A Theory of Speculative Computation

Gérard Boudol, Gustavo Petri

Projet INDES

$$
\text { January } 2010 \text { - Parsec meeting }
$$

Speculations: Motivation

- Speculative computation
- Value prediction
- Branch prediction
- Instruction reordering
- Relaxed memory models
- Write-buffers allow for $W \rightarrow R$ and $W \rightarrow W$
- But not for $\mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{R} \rightarrow \mathrm{W}$

IRIW example

$$
\left.\left. \right\rvert\, \begin{array}{l|l|l|l}
y:=1 & !x ; & (1) & !y ;
\end{array}\right)
$$

Speculations: Motivation

- Speculative computation
- Value prediction
- Branch prediction
- Instruction reordering
- Relaxed memory models
- Write-buffers allow for $W \rightarrow R$ and $W \rightarrow W$
- But not for $\mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{R} \rightarrow \mathrm{W}$

IRIW example

$$
\left.\left. \right\rvert\, \begin{array}{l|l|l|l}
y:=1 & !x ; & (1) & !y ;
\end{array}\right)
$$

Speculations could explain these behaviors

Valid speculations: an intuition

Intuitively valid

(if $!p$ then 0 else $q:=t t$) $\xrightarrow{\text { wr } q, t t}$
(if $!p$ then 0 else 0)
(if $f f$ then 0 else 0)
0

Valid speculations: an intuition

Intuitively valid

 0

Intuitively invalid
(if $!p$ then 0 else $p:=t t$) $\xrightarrow{\text { wr }_{p, t t}}$
(if $!p$ then 0 else 0)
(if $t t$ then 0 else 0)
0

Valid speculations: an intuition

Intuitively valid

Intuitively invalid
(if $!p$ then 0 else $p:=t t$)
$\begin{aligned} & \text { (if }!p \text { then } 0 \text { else } 0 \text {) } \\ & \text { (if } t t \text { then } 0 \text { else } 0 \text {) }\end{aligned}$
$\xrightarrow{\text { wr }_{p, t t}}$
$\xrightarrow{r d_{p, t t}}$ 0

Validity

We say that a speculative computation is valid when it is equivalent by permutations [Berry\&Levy'79] to a normal (sequential) computation.

Concurrent speculations

Programmability is an issue with parallel speculations (as it is in relaxed memory models)

- Programmability compromise in relaxed memory models for high-level languages:

> Data Race Freeness (DRF)
> Programs free of data races in their interleaving semantics, expose (only) sequentially consistent behaviors in the relaxed semantics.

- Can we find a similar compromise for parallel speculations?

> Speculative Data Race Freeness

Outline \& Contributions

(1) Operational semantics for speculations (with locks):

- Speculative evaluation contexts:
out-of-order execution, branch prediction
- Value prediction
(2) Validity of speculations
(3) Programmability: SDRF
(9) A variation of the language with memory barriers

The language (locks)

$$
\begin{array}{rll}
v & ::= & x|\lambda x e| t t|f f| \text { Qalues } \\
e & ::= & v \mid\left(e_{0} e_{1}\right) \quad \text { expressions } \\
& \left.\mid \text { (if } e \text { then } e_{0} \text { else } e_{1}\right) \\
& (\text { ref } e)|(!e)|\left(e_{0}:=e_{1}\right) \\
& & (\text { thread } e) \mid(\text { with } \ell \text { do } e)
\end{array}
$$

$e_{0} ; e_{1}$ stands for $\left(\lambda x e_{1} e_{0}\right)$ whenever x is not free in e_{1}
$\begin{array}{lll}\mathbf{E}::=[] \mid \mathbf{E}[\mathbf{F}] & \text { evaluation contexts } \\ \mathbf{F}=([] e) \mid(v[]) & \text { frames }\end{array}$
| (if [] then e_{0} else e_{1})
$|\quad(\operatorname{ref}[])|(![])|([]:=e)|(v:=[])$
(holding ℓ do [])

