
CFlow
A Demo with a Pinch of Theory

Cédric Fournet, Gurvan Le Guernic, Tamara Rezk

INRIA - Microsoft Research Joint Center
gleguern@gmail.com

January 29th, 2010

Introduction Source Compilation Security Conclusion

Outline

1 Introduction

2 Source Language

3 How it works

4 What about security?

5 Conclusion

Fournet, Le Guernic, Rezk ParSec - CFlow 2/22

Introduction Source Compilation Security Conclusion

Introduction

Fournet, Le Guernic, Rezk ParSec - CFlow 3/22

Introduction Source Compilation Security Conclusion

Goal

Simplify (and not enforce) programming of distributed
and secured softwares

Source language: simple sequential language
globally shared memory

accessible from any host

annotations for code distribution

where to execute every statement

security level given to every global variable

specifies who can read and/or write

Target language: real world language (F])

communication between hosts through TCP/IP
encryptions and signatures to protect globals

Fournet, Le Guernic, Rezk ParSec - CFlow 4/22

Introduction Source Compilation Security Conclusion

Security in the source

Accessibility based on security lattices

IF label ∈ (confidentiality lattice × integrity lattice)

l1 l2 ⇔ (l1 ≤C l2 ∧ l2 ≤I l1)
x := y iff y x
A can read x iff x C A
A can write x iff A I x

Security lattices are compiler plugins (2 already coded)
HL: 2 × flat lattice with top and bottom

{L <C [̂ HL] <C H} × {L <I [̂ HL] <I H}
ReadersWriters: 1 set of readers and 1 set of writers
(R, W)

R1 <C R2 ⇔ R2 ⊂ R1

W1 <I W2 ⇔ W2 ⊂W1

Fournet, Le Guernic, Rezk ParSec - CFlow 5/22

Introduction Source Compilation Security Conclusion

Source Language

Fournet, Le Guernic, Rezk ParSec - CFlow 6/22

Introduction Source Compilation Security Conclusion

Program header

Define the security lattice used: SLattice HL;

the compiler loads the appropriate plugin to manipulate
strings corresponding to security labels

Define the roles: Role #HH# A;
all roles in the execution environment

A, B: secured line or VPN between A and B
A, B, others: any network with “outsiders” connected

compiler protects against the attacker level, either:

Role #LL# attacker ;
stronger weakest than all roles

Define globals: global string(64) #HH# message;

Fournet, Le Guernic, Rezk ParSec - CFlow 7/22

Introduction Source Compilation Security Conclusion

Program body

e ::= x | op(e1, . . . , en)
S ::= skip | x := e | S ; S
| if e then S else S end | while e do S done
| A : [S]

A:[S]

statement localization
means: role A executes S
can be nested

Fournet, Le Guernic, Rezk ParSec - CFlow 8/22

Introduction Source Compilation Security Conclusion

Coding a chat program

Fournet, Le Guernic, Rezk ParSec - CFlow 9/22

http://www.msr-inria.inria.fr/projects/sec/cflow/videos/coding.mp4

Introduction Source Compilation Security Conclusion

How it works

Fournet, Le Guernic, Rezk ParSec - CFlow 10/22

Introduction Source Compilation Security Conclusion

A 4-steps process

Slicing: cut into uniquely localized threads

do: compute threads’ integrities
do: meta-threads loop indexes instantiated
ensure: static previous call graph until same host

Control Flow Protocol: prevent thread reordering

check pc set by previous “visible” threads

need: to have integrity assigned to threads

Variable Replication: compute with thread locals

do: SSA-like: each local assigned by unique thread
need: every thread statically knows who last wrote read
variables
do: assigned globals transfer at merge points

Encrypting & Signing: enforce security labels of globals

need: a unique tag to sign and verify

Fournet, Le Guernic, Rezk ParSec - CFlow 11/22

Introduction Source Compilation Security Conclusion

A 4-steps process

Slicing: cut into uniquely localized threads

do: compute threads’ integrities

do: meta-threads loop indexes instantiated
ensure: static previous call graph until same host

Control Flow Protocol: prevent thread reordering

check pc set by previous “visible” threads
need: to have integrity assigned to threads

Variable Replication: compute with thread locals

do: SSA-like: each local assigned by unique thread
need: every thread statically knows who last wrote read
variables
do: assigned globals transfer at merge points

