State-oriented noninterference for CCS

Ilaria Castellani

INRIA SOPHIA ANTIPOLIS

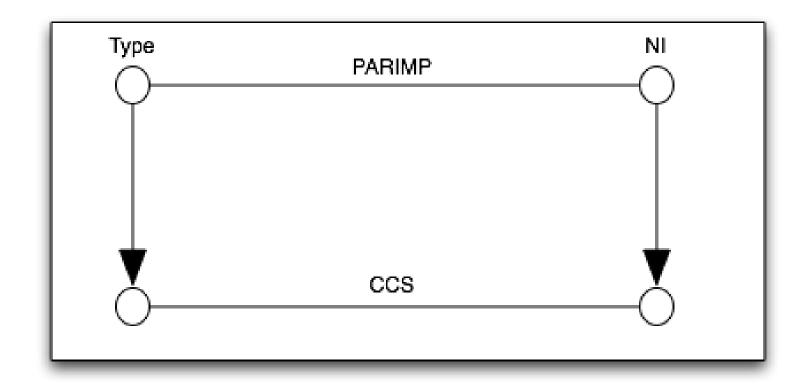
2ème réunion PARSEC

Paris, 20 juin 2007

Motivation

- Relate language-based security and process calculi security.
- First objective: relate the noninterference property (NI) for a parallel imperative language with security properties for CCS.
- Starting point:
 - [Focardi, Rossi & Sabelfeld '05]: translation of a sequential imperative language into CCS, preserving *time-sensitive* NI.
 - [Honda, Yoshida, Vasconcelos '01] and following papers: translation of more powerful languages into a variant of the π -calculus, preserving both NI and types.

Objective



Translate a parallel imperative language PARIMP into the process calculus CCS, preserving both noninterference (NI) and types.

Language-based security

- Information: contained in "objects", used by "subjects".
- Objects have security levels, eg: high = secret, low = public.
- Secure information flow: no flow from high to low objects.

$$X_L := Y_H$$
 not secure
 $Z_H := Y_H ; X_L := 0$ secure

- Imperative languages:
 - Subjects = programs. Objects = variables. Tools:
 - (self-)bisimulation to formalise the security property;
 - type systems to statically ensure it.

Process calculi security

• Subjects = processes. Objects = channels $a, b, c \dots$

$$a_h(x). \overline{b}_\ell \langle x \rangle$$
 not secure

• Data flow and control flow are closely intertwined:

$$a_h(x). \overline{b}_\ell$$
 $a_h(x). \overline{b}_\ell \langle v \rangle$ secure?

Warning ! Can be used to implement indirect insecure flows:

 $(a_h(x). \texttt{if } x \texttt{ then } \overline{b}_\ell \texttt{ else } \overline{c}_\ell \mid (b_\ell, \overline{d}_\ell \langle 0 \rangle + c_\ell, \overline{d}_\ell \langle 1 \rangle)) \setminus \{b_\ell, c_\ell\}$

The imperative language PARIMP

Variables X, Y, Z, values V, V' and expressions E, E':

$$E ::= F(X_1, \ldots, X_n)$$

Syntax of programs (or commands) C, D:

$$\begin{array}{rrrr} C, \, D & ::= & \operatorname{nil} & \mid X := E & \mid C \, ; \, D & \mid (\operatorname{if} E \, \operatorname{then} \, C \, \operatorname{else} \, D) & \mid \\ & & (\operatorname{while} E \, \operatorname{do} \, C) & \mid (C \parallel D) \end{array}$$

Semantics: transitions on configurations $\langle C, s \rangle \rightarrow \langle C', s' \rangle$ where s, s' are *states* (finite mappings from variables to values).

