
State-oriented noninterference for CCS

Ilaria Castellani

Inria Sophia Antipolis

2ème réunion PARSEC Paris, 20 juin 2007

Motivation

• Relate language-based security and process calculi security.

• First objective: relate the noninterference property (NI) for a
parallel imperative language with security properties for CCS.

• Starting point:

– [Focardi, Rossi & Sabelfeld ’05]: translation of a sequential
imperative language into CCS, preserving time-sensitive NI.

– [Honda, Yoshida, Vasconcelos ’01] and following papers:
translation of more powerful languages into a variant of the
π-calculus, preserving both NI and types.

Objective

Translate a parallel imperative language PARIMP into the process
calculus CCS, preserving both noninterference (NI) and types.

Language-based security

• Information: contained in “objects”, used by “subjects”.

• Objects have security levels, eg: high = secret, low = public.

• Secure information flow: no flow from high to low objects.

XL := YH not secure

ZH := YH ; XL := 0 secure

• Imperative languages:

- Subjects = programs. Objects = variables. Tools:

- (self-)bisimulation to formalise the security property;

- type systems to statically ensure it.

Process calculi security

• Subjects = processes. Objects = channels a, b, c . . .

ah(x). b`〈x〉 not secure

• Data flow and control flow are closely intertwined:

ah(x). b` ah(x). b`〈v〉 secure?

Warning ! Can be used to implement indirect insecure flows:

(ah(x). if x then b` else c` | (b`. d`〈0〉 + c`. d`〈1〉)) \ {b`, c`}

The imperative language PARIMP

Variables X, Y, Z, values V, V ′ and expressions E,E′:

E ::= F (X1, . . . , Xn)

Syntax of programs (or commands) C,D:

C, D ::= nil | X := E | C ; D | (if E then C else D) |

(while E do C) | (C ‖ D)

Semantics: transitions on configurations 〈C, s〉 → 〈C ′, s′〉 where
s, s′ are states (finite mappings from variables to values).

Operational semantics of PARIMP (1/3)

(Assign-Op)
〈X := E, s〉 → 〈nil, s[s(E)/X]〉

(Seq-Op1)
〈C, s〉 → 〈C ′, s′〉

〈C;D, s〉 → 〈C ′;D, s′〉

(Seq-Op2)
〈nil;D, s〉 → 〈D, s〉

Operational semantics of PARIMP (2/3)

(Cond-Op1)
s(E) = tt

〈if E then C else D, s〉 → 〈C, s〉

(Cond-Op2)
s(E) 6= tt

〈if E then C else D, s〉 → 〈D, s〉

(While-Op1)
s(E) = tt

〈while E do C, s〉 → 〈C; while E do C, s〉

(While-Op2)
s(E) 6= tt

〈while E do C, s〉 → 〈nil, s〉

Operational semantics of PARIMP (3/3)

(ParL-Op1)
〈C, s〉 → 〈C ′, s′〉

〈C ‖ D, s〉 → 〈C ′ ‖ D, s′〉

(ParL-Op2)
〈nil ‖ D, s〉 → 〈D, s〉

(ParR-Op1)
〈D, s〉 → 〈D′, s′〉

〈C ‖ D, s〉 → 〈C ‖ D′, s′〉

(ParR-Op2)
〈C ‖ nil, s〉 → 〈C, s〉

Security property for PARIMP

Variables: partitioned into L (low variables) and H (high variables).

L-equality on states:

s =L t if dom(s) = dom(t) and (X ∈ dom(s) ∩ L ⇒ s(X) = t(X))

L-bisimulation on programs:

Symmetric relation S ⊆ (C × C) such that C SD implies, for any s

and t such that s =L t :

if 〈C, s〉 → 〈C ′, s′〉, then there exist D′, t′ such that

〈D, t〉 7→ 〈D′, t′〉 where s′ =L t′ and C ′ S D′

where 7→ is the reflexive closure of → (at most one step).

Security property for PARIMP (ctd)

L-bisimilarity: C 'L D if C S D for some L-bisimulation S.