Speculation Contexts

$$
\begin{array}{rlll}
\boldsymbol{\Sigma} & ::= & {[] \mid \boldsymbol{\Sigma}[\boldsymbol{\Phi}]} & \text { speculation contexts } \\
\boldsymbol{\Phi} & := & \mathbf{F} & \text { speculation frames } \\
& \mid & (e[]) \mid(\lambda \times[] e) & \\
& & \left(\text { if } e \text { then }[] \text { else } e_{1}\right) \mid & \left(\text { if } e \text { then } e_{0} \text { else }[]\right) \\
& & (e:=[]) &
\end{array}
$$

($\lambda x[] e_{0}$) can be seen as $e_{0} ;[]$
No speculation for (with ℓ do e)
$r:=(!p) ; q:=t t$

Speculation Contexts

$$
\begin{array}{rlll}
\boldsymbol{\Sigma} & ::=[] \mid \boldsymbol{\Sigma}[\boldsymbol{\Phi}] & \text { speculation contexts } \\
\boldsymbol{\Phi} & := & \mathbf{F} & \text { speculation frames } \\
& |(e[])|(\lambda x[] e) & \\
& & \left(\text { if } e \text { then }[] \text { else } e_{1}\right) \mid & \left(\text { if } e \text { then } e_{0} \text { else }[]\right) \\
& & (e:=[]) &
\end{array}
$$

($\lambda x[] e_{0}$) can be seen as $e_{0} ;[]$
No speculation for (with ℓ do e)

Speculation Contexts

$$
\begin{array}{rlll}
\boldsymbol{\Sigma} & :: & {[] \mid \boldsymbol{\Sigma}[\boldsymbol{\Phi}]} & \text { speculation contexts } \\
\boldsymbol{\Phi} & ::= & \mathbf{F} & \text { speculation frames } \\
& \mid & (e[]) \mid(\lambda x[] e) & \\
& & \left(\text { if } e \text { then }[] \text { else } e_{1}\right) \left\lvert\,\left(\begin{array}{ll}
\text { (if } \left.e \text { then } e_{0} \text { else }[]\right) \\
& \\
& (e:=[])
\end{array}\right.\right.
\end{array}
$$

($\lambda x[] e_{0}$) can be seen as $e_{0} ;[]$
No speculation for (with ℓ do e)

$$
r:=\underbrace{(!p)}_{\mathrm{E}[(!p)]} ; \overbrace{q:=t t}^{\Sigma[(q:=t t)]}
$$

Speculation Contexts

$$
\begin{array}{rlll}
\boldsymbol{\Sigma} & : & =[] \mid \boldsymbol{\Sigma}[\boldsymbol{\Phi}] & \text { speculation contexts } \\
\boldsymbol{\Phi} & ::= & \mathbf{F} & \text { speculation frames } \\
& \mid & (e[]) \mid(\lambda x[] e) & \\
& & \left(\text { if } e \text { then }[] \text { else } e_{1}\right) \left\lvert\,\left(\begin{array}{ll}
\text { (if } e \text { then } e_{0} \text { else []) } \\
& \\
& (e:=[])
\end{array}\right.\right.
\end{array}
$$

$\left(\lambda x[] e_{0}\right)$ can be seen as $e_{0} ;[]$
No speculation for (with ℓ do e)

$$
r:=\underbrace{(!\overbrace{q:=t t}^{\sum[(q:=t t)]}}_{\mathrm{E}_{[(!p)]}^{(!p)}}
$$

(if $\underbrace{(!r)}_{\mathrm{E}[(!r)]}$ then $\overbrace{p:=t t}^{\Sigma_{0}[(p:=t t)]}$ else $\overbrace{q:=t t}^{\Sigma_{1}[(q:=t t)]}$)

$$
\boldsymbol{\Sigma}[(\lambda x e v)] \quad \underset{\varrho \boldsymbol{\Sigma}}{\beta} \quad \boldsymbol{\Sigma}[\{x \mapsto v\} e]
$$

