !e′ ⇒ fa(x ; e | e′ ; P) ≡ fa(x;e;P) * fa(x;e′;P)

8

Taking Advantage of Aliasing
4

Reference equality is built into the logic:

e == e′ * P[e/x] ≡ e == e′ * P[e′/x]

This allows to verify more programs since permissions can “flow” from one alias
to another.
Boyland used alias types for the same purpose.

Γ ` v : Γ(`) Γ;P ` Q ` 6∈ Q Γ;{ Q * ` == v} ` c : T{R}
(Var Set)

Γ;{P} ` `=v; c : T{R}

C <: Γ(`) Γ;P ` Q ` 6∈ Q Γ;{ Q * Perm(`[*],1)} ` c : T{R}
(New)

Γ;{P} ` `=new C; c : T{R}

9

Taking Advantage of Aliasing
4

Reference equality is built into the logic:

e == e′ * P[e/x] ≡ e == e′ * P[e′/x]

This allows to verify more programs since permissions can “flow” from one alias
to another.
Boyland used alias types for the same purpose.

Γ ` v : Γ(`) Γ;P ` Q ` 6∈ Q Γ;{ Q * ` == v} ` c : T{R}
(Var Set)

Γ;{P} ` `=v; c : T{R}

C <: Γ(`) Γ;P ` Q ` 6∈ Q Γ;{ Q * Perm(`[*],1)} ` c : T{R}
(New)

Γ;{P} ` `=new C; c : T{R}

9

Taking Advantage of Aliasing
4

Reference equality is built into the logic:

e == e′ * P[e/x] ≡ e == e′ * P[e′/x]

This allows to verify more programs since permissions can “flow” from one alias
to another.
Boyland used alias types for the same purpose.

Γ ` v : Γ(`) Γ;P ` Q ` 6∈ Q Γ;{ Q * ` == v} ` c : T{R}
(Var Set)

Γ;{P} ` `=v; c : T{R}

C <: Γ(`) Γ;P ` Q ` 6∈ Q Γ;{ Q * Perm(`[*],1)} ` c : T{R}
(New)

Γ;{P} ` `=new C; c : T{R}

9

Taking Advantage of Aliasing
4

class C{

int x;

int y;

//@ requires Perm(this[*],1);

//@ ensures Perm(this[*],1);

void m(){ ... }

//@ requires Perm(this[*],1);

//@ ensures Perm(this[*],split(1));

void n(){ ... }

}

void main(){
C c = new C();

{Perm(c[∗],1)}

}

10

Taking Advantage of Aliasing
4

class C{

int x;

int y;

//@ requires Perm(this[*],1);

//@ ensures Perm(this[*],1);

void m(){ ... }

//@ requires Perm(this[*],1);

//@ ensures Perm(this[*],split(1));

void n(){ ... }

}

void main(){
C c = new C();

{Perm(c[∗],1)}

C a = c;

{a == c * Perm(c[∗],1)}

}

11

Taking Advantage of Aliasing
4

class C{

int x;

int y;

//@ requires Perm(this[*],1);

//@ ensures Perm(this[*],1);

void m(){ ... }

//@ requires Perm(this[*],1);

//@ ensures Perm(this[*],split(1));

void n(){ ... }

}

void main(){
C c = new C();

{Perm(c[∗],1)}

C a = c;

{a == c * Perm(c[∗],1)}

a.m();

{a == c * Perm(c[∗],1)}

}

12

Taking Advantage of Aliasing
4

class C{

int x;

int y;

//@ requires Perm(this[*],1);

//@ ensures Perm(this[*],1);

void m(){ ... }

//@ requires Perm(this[*],1);

//@ ensures Perm(this[*],split(1));

void n(){ ... }

}

void main(){
C c = new C();

{Perm(c[∗],1)}

C a = c;

{a == c * Perm(c[∗],1)}

a.m();

{a == c * Perm(c[∗],1)}

c.n();

{a == c * Perm(c[∗],split(1)}
}

13

Fork/Join Patterns
5

fork, run, and join are particular methods:
t.fork() spawns a new thread t and calls t’s run method.
t.join() returns if t is a terminated thread (i.e. t’s run method is finished)

Our system uses run’s precondition as the precondition for fork.
Our system uses run’s postcondition as the postcondition for join under
additional conditions:

join permission:
Perm(r[join],splitn(1)): Reference r has permission to use 1

2n -th of r.join’s
post-condition.
Perm(r[join],splitn(1))≡ Perm(r[join],split(. . .(split︸ ︷︷ ︸

n split

(1) . . .)))