L-security: a program C is L-secure if C 'L C.

Examples of insecure programs:

1. (while xH do nil) ; yL := 0

2. if xH = 0 then loop (yL := 0 ; yL := 1)

else loop (yL := 1 ; yL := 0)

where loop C
def= (while tt do C).

The process calculus CCS (core)

Process prefixes: π ::= a(x) | a〈e〉 | a | a

Parametric processes: T ::= A | (rec A(x̃) . P)

Syntax of CCS processes:

P,Q ::=
∑

i∈I πi.Pi | (P | Q) | (νa) P | T (ẽ)

Abbreviations:

0 def=
∑

i∈∅ πi.Pi π1.P1 + π2.P2
def=

∑
i∈{1,2} πi.Pi

Semantics of CCS (1/3)

Actions α, β, γ:

Act df= {av : a ∈ N , v ∈ V al} ∪ {āv : a ∈ N , v ∈ V al} ∪ {τ}

Operational rules for nondeterministic choice:

(SUM-OP1)
∑

i∈I πi.Pi
av−→Pi{v/x}, if πi = a(x) and v ∈ V al

(SUM-OP2)
∑

i∈I πi.Pi
av−→Pi , if πi = a〈e〉 and val(e) = v

Semantics of CCS (2/3)

Operational rules for parallelism, restriction and recursion:

(PAR-OP1)
P

α−→P ′

P | Q α−→P ′ | Q
(PAR-OP2)

P
α−→P ′

Q | P α−→Q | P ′

(PAR-OP3)
P

av−→P ′ Q
av−→Q′

P | Q τ−→P ′ | Q′
(RES-OP)

P
α−→P ′ b 6= subj (α)

(νb)P α−→ (νb)P ′

(REC-OP)
P{ṽ/x̃}{ (rec A(x̃) . P) / A } α−→P ′ ṽ = val(ẽ)

(rec A(x̃) . P)(ẽ) α−→P ′

Security properties for CCS

Weak transitions:

• P
α=⇒P ′ df= P

τ−→
∗ α−→ τ−→

∗

• P
α̂=⇒P ′ df=

 P
α=⇒P ′ if α 6= τ

P
τ−→

∗
P ′ if α = τ

Weak bisimulation:

Symmetric relation S ⊆ (Pr× Pr) such that P S Q implies:

if P
α−→P ′ then there exists Q′ such that Q

α̂=⇒Q′ and P ′ S Q′.

Weak bisimilarity: P ≈ Q if P S Q for some weak bisimulation S.

Simple security (BNDC) [Focardi-Gorrieri ’95]

Channels are partitioned into high channels H and low channels L.

PrH
syn

: set of syntactically high processes, with no channels in L.

Bisimulation-based Non Deducibility on Compositions (BNDC)

P is secure with respect to H, P ∈ BNDCH, if for every Π ∈ PrH
syn

:

(νH)(P | Π) ≈ (νH)P
Examples.

ah . b` ah + b` not secure

ah | b` ah . b` + b` secure

Choosing Π = ah for the first two, we get (νH)(P | Π) 6≈ (νH)P .

A more robust security property

Transitions
∼
α=⇒H , allowing simulation of high actions by inaction:

P
∼
α=⇒H P ′ df=

 P
α̂=⇒P ′ or P

τ−→
∗
P ′ if subj (α) ∈ H

P
α̂=⇒P ′ otherwise

Weak bisimulation up-to-high:

Symmetric relation S ⊆ (Pr× Pr) such that P S Q implies:

if P
α−→P ′ then there exists Q′ such that Q

∼
α=⇒H Q′ and P ′ S Q′.

Weak bisimilarity up to high: P ≈H Q if P S Q for some weak
bisimulation up to high S.

Persistent security (PBNDC)[Focardi-Rossi ’02]

Persistent BNDC (PBNDC)

P is persistently secure wrt H, P ∈ PBNDCH, if P ≈H (νH)P .

Theorem [Focardi-Rossi ’02].

P ∈ PBNDCH iff P ′ ∈ BNDC for any reachable state P ′ of P .

Example.