Operational semantics of PARIMP (1/3)

(ASSIGN-OP)

$$\frac{\langle X := E, s \rangle \to \langle \operatorname{nil}, s[s(E)/X] \rangle}{\langle C, s \rangle \to \langle C', s' \rangle}$$
(SEQ-OP2)

$$\frac{\langle C, s \rangle \to \langle C', s' \rangle}{\langle C; D, s \rangle \to \langle C'; D, s' \rangle}$$

 $\langle \texttt{nil}; D, s \rangle \rightarrow \langle D, s \rangle$

Operational semantics of PARIMP (2/3)

$$\begin{array}{ll} \text{(COND-OP1)} & \displaystyle \frac{s(E) = tt}{\langle \text{if } E \text{ then } C \text{ else } D, s \rangle \to \langle C, s \rangle} \\ \text{(COND-OP2)} & \displaystyle \frac{s(E) \neq tt}{\langle \text{if } E \text{ then } C \text{ else } D, s \rangle \to \langle D, s \rangle} \\ \text{(WHILE-OP1)} & \displaystyle \frac{s(E) = tt}{\langle \text{while } E \text{ do } C, s \rangle \to \langle C; \text{while } E \text{ do } C, s \rangle} \\ \text{(WHILE-OP2)} & \displaystyle \frac{s(E) \neq tt}{\langle \text{while } E \text{ do } C, s \rangle \to \langle \text{nil}, s \rangle} \end{array}$$

Operational semantics of PARIMP (3/3)

$$\begin{array}{ll} (\text{PARL-OP1}) & \frac{\langle C, s \rangle \to \langle C', s' \rangle}{\langle C \parallel D, s \rangle \to \langle C' \parallel D, s' \rangle} \\ (\text{PARL-OP2}) & \frac{}{\langle \text{nil} \parallel D, s \rangle \to \langle D, s \rangle} \\ (\text{PARR-OP1}) & \frac{\langle D, s \rangle \to \langle D', s' \rangle}{\langle C \parallel D, s \rangle \to \langle C \parallel D', s' \rangle} \\ (\text{PARR-OP2}) & \frac{}{\langle C \parallel \text{nil}, s \rangle \to \langle C, s \rangle} \end{array}$$

Security property for PARIMP

Variables: partitioned into L (low variables) and H (high variables).

L-equality on states:

 $s =_L t$ if $\operatorname{dom}(s) = \operatorname{dom}(t)$ and $(X \in \operatorname{dom}(s) \cap L \Rightarrow s(X) = t(X))$

L-bisimulation on programs:

Symmetric relation $S \subseteq (\mathcal{C} \times \mathcal{C})$ such that C S D implies, for any s and t such that $s =_L t$:

if $\langle C, s \rangle \to \langle C', s' \rangle$, then there exist D', t' such that $\langle D, t \rangle \mapsto \langle D', t' \rangle$ where $s' =_L t'$ and $C' \mathcal{S} D'$

where \mapsto is the reflexive closure of \rightarrow (at most one step).

Security property for PARIMP (ctd)

L-bisimilarity: $C \simeq_L D$ if C S D for some *L*-bisimulation S.

L-security: a program C is *L*-secure if $C \simeq_L C$.

Examples of insecure programs:

1. (while
$$x_H$$
 do nil); $y_L := 0$

2. if
$$x_H = 0$$
 then loop $(y_L := 0; y_L := 1)$
else loop $(y_L := 1; y_L := 0)$
where loop $C \stackrel{\text{def}}{=}$ (while $tt \text{ do } C$).

The process calculus CCS (core)

Process prefixes: $\pi ::= a(x) | \overline{a} \langle e \rangle | a | \overline{a}$

Parametric processes: $T ::= A \mid (\operatorname{rec} A(\tilde{x}) \cdot P)$

Syntax of CCS processes:

$$P, Q ::= \sum_{i \in I} \pi_i P_i \mid (P \mid Q) \mid (\nu a) P \mid T(\tilde{e})$$

Abbreviations:

$$\mathbf{0} \stackrel{\text{def}}{=} \sum_{i \in \emptyset} \pi_i . P_i \qquad \pi_1 . P_1 + \pi_2 . P_2 \stackrel{\text{def}}{=} \sum_{i \in \{1,2\}} \pi_i . P_i$$