14

Fork/Join Patterns
5

fork, run, and join are particular methods:
t.fork() spawns a new thread t and calls t’s run method.
t.join() returns if t is a terminated thread (i.e. t’s run method is finished)
Our system uses run’s precondition as the precondition for fork.
Our system uses run’s postcondition as the postcondition for join under
additional conditions:

join permission:
Perm(r[join],splitn(1)): Reference r has permission to use 1

2n -th of r.join’s
post-condition.
Perm(r[join],splitn(1))≡ Perm(r[join],split(. . .(split︸ ︷︷ ︸

n split

(1) . . .)))

14

Fork/Join Patterns
5

fork, run, and join are particular methods:
t.fork() spawns a new thread t and calls t’s run method.
t.join() returns if t is a terminated thread (i.e. t’s run method is finished)
Our system uses run’s precondition as the precondition for fork.
Our system uses run’s postcondition as the postcondition for join under
additional conditions:

join permission:
Perm(r[join],splitn(1)): Reference r has permission to use 1

2n -th of r.join’s
post-condition.
Perm(r[join],splitn(1))≡ Perm(r[join],split(. . .(split︸ ︷︷ ︸

n split

(1) . . .)))

14

Fork/Join Patterns
5

class Cloner{
Subject s;

...

//@ requires Perm(s[*],α);

//@ ensures Perm(s[*],α);

void run(){ ... }
}

void main(){
Subject s = new Subject();

{Perm(s[∗],1)}

}

15

Fork/Join Patterns
5

class Cloner{
Subject s;

...

//@ requires Perm(s[*],α);

//@ ensures Perm(s[*],α);

void run(){ ... }
}

void main(){
Subject s = new Subject();

{Perm(s[∗],1)}

Cloner cm1 = new Cloner(s);

{Perm(s[∗],1) * Perm(cm1[join],1)}
...

Cloner cm8 = new Cloner(s);

}

16

Fork/Join Patterns
5

class Cloner{
Subject s;

...

//@ requires Perm(s[*],α);

//@ ensures Perm(s[*],α);

void run(){ ... }
}

void main(){
Subject s = new Subject();

{Perm(s[∗],1)}

Cloner cm1 = new Cloner(s);

...

Cloner cm8 = new Cloner(s);

{Perm(s[∗],1) * Perm(cm1[join],1)
* ... * Perm(cm8[join],1)}

}

17

Fork/Join Patterns
5

class Cloner{
Subject s;

...

//@ requires Perm(s[*],α);

//@ ensures Perm(s[*],α);

void run(){ ... }
}

void main(){
Subject s = new Subject();

{Perm(s[∗],1)}

Cloner cm1 = new Cloner(s);

...

Cloner cm8 = new Cloner(s);

{Perm(s[∗],1)}
cm1.fork();

}

18

Fork/Join Patterns
5

class Cloner{
Subject s;

...

//@ requires Perm(s[*],α);

//@ ensures Perm(s[*],α);

void run(){ ... }
}

void main(){
Subject s = new Subject();

{Perm(s[∗],1)}

Cloner cm1 = new Cloner(s);

...

Cloner cm8 = new Cloner(s);

{Perm(s[∗],1/2) * Perm(s[∗],1/2)}
cm1.fork();

{Perm(s[∗],1/2)}

}

19

Fork/Join Patterns
5

class Cloner{
Subject s;

...

//@ requires Perm(s[*],α);

//@ ensures Perm(s[*],α);

void run(){ ... }
}

void main(){
Subject s = new Subject();

{Perm(s[∗],1)}

Cloner cm1 = new Cloner(s);

...

Cloner cm8 = new Cloner(s);

cm1.fork();

...

{Perm(s[∗],1/128)}
cm8.fork();

}

20

Fork/Join Patterns
5

class Cloner{
Subject s;

...

//@ requires Perm(s[*],α);

//@ ensures Perm(s[*],α);

void run(){ ... }
}

void main(){
Subject s = new Subject();

{Perm(s[∗],1)}

Cloner cm1 = new Cloner(s);

...

Cloner cm8 = new Cloner(s);

cm1.fork();

...

{Perm(s[∗],1/256) * Perm(s[∗],1/256)}
cm8.fork();

{Perm(s[∗],1/256)}

}

21

Fork/Join Patterns
5

class Cloner{
Subject s;

...

//@ requires Perm(s[*],α);

//@ ensures Perm(s[*],α);

void run(){ ... }
}

void main(){
Subject s = new Subject();

{Perm(s[∗],1)}

Cloner cm1 = new Cloner(s);

...

Cloner cm8 = new Cloner(s);

cm1.fork();

...

cm8.fork();

{Perm(s[∗],1/256) * Perm(cm8[join],1)}
cm8.join();

{Perm(s[∗],1/128)}

}

22

Fork/Join Patterns
5

class Cloner{
Subject s;

...