P = P1 + P2 = a`. bh. c` + a`. (νd`)(d` | d` | d`. c`) is secure but
not persistently secure.

Secure: show that (νH)(P | bh) ≈ (νH)P .

Not persistently secure: the reachable state bh. c` is not secure.

A security type system for PBNDC

Inspired from Pottier’s type system for the π-calculus (Pottier ’02).

Security levels σ, δ, θ form a lattice (T ,≤), where ≤ stands for “less
secret than”. Here we assume T = {`, h}, with ` ≤ h.

Type environment Γ: mapping from channels to security levels.

Type judgements: Γ `σ P .

Intuition: σ is a lower bound on the security level of channels in P .

Typing rules

(Sum) (Par)

∀i ∈ I : Γ(πi) = σ Γ `σ Pi

Γ `σ

∑
i∈I πi.Pi

Γ `σ P Γ `σ Q

Γ `σ P | Q

(Res) (Sub)

Γ, b : θ `σ P

Γ `σ (νb)P

Γ `σ P σ′ ≤ σ

Γ `σ′ P

(Rec1) (Rec2)

Γ(A) = σ

Γ `σ A(ẽ)

Γ, A : σ `σ P

Γ `σ (rec A(x̃) . P)(ẽ)

Soundness of the type system for PBNDC

Lemma [≈H – invariance under high actions]

If Γ `σ P and H = { a ∈ N : Γ(a) = h }. If P
α−→P ′ and Γ(α) = h

then P ≈H P ′.

Main result: typability ⇒ persistent security (PBNDC):

Theorem [Soundness]

If Γ `σ P then P ≈H (νH)P , where H = { a ∈ N : Γ(a) = h }.

Milner’s translation of PARIMP into CCS (1/4)

A variable X is modelled by a register:

RegX(v) def= putX(x).RegX(x) + getX〈v〉.RegX(v)

A state s is mapped to a pool of registers:

[[s]] = RegX1
(s(X1)) | · · · | RegXn

(s(Xn)) if dom(s) = {X1, . . . , Xn}

An expression E = F (X1, . . . , Xn) is mapped to:

[[F (X1, . . . , Xn)]] = getX1(x1). · · · . getXn(xn). res〈f(x1, . . . , xn)〉.0

Auxiliary operator Into, for transmission of values:

P Into (x) Q
def= (P | res(x). Q)\res

Translation of PARIMP into CCS (2/4)

A special channel done, on which processes signal termination.

Auxiliary operators Done,Before and Par :

Done def= done.0

C Before D
def= (C[d/done] | d. D)\d

C1 Par C2
def= ((C1[d1/done] | C2[d2/done]) |

(d1. d2.Done + d2. d1.Done))\{d1, d2}

Translation of PARIMP into CCS (3/4)

Translation of commands:

[[nil]] = Done

[[X := E]] = [[E]] Into (x) (putX〈x〉.Done)

[[C ; D]] = [[C]] Before [[D]]

[[(if E then C1 else C2)]] = [[E]] Into (x) (if x then [[C1]] else [[C2]])

[[(while E do C)]] = W, where W
def= [[E]] Into (x)

(if x then [[C]] Before W else Done)

[[(C1 ‖ C2)]] = [[C1]]Par [[C2]]

Translation of PARIMP into CCS (4/4)

Translation of configurations 〈C, s〉:

[[〈C, s〉]] = ([[C]] | [[s]]) \Accs ∪ {done}

where Accs is the access sort of state s:

Accs
def= { getX , putX | X ∈ dom(s) }

Problem: atomicity of assignments is not preserved !

C = (X := X + 1 ‖ X := X + 1)

Problem with atomicity (1/2)

Program C = (X := X + 1 ‖ X := X + 1)

The translation of C is:

[[C]] = ((getX(x). res〈x + 1〉 | res(y). putX〈y〉. d1) \res

| (getX(x). res〈x + 1〉 | res(y). putX〈y〉. d2) \res

| (d1. d2.Done + d2. d1.Done)) \ {d1, d2}

The second getX action may be executed before the first putX

⇒ the same value v1 = v0 + 1 may be assigned twice to X.