Semantics of CCS (1/3)

Actions α, β, γ :

$$Act \stackrel{\mathrm{df}}{=} \{av : a \in \mathcal{N}, v \in Val\} \cup \{\bar{a}v : a \in \mathcal{N}, v \in Val\} \cup \{\tau\}$$

Operational rules for nondeterministic choice:

(SUM-OP₁)
$$\sum_{i \in I} \pi_i . P_i \xrightarrow{av} P_i \{v/x\}$$
, if $\pi_i = a(x)$ and $v \in Val$
(SUM-OP₂) $\sum_{i \in I} \pi_i . P_i \xrightarrow{\overline{av}} P_i$, if $\pi_i = \overline{a} \langle e \rangle$ and $val(e) = v$

Semantics of CCS (2/3)

Operational rules for parallelism, restriction and recursion:

$$(PAR-OP_{1}) \quad \frac{P \xrightarrow{\alpha} P'}{P \mid Q \xrightarrow{\alpha} P' \mid Q} \qquad (PAR-OP_{2}) \quad \frac{P \xrightarrow{\alpha} P'}{Q \mid P \xrightarrow{\alpha} Q \mid P'}$$
$$(PAR-OP_{3}) \quad \frac{P \xrightarrow{\alpha} P' \quad Q \xrightarrow{\overline{a}v} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q'} \qquad (RES-OP) \quad \frac{P \xrightarrow{\alpha} P' \quad b \neq subj(\alpha)}{(\nu b)P \xrightarrow{\alpha} (\nu b)P'}$$
$$(REC-OP) \quad \frac{P\{\tilde{v}/\tilde{x}\}\{(\operatorname{rec} A(\tilde{x}) \cdot P)/A\} \xrightarrow{\alpha} P' \qquad \tilde{v} = val(\tilde{e})}{(\operatorname{rec} A(\tilde{x}) \cdot P)(\tilde{e}) \xrightarrow{\alpha} P'}$$

Security properties for CCS

Weak transitions:

•
$$P \stackrel{\alpha}{\Longrightarrow} P' \stackrel{\text{df}}{=} P \stackrel{\tau}{\longrightarrow} \stackrel{*}{\longrightarrow} \stackrel{\alpha}{\longrightarrow} \stackrel{\tau}{\longrightarrow} \stackrel{*}{\longrightarrow}$$

• $P \stackrel{\hat{\alpha}}{\Longrightarrow} P' \stackrel{\text{df}}{=} \begin{cases} P \stackrel{\alpha}{\Longrightarrow} P' & \text{if } \alpha \neq \tau \\ P \stackrel{\tau}{\longrightarrow} \stackrel{*}{\longrightarrow} P' & \text{if } \alpha = \tau \end{cases}$

Weak bisimulation:

Symmetric relation $\mathcal{S} \subseteq (\mathcal{P}r \times \mathcal{P}r)$ such that $P \ \mathcal{S} \ Q$ implies:

if $P \xrightarrow{\alpha} P'$ then there exists Q' such that $Q \xrightarrow{\hat{\alpha}} Q'$ and $P' \mathcal{S} Q'$.

Weak bisimilarity: $P \approx Q$ if $P \mathcal{S} Q$ for some weak bisimulation \mathcal{S} .

Simple security (BNDC) [Focardi-Gorrieri '95]

Channels are partitioned into high channels \mathcal{H} and low channels \mathcal{L} . $\mathcal{P}r_{syn}^{\mathcal{H}}$: set of syntactically high processes, with no channels in \mathcal{L} .

