
Determinacy in a synchronous π-calculus

Roberto Amadio

Université de Paris 7

Laboratoire Preuves, Programmes et Systèmes

Joint work with Mehdi Dogguy

1

Plan

• What is determinacy in interactive systems?

• The synchronous π-calculus.

• Results.

2

Towards a definition of determinacy

• If we run an ‘experiment’ twice we always get the same ‘result’.

• If P and P ′ are ‘equivalent’ then one is determinate if and only
if the other is.

• If P is determinate and we run an experiment then the residual
of P after the experiment should still be determinate.

3

• We place this preliminary discussion in the context of a simple
model such as CCS.

• Take equivalent to mean weak bisimilar.

• Take experiment to be a finite sequence of observable actions.

Ref Milner 89, Groote-Sellink 96, Philippou-Walker 97

4

A formal definition of determinacy

• Let s = `1 · · · `n be a finite word of observable actions.

• Define
P

ε⇒ P ′ if P
τ⇒ P ′

P
`1...`n⇒ P ′, n ≥ 1 if P

`1⇒ · · · `n⇒ P ′

• A process P is determinate if for any s,

P
s⇒ P ′ P

s⇒ P ′′

P ′ ≈ P ′′

NB This definition entails invariance under internal reductions.

5

Wish list

We want more:

1. Manageable method to prove determinacy. For instance,
confluence and even better local confluence.

2. Compositional and effective method to build deterministic
systems. For instance, a typing system.

6

Confluence and Local Confluence

• A process P is confluent if for every derivative Q of P we have:

Q
α⇒ Q1 Q

β⇒ Q2 α ↓ β

∃Q′
1, Q

′
2 (Q1

β\α⇒ Q′
1 Q2

α\β⇒ Q′
2 Q′

1 ≈ Q′
2)

• A process P is locally confluent if for every derivative Q of P

we have:

Q
α→ Q1 Q

β→ Q2 α ↓ β

∃Q′
1, Q

′
2 (Q1

β\α⇒ Q′
1 Q2

α\β⇒ Q′
2 Q′

1 ≈ Q′
2)

NB α ↓ β and α\β stand for action compatibility and action
residual, respectively.

7

Facts in CCS

Call a process reactive if the τ reductions of every derivative always
terminate.

• A confluent process is deterministic (converse fails).

• A reactive and locally confluent process is confluent (a kind of
Newman lemma).

8

Rudimentary typing (sample)

• Let Γ be a set of observable actions.

• We write Γ ` P if all the observable actions a derivative of P

may perform belong to Γ.

• A typing rule for parallel composition:

Γ1 ` P1, Γ2 ` P2, Γ1 ∩ Γ2 = ∅, Γ1 ∩ Γ2 ⊆ {a1, . . . , an}

(Γ1 ∪ Γ2)\{a1, . . . , an} ` νa1, . . . , an (P | Q)

Fact in CCS A typable program is confluent.

9

The Sπ-calculus: a synchronous π-calculus

Assume v1 6= v2 are two distinct values and

P = ν s1, s2 (s1v1 | s1v2 |
s1(x). (s1(y). (s2(z). A(x, y) , B(!s1))

, 0)

, 0)

P is a π-calculus process if we forget about the else branches of the
read instructions.

Ref Boussinot-De Simone 96, A. 05, A. 06

10

Spot the differences. . .

P = ν s1, s2 (s1v1 | s1v2 | s1(x). (s1(y). (s2(z). A(x, y) , B(!s1)), 0), 0)

• In π, P reduces to

P1 = νs1, s2 s2(z).A(σ(x), σ(y))

where σ(x), σ(y) ∈ {v1, v2} and σ(x) 6= σ(y).

• In Sπ, signals persist within the instant and P reduces to

P2 = νs1, s2 (s1v1 | s1v2 | (s2(z).A(σ(x), σ(y)), B(!s1)))

where σ(x), σ(y) ∈ {v1, v2}.

11

• In π, P1 is now deadlocked.

• In Sπ, the current instant ends and we move to the following
one

P2
N→ P ′

2 = νs1, s2 B(`)

where ` ∈ {[v1; v2], [v2; v1]} and N is the next action.

• Thus at the end of the instant, !s1 becomes a list of (distinct)
values emitted on s1 during the instant.

• For this reason, Sπ includes lists has a primitive data structure.

12

Deterministic programs: a cellular automaton

Cell(q, s, `) = Send(q, s, `, `)

Send(q, s, `, `′) = [`′ ≥ cons(s′, `′′)] (s′q | Send(q, s, `, `′′)),

pause.Cell(next(q, !s), s, `)

Deterministic, assuming next is invariant under permutations of
the list of states.

13

Deterministic programs: synchronous data flow

s1→ A
s2→ C

s3→ A
s4→ B

s5→ C
s6→

νs2, s3, s4, s5(A(s1, s2, s3, s4) | B(s4, s5) | C(s2, s3, s5, s6))

A(s1, s2, s3, s4) = s1(x).(s2f(x) | s3(y).(s4g(y) | pause.A(s1, s2, s3, s4)), 0), 0

B(s4, s5) = s4(x).(s5h(x) | pause.B(s4, s5)), 0

C(s2, s3, s5, s6) = s2(x).(s3i(x) | s5(y).(s6l(y)) | pause.C(s2, s3, s5, s6)), 0), 0

Deterministic, assuming at every instant at most one value is
emitted on signal s1.