//@ requires Perm(s[*],α);

//@ ensures Perm(s[*],α);

void run(){ ... }
}

void main(){
Subject s = new Subject();

{Perm(s[∗],1)}

Cloner cm1 = new Cloner(s);

...

Cloner cm8 = new Cloner(s);

cm1.fork();

...

cm8.fork();

cm8.join();

...

{Perm(s[∗],1/2) * Perm(cm1[join],1)}
cm1.join();

{Perm(s[∗],1)}
}

23

Semantics of Permission Formulas
6

Permission formulas are interpreted w.r.t. permission tables.

Γ `P;h;s |=t P
I “P holds in permission table P , heap h and local store s of thread t”

[|r|]hs = o [|π|]≤P(o,κ)(ref (r)h,t
s)

(Valid Perm)
Γ `P;h;s |=t Perm(r[κ],π)

Permissions tables are defined such that:

∑
[|r|]hs =o

P(o,κ)(r)≤ 1

1 Two threads writing to location ` need permission 1 to `.
2 The sum of permissions to a location is less or equal than 1 in verified programs.
3 Thus, verified programs do not contain data races.

24

Semantics of Permission Formulas
6

Permission formulas are interpreted w.r.t. permission tables.

Γ `P;h;s |=t P
I “P holds in permission table P , heap h and local store s of thread t”

[|r|]hs = o [|π|]≤P(o,κ)(ref (r)h,t
s)

(Valid Perm)
Γ `P;h;s |=t Perm(r[κ],π)

Permissions tables are defined such that:

∑
[|r|]hs =o

P(o,κ)(r)≤ 1

1 Two threads writing to location ` need permission 1 to `.
2 The sum of permissions to a location is less or equal than 1 in verified programs.
3 Thus, verified programs do not contain data races.

24

Semantics of Permission Formulas
6

Permission formulas are interpreted w.r.t. permission tables.

Γ `P;h;s |=t P
I “P holds in permission table P , heap h and local store s of thread t”

[|r|]hs = o [|π|]≤P(o,κ)(ref (r)h,t
s)

(Valid Perm)
Γ `P;h;s |=t Perm(r[κ],π)

Permissions tables are defined such that:

∑
[|r|]hs =o

P(o,κ)(r)≤ 1

1 Two threads writing to location ` need permission 1 to `.
2 The sum of permissions to a location is less or equal than 1 in verified programs.
3 Thus, verified programs do not contain data races.

24

Semantics of Permission Formulas
6

Permission formulas are interpreted w.r.t. permission tables.

Γ `P;h;s |=t P
I “P holds in permission table P , heap h and local store s of thread t”

[|r|]hs = o [|π|]≤P(o,κ)(ref (r)h,t
s)

(Valid Perm)
Γ `P;h;s |=t Perm(r[κ],π)

Permissions tables are defined such that:

∑
[|r|]hs =o

P(o,κ)(r)≤ 1

1 Two threads writing to location ` need permission 1 to `.

2 The sum of permissions to a location is less or equal than 1 in verified programs.
3 Thus, verified programs do not contain data races.

24

Semantics of Permission Formulas
6

Permission formulas are interpreted w.r.t. permission tables.

Γ `P;h;s |=t P
I “P holds in permission table P , heap h and local store s of thread t”

[|r|]hs = o [|π|]≤P(o,κ)(ref (r)h,t
s)

(Valid Perm)
Γ `P;h;s |=t Perm(r[κ],π)

Permissions tables are defined such that:

∑
[|r|]hs =o

P(o,κ)(r)≤ 1

1 Two threads writing to location ` need permission 1 to `.
2 The sum of permissions to a location is less or equal than 1 in verified programs.

3 Thus, verified programs do not contain data races.

24

Semantics of Permission Formulas
6

Permission formulas are interpreted w.r.t. permission tables.

Γ `P;h;s |=t P
I “P holds in permission table P , heap h and local store s of thread t”

[|r|]hs = o [|π|]≤P(o,κ)(ref (r)h,t
s)

(Valid Perm)
Γ `P;h;s |=t Perm(r[κ],π)

Permissions tables are defined such that:

∑
[|r|]hs =o

P(o,κ)(r)≤ 1

1 Two threads writing to location ` need permission 1 to `.
2 The sum of permissions to a location is less or equal than 1 in verified programs.
3 Thus, verified programs do not contain data races.

24

Conclusion
6

Work in progress:
Soundness.

Future work:
Algorithmic checking ?
Implementation ?
More general system (locking).
Alternative approach to avoid the final limitation (with modifies clause).
Relationship with separation logic ?

25