Bisimulation-based Non Deducibility on Compositions (BNDC) P is secure with respect to $\mathcal{H}, P \in \mathsf{BNDC}_{\mathcal{H}}$, if for every $\Pi \in \mathcal{P}r_{syn}^{\mathcal{H}}$: $(\nu \mathcal{H})(P \mid \Pi) \approx (\nu \mathcal{H})P$

Examples.

$$\begin{array}{ll} a_h \, \cdot \, \overline{b}_\ell & a_h \, + \, \overline{b}_\ell & \text{not secure} \\ a_h \mid \overline{b}_\ell & a_h \, \cdot \, \overline{b}_\ell \, + \, \overline{b}_\ell & \text{secure} \end{array}$$

Choosing $\Pi = \overline{a_h}$ for the first two, we get $(\nu \mathcal{H})(P \mid \Pi) \not\approx (\nu \mathcal{H})P$.

A more robust security property

Transitions $\stackrel{\alpha}{\Longrightarrow}_{\mathcal{H}}$, allowing simulation of high actions by inaction:

$$P \stackrel{\widetilde{\alpha}}{\Longrightarrow}_{\mathcal{H}} P' \stackrel{\mathrm{df}}{=} \begin{cases} P \stackrel{\widehat{\alpha}}{\Longrightarrow} P' \text{ or } P \stackrel{\tau}{\longrightarrow}^{*} P' & \text{if } subj(\alpha) \in \mathcal{H} \\ P \stackrel{\widehat{\alpha}}{\Longrightarrow} P' & \text{otherwise} \end{cases}$$

Weak bisimulation up-to-high:

Symmetric relation $\mathcal{S} \subseteq (\mathcal{P}r \times \mathcal{P}r)$ such that $P \mathcal{S} Q$ implies:

if $P \xrightarrow{\alpha} P'$ then there exists Q' such that $Q \xrightarrow{\widetilde{\alpha}} \mathcal{H} Q'$ and $P' \mathcal{S} Q'$.

Weak bisimilarity up to high: $P \approx_{\mathcal{H}} Q$ if $P \mathcal{S} Q$ for some weak bisimulation up to high \mathcal{S} .

Persistent security (PBNDC)[Focardi-Rossi '02] Persistent BNDC (PBNDC) P is persistently secure wrt $\mathcal{H}, P \in \mathsf{PBNDC}_{\mathcal{H}}, \text{ if } P \approx_{\mathcal{H}} (\nu \mathcal{H}) P.$

Theorem [Focardi-Rossi '02]. $P \in \mathsf{PBNDC}_{\mathcal{H}}$ iff $P' \in \mathsf{BNDC}$ for any reachable state P' of P.

Example.

 $P = P_1 + P_2 = a_{\ell} \cdot b_h \cdot \overline{c_{\ell}} + a_{\ell} \cdot (\nu d_{\ell}) (d_{\ell} \mid \overline{d_{\ell}} \mid d_{\ell} \cdot \overline{c_{\ell}}) \text{ is secure but}$ not persistently secure.

Secure: show that $(\nu \mathcal{H})(P \mid \overline{b_h}) \approx (\nu \mathcal{H})P$.

Not persistently secure: the reachable state b_h . $\overline{c_\ell}$ is not secure.

A security type system for PBNDC

Inspired from Pottier's type system for the π -calculus (Pottier '02).

Security levels σ, δ, θ form a lattice (\mathcal{T}, \leq) , where \leq stands for "less secret than". Here we assume $\mathcal{T} = \{\ell, h\}$, with $\ell \leq h$.

Type environment Γ : mapping from channels to security levels.

Type judgements: $\Gamma \vdash_{\sigma} P$.

Intuition: σ is a lower bound on the security level of channels in P.