$\boldsymbol{\Sigma}\left[\left(\right.\right.$ if $t t$ then e_{0} else $\left.\left.e_{1}\right)\right] \underset{\odot \boldsymbol{\Sigma}}{\stackrel{\zeta}{\longrightarrow}} \boldsymbol{\Sigma}\left[e_{0}\right]$
$\boldsymbol{\Sigma}\left[\left(\right.\right.$ if $f f$ then e_{0} else $\left.\left.e_{1}\right)\right] \underset{\varrho \boldsymbol{\Sigma}}{\vec{~}} \boldsymbol{\Sigma}\left[e_{1}\right]$

$$
\mathrm{E}[(\text { thread } e)] \underset{\odot \mathrm{SP}_{e}}{\stackrel{\mathrm{SpN}_{e}}{@ E}} \mathrm{E}[0]
$$

$\boldsymbol{\Sigma}[($ with ℓ do $e)] \quad \stackrel{\mu}{\varrho \boldsymbol{\Sigma}} \quad \boldsymbol{\Sigma}[e] \quad \quad \ell \in\lceil\boldsymbol{\Sigma}\rceil$
$\boldsymbol{\Sigma}[($ with ℓ do $e)] \quad \underset{\varrho(\boldsymbol{\iota}}{\tilde{\Sigma}} \quad \boldsymbol{\Sigma}[($ holding ℓ do $e)] \quad \ell \notin\lceil\boldsymbol{\Sigma}\rceil$
$\mathrm{E}[($ holding ℓ do $v)] \underset{\stackrel{\ominus}{\varrho}}{\stackrel{\overparen{\ell}}{ }} \mathrm{E}[v]$

$$
\begin{aligned}
& \boldsymbol{\Sigma}[(\text { ref } v)] \underset{\frac{\nu_{p, v}}{\varrho \boldsymbol{\Sigma}}}{\stackrel{\Sigma}{\boldsymbol{\Sigma}}} \boldsymbol{\Sigma}[p]
\end{aligned}
$$

Semantics: IRIW example

$$
x:=1|y:=1|!x ;!y \mid!y ;!x
$$

IRIW example (revisited)

Semantics: IRIW example

$$
\begin{array}{r|l|l|l}
x:=1 & y:=1 & !x ;!y & !y ;!x \\
& \downarrow \mathrm{rd}_{y, 0} & \downarrow \mathrm{rd}_{x, 0} \\
x:=1 & y:=1 & !x ; 0 & !y ; 0
\end{array}
$$

IRIW example (revisited)

Semantics: IRIW example

$$
\begin{array}{c|c|c|c}
x:=1 & y:=1 & !x ;!y & !y ;!x \\
& & \downarrow \mathrm{rd}_{y, 0} & \downarrow \mathrm{rd}_{x, 0} \\
x:=1 & y:=1 & !x ; 0 & !y ; 0 \\
\downarrow \mathrm{wr}_{x, 1} & \downarrow \mathrm{wr}_{y, 1} \\
\begin{array}{c|c|c|c}
& & \\
() & () & !x ; 0 & !y ; 0
\end{array}
\end{array}
$$

IRIW example (revisited)

Semantics: IRIW example

$$
\begin{aligned}
& x:=1|y:=1|!x ;!y \mid!y ;!x \\
& \downarrow \mathrm{rd}_{y, 0} \downarrow r \mathrm{~d}_{x, 0} \\
& x:=1|y:=1| \quad|x ; 0| \quad \mid y ; 0 \\
& \downarrow w r_{x, 1} \quad \downarrow w r_{y, 1} \\
& \text { () () }|!x ; 0|!y ; 0 \\
& \downarrow \mathrm{rd}_{x, 1} \downarrow \mathrm{rd}_{y, 1} \\
& \text { () () }|1 ; 0| 1 ; 0
\end{aligned}
$$

IRIW example (revisited)