Problem with atomicity (2/2)

Suppose X has low level:

CL = (XL := XL + 1 ‖ XL := XL + 1)

Consider the interleaving of the assignments in CL:

DL = (XL := XL + 1 ; XL := XL + 1)

Security is not preserved:

Ĉ = (if zH = 0 then CL else DL) is secure, but [[Ĉ]] is not secure.

Adapting the translation (1/2)

A global semaphore to ensure atomicity:

Sem def= lock. unlock.Sem

Adapted translation of assignments and configurations:

[[X := E]] = lock. [[E]] Into (x) (putX〈x〉. unlock.Done)

[[〈C, s〉]] = ([[C]] | [[s]] | Sem) \Accs ∪ {done, lock, unlock}

Atomic translation of expression E:

[[F (X1, . . . , Xn)]]at = lock. getseqX̃(x̃). res〈f(x̃)〉. unlock.0

Adapting the translation (2/2)

Adapted translation of conditionals and loops:

[[(if E then C1 else C2)]] = [[E]]at Into (x) (if x then [[C1]] else [[C2]])

[[(while E do C)]] = W, where W
def= [[E]]at Into (x)

(if x then [[C]] Before W else Done)

Security is preserved by the translation

To set an operational correspondence between 〈C, s〉 and its image:

[[〈C, s〉]] = ([[C]] | [[s]] | Sem) \Accs ∪ {done, lock, unlock}

one needs a means to observe changes performed by [[C]] on [[s]].

Observable register ORegX :

ORegX(v) def= putX(x). ORegX(x) + getX〈v〉. ORegX(v) +

lock. (inX(x) . unlock. ORegX(x) + unlock. ORegX(x)) +

lock. (outX〈v〉. unlock. ORegX(v) + unlock. ORegX(v))

Operational correspondence

Labelled transitions inXv−−−→ and outX−−−→ (and τ−→ def= →) for
configurations:

(In-Op)
X ∈ dom(s)

〈C, s〉 inXv−−−→ 〈C, s[v/X]〉
(Out-Op)

s(X) = v

〈C, s〉 outXv−−−−→ 〈C, s〉

Transitions are preserved and reflected by the translation:

1. 〈C, s〉 α−→〈C ′, s′〉 implies ∃P . [[〈C, s〉]] α=⇒P ≈ [[〈C ′, s′〉]]

2. [[〈C, s〉]] α=⇒P implies either P ≈ [[〈C, s〉]] or

∃C ′, s′ . P ≈ [[〈C ′, s′〉]] ∧ 〈C, s〉 α̂=⇒〈C ′, s′〉.

Security is preserved: C secure ⇒ [[〈C, s〉]] satisfies PBNDC.

Types are not preserved by the translation

Consider the program, typable in PARIMP:

C = (XH := XH + 1 ; YL := YL + 1)

Translation of C:

(νd) (lock. (ν res1) (getXH
(x). res1〈x + 1〉 | res1(z1). putXH

〈z1〉. unlock. d) |

d. lock. (ν res2) (getYL
(y). res2〈y + 1〉 | res2(z2). putYL

〈z2〉. unlock. done))

Which choice of security levels for channels lock, unlock and d ?

Adapting the type system

Idea: restricted high actions without parameters do not leak
information if they are granted to be enabled uniformly in all
low-equivalent states.

True for actions lock, unlock: the semaphore is always released
after a finite number of steps.

Instead, action done may be prevented by deadlock or divergence:

⇒ by restricting the use of loops in the source program one may
obtain an ad hoc solution.

Conclusion

1. Security preserving translation into CCS (variant of Milner’s),
extending work by Focardi, Rossi and Sabelfeld ’05 in two ways:

• parallel imperative language

• time insensitive security property

2. Equivalence preserving translation (as a by-product).

3. Security type system for CCS (PBNDC), inspired by Pottier ’02,
which needs to be tuned to reflect a type system on PARIMP.

Future work:

• more general security type system for CCS

• move to more complex languages