Typing rules

(SUM)	(PAR)
$\forall i \in I : \Gamma(\pi_i) = \sigma \qquad \Gamma \vdash_{\sigma} P_i$	$\Gamma \vdash_{\sigma} P \qquad \Gamma \vdash_{\sigma} Q$
$\Gamma \vdash_{\sigma} \sum_{i \in I} \pi_i . P_i$	$\Gamma \vdash_{\sigma} P \mid Q$
$({ m Res})$	(SUB)
$\Gamma, b: \theta \vdash_{\sigma} P$	$\Gamma \vdash_{\sigma} P \qquad \sigma' \leq \sigma$
$\Gamma \vdash_{\sigma} (\nu b) P$	$\Gamma \vdash_{\sigma'} P$
(ReC_1)	(ReC_2)
$\Gamma(A) = \sigma$	$\Gamma, A: \sigma \vdash_{\sigma} P$
$\overline{\Gamma \vdash_{\sigma} A(\tilde{e})}$	$\Gamma \vdash_{\sigma} (\operatorname{rec} A(\tilde{x}) . P)(\tilde{e})$

Soundness of the type system for PBNDC

Lemma [$\approx_{\mathcal{H}}$ - invariance under high actions]

If $\Gamma \vdash_{\sigma} P$ and $\mathcal{H} = \{ a \in \mathcal{N} : \Gamma(a) = h \}$. If $P \xrightarrow{\alpha} P'$ and $\Gamma(\alpha) = h$ then $P \approx_{\mathcal{H}} P'$.

Main result: typability \Rightarrow persistent security (PBNDC):

Theorem [Soundness]

If $\Gamma \vdash_{\sigma} P$ then $P \approx_{\mathcal{H}} (\nu \mathcal{H})P$, where $\mathcal{H} = \{ a \in \mathcal{N} : \Gamma(a) = h \}.$

Milner's translation of PARIMP into CCS (1/4)

A variable X is modelled by a *register*:

$$Reg_X(v) \stackrel{\text{def}}{=} put_X(x).Reg_X(x) + \overline{get_X}\langle v \rangle.Reg_X(v)$$

A state s is mapped to a pool of registers:

$$[\![s]\!] = Reg_{X_1}(s(X_1)) | \cdots | Reg_{X_n}(s(X_n)) \quad \text{if } \operatorname{dom}(s) = \{X_1, \dots, X_n\}$$

An expression $E = F(X_1, \ldots, X_n)$ is mapped to:

$$\llbracket F(X_1,\ldots,X_n) \rrbracket = get_{X_1}(x_1).\cdots.get_{X_n}(x_n).\overline{\mathsf{res}}\langle f(x_1,\ldots,x_n) \rangle.\mathbf{0}$$

Auxiliary operator *Into*, for transmission of values:

$$P Into(x) Q \stackrel{\text{def}}{=} (P \mid \texttt{res(x)}. Q) \backslash \texttt{res}$$

Translation of PARIMP into CCS (2/4)

A special channel **done**, on which processes signal termination.

Auxiliary operators *Done*, *Before* and *Par*:

$$Done \stackrel{\text{def}}{=} \overline{\text{done.}} \mathbf{0}$$

$$C \text{ Before } D \stackrel{\text{def}}{=} (C[d/\text{done}] \mid d. D) \setminus d$$

$$C_1 \text{ Par } C_2 \stackrel{\text{def}}{=} ((C_1[d_1/\text{done}] \mid C_2[d_2/\text{done}]) \mid (d_1. d_2. Done + d_2. d_1. Done)) \setminus \{d_1, d_2\}$$

Translation of PARIMP into CCS (3/4)

Translation of commands:

$$\llbracket nil \rrbracket = Done$$

$$\llbracket X := E \rrbracket = \llbracket E \rrbracket Into(x) (\overline{put_X} \langle x \rangle. Done)$$

$$\llbracket C; D \rrbracket = \llbracket C \rrbracket Before \llbracket D \rrbracket$$

$$\llbracket (if E then C_1 else C_2) \rrbracket = \llbracket E \rrbracket Into(x) (if x then \llbracket C_1 \rrbracket else \llbracket C_2 \rrbracket)$$

$$\llbracket (while E do C) \rrbracket = W, where W \stackrel{\text{def}}{=} \llbracket E \rrbracket Into(x)$$

$$(if x then \llbracket C \rrbracket Before W else Done)$$

$$\llbracket (C_1 \parallel C_2) \rrbracket = \llbracket C_1 \rrbracket Par \llbracket C_2 \rrbracket$$