Concurrency

$$
\begin{aligned}
& e \xrightarrow[o]{\mathrm{spw}_{e^{\prime}}} e^{\prime \prime} \\
& t^{\prime} \notin \operatorname{dom}(T) \cup\{t\} \\
& (S, L,(t, e) \| T) \xrightarrow[t, o]{\operatorname{spw}_{e^{\prime}}}\left(S, L,\left(t, e^{\prime \prime}\right)\left\|\left(t^{\prime}, e^{\prime}\right)\right\| T\right) \\
& e \underset{o}{\vec{a}} e^{\prime} \\
& a \neq \operatorname{spw}_{e^{\prime \prime}} \&(*) \\
& (S, L,(t, e) \| T) \xrightarrow[t, o]{a}\left(S^{\prime}, L^{\prime},\left(t, e^{\prime}\right) \| T\right) \\
& \left\{\begin{aligned}
a=\mathrm{rd}_{p, v} & \Rightarrow v=S(p) \& S^{\prime}=S \& L^{\prime}=L \\
a=\mathrm{wr}_{p, v} & \Rightarrow S^{\prime}=S[p:=v] \& L^{\prime}=L \\
a=\overparen{\ell} & \Rightarrow S^{\prime}=S \& \ell \notin L \& L^{\prime}=L \cup\{\ell\} \\
a=\overparen{\ell} & \Rightarrow S^{\prime}=S \& L^{\prime}=L-\{\ell\} \\
\ldots &
\end{aligned}\right.
\end{aligned}
$$

Causality is not enforced by the semantics

$$
\begin{array}{lllll}
{\left[\begin{array}{lll}
{[p \mapsto f f\},} & \emptyset, & \text { (if }!p \text { then } p:=t t) \\
\downarrow w_{p, t t}
\end{array}\right.} &] \\
{\left[\begin{array}{llll}
& & \\
& \{p \mapsto t t\}, & \emptyset, & (\text { if }!p \text { then }()) \\
\downarrow \operatorname{rd}_{p, t t}
\end{array}\right.} &] \\
{\left[\begin{array}{llll}
& \{p \mapsto t t\}, & \emptyset, & (\text { if } t t \text { then }())
\end{array}\right]}
\end{array}
$$

Causality is not enforced by the semantics

Validity

We say that a speculative computation is valid when it is equivalent by permutations [Berry\&Levy'79] to a normal (sequential) computation.

Permutation equivalence

Diamond Lemma

- ($*$) rules out permutations of control dependent events:
(if $t t$ then () else $p:=t t) \xrightarrow{\text { wr }_{p, t t}} \xrightarrow{\longleftrightarrow}()$
- What about permutation of data dependent events?

$$
\#=\bigcup_{p \in \operatorname{Ref}, v, w \in \mathcal{V}_{a l}}\left\{\left(\mathrm{wr}_{p, v}, \mathrm{wr}_{p, w}\right),\left(\mathrm{wr}_{p, v}, \mathrm{rd}_{p, w}\right),\left(\mathrm{rd}_{p, v}, \mathrm{wr}_{p, w}\right)\right\}
$$

Validity: definition

Equivalence by Permutations

- Given that $\neg a_{0} \# a_{1}$ we have:

Valid Speculative Computation

A speculation is valid if it is equivalent by permutation to a normal computation. A speculative computation γ is valid if all its thread projections $\left.\gamma\right|_{t}$ are valid speculations

Speculatively Data Race Free

- By valid speculations we can explain most of the Java Memory Model litmus tests
- But it fails for DRF programs:

$$
\text { (if }!p \text { then } q:=t t) \mid(\text { if }!q \text { then } p:=t t)
$$

- We need a stronger property:

DRF Configuration (resp. Speculative DRF Configuration)

A configuration C is DRF (resp. SDRF) iff for any configuration C^{\prime} reachable from C by normal (resp. speculative) computations, such that $C^{\prime} \xrightarrow[t_{0}, o_{0}]{a_{0}} C_{0}$ and $C^{\prime} \xrightarrow[t_{1}, o_{1}]{a_{1}} C_{1}$ we have

$$
t_{0} \neq t_{1} \Rightarrow \neg\left(a_{0} \# a_{1}\right)
$$

SDRF result

Theorem (Main Result)

Every configuration reachable from a Speculatively Data Race Free closed expressions by a speculative computation is also reachable by a normal computation.