14

Deterministic programs: client server

Server(s) = pause.Handle(s, !s)

Handle(s, `) = [` ≥ cons(req(s′, x), `′)](s′f(x) | Handle(s, `′)),Server(s)

Client(x, s, t) = νs′ (sreq(s′, x) | pause.s′(x).tx, 0)

Deterministic, assuming ??

Ref Mandel-Pouzet 05, Saraswat et al. 06, Edwards-Tardieu 07.

15

Results (informal)

We manage to follow the ‘CCS approach’ above. Some highlights:

• We find a modified labelled transition system that allows for a
standard definition of bisimulation.

• In Sπ, determinacy=confluence and we have simple local
confluence conditions that coupled with reactivity imply
confluence.

• We design a typing system for analysing signal usage.

16

Modified lts and standard bisimulation

For diagram chasing, it is nice to have a standard bisimulation.

P R Q, P
α→ P ′, bn(α) ∩ fn(Q) = ∅

∃Q′ (Q
α⇒ Q′, P ′ R Q′)

This is possible with a modified lts. The input rule is replaced by
two:

s(x).P,K
s?v→ [v/x]P P

sv→ (P | sv)

• The action s?v is not observable. It is an auxiliary action
needed to compute the internal synchronisation.

• The observable action is sv. Note that this action is always
enabled.

Ref Honda-Yoshida 95, A.-Castellani-Sangiorgi 98

17

A simple condition for determinacy

• In the modified lts, (observable) inputs commute because they
are always enabled and outputs commute because they are
persistent.

• Then one just needs to check that τ -actions commute and
N -actions commute.

• For instance, under reactivity, the following suffices to
guarantee confluence: for all derivatives Q,

Q
α→ Q1, Q

α→ Q2, α ∈ {τ,N}

∃Q3, Q4 (Q1
τ⇒ Q3, Q2

τ⇒ Q4, Q3 ≈ Q4)

18

Signal usage

A signal type, Sigu(σ), carries an information u on the signal usage.

• Start with L = {0, 1,∞} where 0 < 1 < ∞.

• Refine into x ∈ L3 for output, input, and input at the end of
the instant.

• Further refine, into u ∈ (L3)ω for usage at instant 0, 1, 2,

Ref Kobayashi-Pierce-Turner 99, Kobayashi 02,...

19

Two main usages

For the time being we have focused on just two main usages.

eω, e = (∞, 0,∞) We can receive only at the end of the instant.
Moreover, the processing of the list recovered at the end of the
instant must be order independent. We use set types to enforce
this.

oω
1 , o1 = (1,∞,∞) At every instant, at most one emission is

performed on the signal. To reason on this, we also rely on
o1o

ω
0 , o0o

ω
1 , and oω

0 , where o0 = (0,∞,∞).

20

Typing for the cellular automaton

Cell(q, s, `) = Send(q, s, `, `)

Send(q, s, `, `′) = [`′ ≥ cons(s′, `′′)] (s′q | Send(q, s, `, `′′)),

pause.Cell(next(q, !s), s, `)

Assume an inductive type State to represent the state of a cell and
let S1 = Sigeω (State) and L1 = List(S1). Then the program is
typable, assuming:

Cell : (State, S1, L1), Send : (State, S1, L1, L1),

next : (State,Set(State)) → State

21

Typing for the data flow

νs2, s3, s4, s5(A(s1, s2, s3, s4) | B(s4, s5) | C(s2, s3, s5, s6))

A(s1, s2, s3, s4) = s1(x).(s2f(x) | s3(y).(s4g(y) | pause.A(s1, s2, s3, s4)), 0), 0

B(s4, s5) = s4(x).(s5h(x) | pause.B(s4, s5)), 0

C(s2, s3, s5, s6) = s2(x).(s3i(x) | s5(y).(s6l(y)) | pause.C(s2, s3, s5, s6)), 0), 0

Assume an inductive type D of data and let I = Sigoω
0
(D) and

O = Sigoω
1
(D). Then the program is typable assuming:

A : (I,O, I, O), B : (I, O), C : (I,O, I, O) .

22

(Problems with) Typing the client-server

Server(s) = pause.Handle(s, !s)

Handle(s, `) = [l ≥ cons(req(s′, x), `′)](s′f(x) | Handle(s, `′)),Server(s)

Client(x, s, t) = νs′ (sreq(s′, x) | pause.s′(x).tx, 0)

• Assume an inductive type D of data and let

S1 = Sigu(D), req : (Sigu(D), D) → Req , S2 = Sigeω (Req)

• Since there are many clients, we are forced to take u = eω.
Then the server is typable as follows:

Server : (S2), Handle : (S2,Set(Req))

23

• However the usage u = eω is incompatible with the
programming of the client, as it can receive during the instant.

• It seems one needs more usages to type this.

• The client will get at most one reply on the return signal
assuming that its request is received at most once and it is
handled in a linear way.

• Thus, we need many-to-one usage and linear inductive types.

24