Translation of PARIMP into CCS (4/4)

Translation of configurations $\langle C, s \rangle$:

$$\llbracket \langle C, s \rangle \rrbracket = (\llbracket C \rrbracket \mid \llbracket s \rrbracket) \setminus Acc_s \, \cup \, \{\texttt{done}\}$$

where Acc_s is the *access sort* of state s:

$$Acc_s \stackrel{\text{def}}{=} \{ get_X, put_X \mid X \in \operatorname{dom}(s) \}$$

Problem: atomicity of assignments is not preserved !

$$C = (X := X + 1 \parallel X := X + 1)$$

Problem with atomicity (1/2)

Program C = (X := X + 1 || X := X + 1)

The translation of C is:

$$\begin{bmatrix} C \end{bmatrix} = ((get_X(x), \overline{res}\langle x+1 \rangle | res(y), \overline{put_X}\langle y \rangle, \overline{d_1}) \setminus res \\ | (get_X(x), \overline{res}\langle x+1 \rangle | res(y), \overline{put_X}\langle y \rangle, \overline{d_2}) \setminus res \\ | (d_1, d_2, Done + d_2, d_1, Done)) \setminus \{d_1, d_2\}$$

The second get_X action may be executed before the first $\overline{put_X}$ \Rightarrow the same value $v_1 = v_0 + 1$ may be assigned twice to X.

Problem with atomicity (2/2)

Suppose X has low level:

$$C_L = (X_L := X_L + 1 \parallel X_L := X_L + 1)$$

Consider the interleaving of the assignments in C_L :

$$D_L = (X_L := X_L + 1; X_L := X_L + 1)$$

Security is not preserved:

 $\widehat{C} = (\text{if } z_H = 0 \text{ then } C_L \text{ else } D_L) \text{ is secure, but } \llbracket \widehat{C} \rrbracket \text{ is not secure.}$

Adapting the translation (1/2)

A global semaphore to ensure atomicity:

$$Sem \stackrel{\text{def}}{=} \texttt{lock.unlock}. Sem$$

Adapted translation of assignments and configurations:

$$\llbracket X := E \rrbracket = \overline{\operatorname{lock}}. \llbracket E \rrbracket \operatorname{Into}(x) (\overline{put_X} \langle x \rangle. \overline{\operatorname{unlock}}. \operatorname{Done})$$
$$\llbracket \langle C, s \rangle \rrbracket = (\llbracket C \rrbracket | \llbracket s \rrbracket | \operatorname{Sem}) \setminus \operatorname{Acc}_s \cup \{\operatorname{done}, \operatorname{lock}, \operatorname{unlock}\}$$

Atomic translation of expression E:

$$\llbracket F(X_1, \dots, X_n) \rrbracket_{at} = \overline{\operatorname{lock}}. getseq_{\tilde{X}}(\tilde{x}). \overline{\operatorname{res}} \langle f(\tilde{x}) \rangle. \overline{\operatorname{unlock}}. \mathbf{0}$$

Adapting the translation (2/2)

Adapted translation of conditionals and loops:

 $\begin{bmatrix} (\text{if } E \text{ then } C_1 \text{ else } C_2) \end{bmatrix} = \begin{bmatrix} E \end{bmatrix}_{at} Into(x) \text{ (if } x \text{ then } \llbracket C_1 \end{bmatrix} \text{ else } \llbracket C_2 \end{bmatrix})$ $\begin{bmatrix} (\text{while } E \text{ do } C) \end{bmatrix} = W, \text{ where } W \stackrel{\text{def}}{=} \llbracket E \rrbracket_{at} Into(x)$ $\text{ (if } x \text{ then } \llbracket C \rrbracket Before W \text{ else } Done)$

Security is preserved by the translation

To set an operational correspondence between $\langle C, s \rangle$ and its image:

 $[\![\langle C, s \rangle]\!] = ([\![C]\!] \mid [\![s]\!] \mid Sem) \setminus Acc_s \ \cup \ \{\texttt{done}, \texttt{lock}, \texttt{unlock}\}$

one needs a means to observe changes performed by $\llbracket C \rrbracket$ on $\llbracket s \rrbracket$.