A lower level language (barriers)

- Assuming that we have locks is not necessarily realistic for lower level languages
- The DRF (cf. SDRF) guarantee is not very useful for these languages

$$
\begin{aligned}
& v::=x|\lambda x e| t t|f f| 0 \quad \text { values } \\
& e::=v \mid\left(e_{0} e_{1}\right) \quad \text { expressions } \\
& \text { (if } e \text { then } e_{0} \text { else } e_{1} \text {) } \\
& \left(\text { ref e) }|(!e)|\left(e_{0}:=e_{1}\right) \mid(\text { spin e) }\right. \\
& \text { (threade) | rr | rw \| wr \| ww }
\end{aligned}
$$

Validity

- The dependency relation permutations across barriers

$$
\begin{aligned}
\bowtie= & \# \bigcup_{p \in \operatorname{Ref}}\left\{\left(\mathrm{spw}, \mathrm{rd}_{p}\right),\left(\mathrm{spw}, \mathrm{rd}_{p}\right),\left(\mathrm{spw}, \mathrm{wr}_{p}\right),\left(\mathrm{wr}_{p}, \mathrm{spw}\right)\right\} \\
& \cup \bigcup_{p \in \operatorname{Ref}}\left\{\left(\mathrm{rd}_{p}, \mathrm{rr}\right),\left(\mathrm{rr}, \mathrm{rd}_{p}\right),\left(\mathrm{wr}, \mathrm{rd}_{p}\right),\left(\mathrm{rd}_{p}, \mathrm{rw}\right)\right\} \\
& \cup \bigcup_{p \in \operatorname{Ref}}\left\{\left(\mathrm{wr}_{p}, \mathrm{ww}\right),\left(\mathrm{ww}, \mathrm{wr}_{p}\right),\left(\mathrm{rw}, \mathrm{wr}_{p}\right),\left(\mathrm{wr}_{p}, \mathrm{wr}\right)\right\}
\end{aligned}
$$

- Permutation equivalence as before (considering \bowtie)
- Valid Speculative computation as before

Preserving Order of Shared Memory Accesses

POSMA

A configuration C Preserves Ordering of Shared Memory Accesses (POSMA) iff for any valid speculative computation $\gamma:\left(C \xrightarrow{*} C^{\prime}\right)$ with

$$
\gamma=\gamma_{0} \cdot \xrightarrow[t, o_{0}]{a_{0}} \cdot \underset{t^{\prime}, o_{0}^{\prime}}{a_{0}^{\prime}} \cdot \gamma_{1} \cdot \xrightarrow[t^{\prime \prime}, o_{1}^{\prime}]{a_{1}^{\prime}} \cdot \xrightarrow[t, o_{1}]{a_{1}} \cdot \gamma_{2}
$$

and where $t^{\prime} \neq t \neq t^{\prime \prime}, \neg\left(a_{0} \# a_{1}\right), a_{0} \neq a_{1}$ and $a_{i} \# a_{i}^{\prime}$ we have

$$
\left[\left.\gamma_{0}\right|_{t},\left(a_{0}, o_{0}\right)\right] \prec_{\left.\gamma\right|_{t}}\left[\left.\gamma_{0}\right|_{t} \cdot \xrightarrow[a_{0}]{o_{0}} \cdot \gamma_{1},\left(a_{1}, o_{1}\right)\right]
$$

Theorem (POSMA Main Result)

Every configuration reachable from a POSMA well-formed closed configuration by a valid speculative computation is also reachable by a normal computation.

- How do we make SDRF and POSMA useful for programming?
- Common data-race detection type systems check for SDRF rather than DRF
- Enforcement of SDRF by compilation [some work that we did]
- Type-directed compilation
- Enforcement of POSMA by compilation [work in progress]
- Prove that common synchronization implementations are POSMA (eg. spinlocks in TSO)

