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Goal

Simplify (and not enforce) programming of distributed
and secured softwares

Source language: simple sequential language
globally shared memory

accessible from any host

annotations for code distribution

where to execute every statement

security level given to every global variable

specifies who can read and/or write

Target language: real world language (F])

communication between hosts through TCP/IP
encryptions and signatures to protect globals
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Security in the source

Accessibility based on security lattices

IF label ∈ ( confidentiality lattice × integrity lattice )

l1  l2 ⇔ (l1 ≤C l2 ∧ l2 ≤I l1)
x := y iff y  x
A can read x iff x  C A
A can write x iff A I x

Security lattices are compiler plugins (2 already coded)
HL: 2 × flat lattice with top and bottom

{L <C [̂ HL] <C H} × {L <I [̂ HL] <I H}
ReadersWriters: 1 set of readers and 1 set of writers
(R, W )

R1 <C R2 ⇔ R2 ⊂ R1

W1 <I W2 ⇔ W2 ⊂W1
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Source Language
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Program header

Define the security lattice used: SLattice HL;

the compiler loads the appropriate plugin to manipulate
strings corresponding to security labels

Define the roles: Role #HH# A;
all roles in the execution environment

A, B: secured line or VPN between A and B
A, B, others: any network with “outsiders” connected

compiler protects against the attacker level, either:

Role #LL# attacker ;
stronger weakest than all roles

Define globals: global string(64) #HH# message;
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Program body

e ::= x | op(e1, . . . , en)
S ::= skip | x := e | S ; S
| if e then S else S end | while e do S done
| A : [S ]

A:[ S ]

statement localization
means: role A executes S
can be nested
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Coding a chat program
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How it works
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A 4-steps process

Slicing: cut into uniquely localized threads

do: compute threads’ integrities
do: meta-threads loop indexes instantiated
ensure: static previous call graph until same host

Control Flow Protocol: prevent thread reordering

check pc set by previous “visible” threads

need: to have integrity assigned to threads

Variable Replication: compute with thread locals

do: SSA-like: each local assigned by unique thread
need: every thread statically knows who last wrote read
variables
do: assigned globals transfer at merge points

Encrypting & Signing: enforce security labels of globals

need: a unique tag to sign and verify
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Slicing
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Control Flow Protocol
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Static Single Remote Assigner

goal: statically know assigning thread if remote
assignment

single remote last assignment

SSA-like transformation

trick: merging threads write in merger locals

check ( a8 i j .pc1) ∼= ("a8", [ i ; j ]) do {
b5 i j .pc2 := ("b5", [ i ; j ]);
i f (( a8 i j .y) mod 2) = 1
then {b5 i j .x := ( a1 i j .x) + 9}
e l se { skip; b5 i j .x := a1 i j .x};
c a l l ( a4 i j ) }
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Cryptographic Protection

ensure IF policy
encrypt and sign variables sent on the network
select adequate keys
use thread id as tag to compute MAC

check Verify (b . pc1s , "a8."ˆ i ˆ"."ˆ j ˆ".pc1" , b.pc1mc , Ks
1HL

) do {
check Verify (b . ys , "a8."ˆ i ˆ"."ˆ j ˆ".y" , b.ymc , Ks

1HL
) do {

b.xmc := Decrypt (b . xe , Ke
1HL

) ;

b . x := Unmarshal (b.xmc ) ;
b . y := Unmarshal (b.ymc ) ;
b . pc1 := Unmarshal (b.pc1mc ) ;
check b . pc1 ∼= ( "a8" , [ i ; j ] ) do {
b . pc2 := ( "b5" , [ i ; j ] ) ;
i f (b . y mod 2) = 1
then {b . x := b . x + 9}
else {b . x := b . x} ;
b.xmc := Marshal (b . x ) ;
b.pc2mc := Marshal (b . pc2 ) ;
b . xe := Encrypt (b.xmc , [Ke

1HL
] ) ;
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What about security?
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Integrity attack
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http://www.msr-inria.inria.fr/projects/sec/cflow/videos/integrity.mp4
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Confidentiality attack
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Introduction Source Compilation Security Conclusion

Conclusion
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Experimental Results

Program LOC l/t crypto keys Time (s)
empty 2 102 1 (1+0) 0/0 0/0 0/0 1.59 1.63
running 18 464 3 (5+3) 2/2 4/4 1/2 1.58 1.71
rpc 11 321 2 (3+3) 2/2 4/4 1/1 1.63 2.58
guess 52 912 7 (13+3) 2/2 13/16 2/3 1.69 1.98
hospital 33 906 5 (9+0) 4/4 11/11 4/8 1.70 1.84
taxes 55 946 4 (7+2) 8/8 16/16 4/6 1.71 1.77

RPC = 6000 symmetric-key cryptographic operations
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Conclusion

Provide programming language for secured distributed
programs

simple memory model: universally shared globals
simple security mechanism: label for access to globals
code size efficient
but: not flexible enough for now

Theorem 1 (Main guarantee)

If an attack exists in the target semantics then it exists in the
source semantics

Make security a piece of cake

. . . Ok! . . . a wedding cake, but . . .

. . . handling security labels instead of keys, makes it
easier to . . .
design the security policy at the source level
analyze the program security at the source level
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