Observable register $OReg_X$:

Operational correspondence

Labelled transitions $\xrightarrow{in_X v}$ and $\xrightarrow{\overline{out}_X}$ (and $\xrightarrow{\tau} \stackrel{\text{def}}{=} \rightarrow$) for configurations:

$$(\text{IN-OP}) \quad \frac{X \in \text{dom}(s)}{\langle C, s \rangle \xrightarrow{in_X v} \langle C, s[v/X] \rangle} \qquad (\text{OUT-OP}) \quad \frac{s(X) = v}{\langle C, s \rangle \xrightarrow{\overline{out_X} v} \langle C, s \rangle}$$

Transitions are preserved and reflected by the translation:

1.
$$\langle C, s \rangle \xrightarrow{\alpha} \langle C', s' \rangle$$
 implies $\exists P . [\![\langle C, s \rangle]\!] \Longrightarrow^{\alpha} P \approx [\![\langle C', s' \rangle]\!]$

2. $\llbracket \langle C, s \rangle \rrbracket \stackrel{\alpha}{\Longrightarrow} P$ implies either $P \approx \llbracket \langle C, s \rangle \rrbracket$ or $\exists C', s' . P \approx \llbracket \langle C', s' \rangle \rrbracket \land \langle C, s \rangle \stackrel{\hat{\alpha}}{\Longrightarrow} \langle C', s' \rangle.$

Security is preserved: C secure $\Rightarrow [\![\langle C, s \rangle]\!]$ satisfies PBNDC.

Types are not preserved by the translation

Consider the program, typable in PARIMP:

$$C = (X_H := X_H + 1; Y_L := Y_L + 1)$$

Translation of C:

$$\begin{array}{l} (\nu d) \quad (\ \overline{\texttt{lock}}. \ (\nu \, \texttt{res}_1) \ (get_{X_H}(x). \ \overline{\texttt{res}_1} \langle x+1 \rangle \ | \ \texttt{res}_1(z_1). \ \overline{put_{X_H}} \langle z_1 \rangle. \ \overline{\texttt{unlock}}. \ \overline{d}) \ | \\ \\ d. \ \overline{\texttt{lock}}. \ (\nu \, \texttt{res}_2) \ (get_{Y_L}(y). \ \overline{\texttt{res}_2} \langle y+1 \rangle \ | \ \texttt{res}_2(z_2). \ \overline{put_{Y_L}} \langle z_2 \rangle. \ \overline{\texttt{unlock}}. \ \overline{\texttt{done}}) \) \end{array}$$

Which choice of security levels for channels lock, unlock and d?

Adapting the type system

Idea: restricted high actions without parameters do not leak information if they are granted to be enabled uniformly in all low-equivalent states.

True for actions lock, unlock: the semaphore is always released after a finite number of steps.

Instead, action **done** may be prevented by **deadlock** or **divergence**:

 \Rightarrow by restricting the use of loops in the source program one may obtain an ad hoc solution.

Conclusion

1. Security preserving translation into CCS (variant of Milner's), extending work by Focardi, Rossi and Sabelfeld '05 in two ways:

- parallel imperative language
- time insensitive security property
- 2. Equivalence preserving translation (as a by-product).

3. Security type system for CCS (PBNDC), inspired by Pottier '02, which needs to be tuned to reflect a type system on PARIMP.

Future work:

- more general security type system for CCS
- move to more complex languages