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m Difficulties arise when objects are shared.
m Read/write or write/write conflicts: data race.
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Boyland’s Checking interferences with fractional permissions:
m Associate each location with a permission.
m Full permission 1 permits to read and write.
m Split permissions %, %, ... permit only to read.
Our goal:
m Lift this to a Java-like language.

m To handle lock free algorithms (possibly with arrays).
> Proof obligations related to array index arithmetic.

» We will delegate them to a theorem prover in an implementation.
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Perm(r[k],

permissions

full permission (needed for writing)
split permission (needed for reading)
permission variable

permissions formulas
(Boolean) expression
m) reference r has permission 7 to r.K

Final(r[x])  full permission to r.k is lost forever

fa(x;e; P)
PxQ

m K is afield or *.

m ris a final reference path.

for all x, e implies P
permission-splitting conjunction
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Permissions Against Races %ﬂ

Requirements/assumptions are written as methods pre/postconditions:

class DoubleTwoRows extends Thread{
int a[l1[l;
int row;

//@ requires Perm(a[row..row+1] [*],1);
//@ ensures Perm(alrow..row+1] [*],1);
void run(){
int j = 0;
while(j < a.length){
//@ loop_invariant Perm(alrow..row+1][*],1);
alrow] [j1 = 2*alrow] [j1;
alrow+1][j]1 = 2*alrow+1][j];
jtts
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Permission Splitting/Combination

Permission splitting is not idempotent:

Perm(r[k|,7) # Perm(r[k],7) * Perm(r[k],7)

However, non Final permissions can be split into two smaller permissions:

Perm(r[k|,w) = Perm(r[k],split(n)) * Perm(r[k],split(x))
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Permission Splitting/Combination %

m Final(r[k]) means that r[x] is readonly forever.

m Final permissions can be split an infinite number of times but cannot be
recombined to a full permission:

Final(r[x]) = Final(r[k]) * Final(r[k])

m This extends Java’s final: fields can be finalized at any point (not only during
constructor).



Permission Splitting/Combination

Splitting an array into different parts:

Perm(r[*],m) = fa(x; 0 <=x& x < r.length; Perm(r[x|, 7))

te| 1/ = fa(x;ele; P) = fa(x;e;P) * fa(x;e’; P)
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Reference equality is built into the logic:
e==¢ * Ple/x] = e==¢' * Pl¢'/x]

m This allows to verify more programs since permissions can “flow” from one alias
to another.

m Boyland used alias types for the same purpose.
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Reference equality is built into the logic:

e==¢ x Ple/x] = e==¢ * Pl /x]

m This allows to verify more programs since permissions can “flow” from one alias
to another.

m Boyland used alias types for the same purpose.

I'tv:T(¢) TPEQ (¢0 T;{Q*l==v}Fc:T{R}
I {P} - L4=v;c: T{R}

(Var Set)

c<:T{) T;P-Q LZ€Q T;{Qx*Perm(/[*],1)}Fc: T{R}
[ {P}+ {=new C;c: T{R}

New)
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void nO{ ... }

void main(){
C c = new CO;
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class C{
int x;
int y;
//@ requires Perm(this[*],1);
//@ ensures Perm(this[*],1);
void mQO{ ... }

//@ requires Perm(this[*],1);

//@ ensures Perm(this[*],split(1));

void nO{ ... }

void main(){
C c = mnew CQ);

{Perm(c[*],1)}

C a=c;

{a == ¢ * Perm(c[«],1)}
a.mQ);

{a == ¢ * Perm(c[«],1)}
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Taking Advantage of Aliasing %ﬂ

void main(){

Clzzi if ’ EPZriZ;*iﬁéi
int y;
Ca-=c;
170 mmoutos. Pemm(enioled 1 == e v pemlcbhD)
void mO{ ... } a.m();
//@ requires Perm(this[*],1); te == c » Pemm(cld, 1)}
//@ ensures Perm(this[*],split(1)); c.nQ);
void nO{ ... } {a == ¢ * Perm(c[+],split(1)}
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&

fork, run, and join are particular methods:
m t.fork() spawns a new thread t and calls t’s run method.
® t.join() returns if t is a terminated thread (i.e. t’s run method is finished)
m Our system uses run’s precondition as the precondition for fork.

m Our system uses run’s postcondition as the postcondition for join under
additional conditions:

join permission:
m Perm(r[join],split”(1)): Reference r has permission to use 5-th of 7.join’s
post-condition.
m Perm(r[join],split”(1)) =Perm(r[join],split(...(split(l)...)))

n split
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class Cloner{
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//@ requires Perm(s[*],q);
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Fork/Join Patterns

class Cloner{
Subject s;

//@ requires Perm(s[*],q);
//@ ensures Perm(s[*],q);
void run(O{ ... }

}

S

void main(){
Subject s = new Subject();

{Perm(s[+],1)}

Cloner cml = new Cloner(s);

Cloner cm8 = new Cloner(s);
cml.fork();

cm8.fork();

cm8. join() ;

'.{Perm(skﬁ,l/Z) * Perm(cml[join], 1)}
cml.join();

{Perm(s[+],1)}
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Permission formulas are interpreted w.r.t. permission tables.
nl-P sk P

> “P holds in permission table &2, heap h and local store s of thread ¢

[rli =0 7] < P(0,K)(ref (r)i")
't P;h;s = Pern(r[k|, )

(Valid Perm)

Permissions tables are defined such that:

Z P(0,x)(r) <1

Irl=o

Two threads writing to location ¢ need permission 1 to /.
The sum of permissions to a location is less or equal than 1 in verified programs.

Thus, verified programs do not contain data races.
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Conclusion %

Work in progress:

m Soundness.

Future work:

Algorithmic checking ?

Implementation ?

(]
m More general system (locking).

m Alternative approach to avoid the final limitation (with modifies clause).
(]

Relationship with separation logic ?