Encrypting & Signing: enforce security labels of globals

need: a unique tag to sign and verify

Fournet, Le Guernic, Rezk ParSec - CFlow 11/22

Introduction Source Compilation Security Conclusion

A 4-steps process

Slicing: cut into uniquely localized threads

do: compute threads’ integrities
do: meta-threads loop indexes instantiated

ensure: static previous call graph until same host

Control Flow Protocol: prevent thread reordering

check pc set by previous “visible” threads
need: to have integrity assigned to threads

Variable Replication: compute with thread locals

do: SSA-like: each local assigned by unique thread

need: every thread statically knows who last wrote read
variables
do: assigned globals transfer at merge points

Encrypting & Signing: enforce security labels of globals

need: a unique tag to sign and verify

Fournet, Le Guernic, Rezk ParSec - CFlow 11/22

Introduction Source Compilation Security Conclusion

A 4-steps process

Slicing: cut into uniquely localized threads

do: compute threads’ integrities
do: meta-threads loop indexes instantiated
ensure: static previous call graph until same host

Control Flow Protocol: prevent thread reordering

check pc set by previous “visible” threads
need: to have integrity assigned to threads

Variable Replication: compute with thread locals

do: SSA-like: each local assigned by unique thread
need: every thread statically knows who last wrote read
variables

do: assigned globals transfer at merge points

Encrypting & Signing: enforce security labels of globals

need: a unique tag to sign and verify

Fournet, Le Guernic, Rezk ParSec - CFlow 11/22

Introduction Source Compilation Security Conclusion

A 4-steps process

Slicing: cut into uniquely localized threads

do: compute threads’ integrities
do: meta-threads loop indexes instantiated
ensure: static previous call graph until same host

Control Flow Protocol: prevent thread reordering

check pc set by previous “visible” threads
need: to have integrity assigned to threads

Variable Replication: compute with thread locals

do: SSA-like: each local assigned by unique thread
need: every thread statically knows who last wrote read
variables
do: assigned globals transfer at merge points

Encrypting & Signing: enforce security labels of globals

need: a unique tag to sign and verify

Fournet, Le Guernic, Rezk ParSec - CFlow 11/22

Introduction Source Compilation Security Conclusion

Slicing

Fournet, Le Guernic, Rezk ParSec - CFlow 12/22

Introduction Source Compilation Security Conclusion

Slicing

Fournet, Le Guernic, Rezk ParSec - CFlow 12/22

Introduction Source Compilation Security Conclusion

Slicing

Fournet, Le Guernic, Rezk ParSec - CFlow 12/22

Introduction Source Compilation Security Conclusion

Slicing

Fournet, Le Guernic, Rezk ParSec - CFlow 12/22

Introduction Source Compilation Security Conclusion

Slicing

Fournet, Le Guernic, Rezk ParSec - CFlow 12/22

Introduction Source Compilation Security Conclusion

Control Flow Protocol

Execution

T
hr

ea
d

in
te

gr
it

y

L

H

i0

i1

i2

i3
t1

t2

t3

t4

t5

t6

t7

Fournet, Le Guernic, Rezk ParSec - CFlow 13/22

Introduction Source Compilation Security Conclusion

Control Flow Protocol

Execution

T
hr

ea
d

in
te

gr
it

y

L

H

i0

i1

i2

i3
t1

t2

t3

t4

t5

t6

t7

Fournet, Le Guernic, Rezk ParSec - CFlow 13/22

Introduction Source Compilation Security Conclusion

Control Flow Protocol

Execution

T
hr

ea
d

in
te

gr
it

y

L

H

i0

i1

i2

i3
t1

t2

t3

t4

t5

t6

t7

Fournet, Le Guernic, Rezk ParSec - CFlow 13/22

Introduction Source Compilation Security Conclusion

Control Flow Protocol

Execution

T
hr

ea
d

in
te

gr
it

y

L

H

i0

i1

i2

i3
t1

t2

t3

t4

t5

t6

t7

Fournet, Le Guernic, Rezk ParSec - CFlow 13/22

Introduction Source Compilation Security Conclusion

Control Flow Protocol

Execution

T
hr

ea
d

in
te

gr
it

y

L

H

i0

i1

i2

i3
t1

t2

t3

t4

t5

t6

t7

Fournet, Le Guernic, Rezk ParSec - CFlow 13/22

Introduction Source Compilation Security Conclusion

Static Single Remote Assigner

goal: statically know assigning thread if remote
assignment

single remote last assignment

SSA-like transformation

trick: merging threads write in merger locals

check (a8 i j .pc1) ∼= ("a8", [i ; j]) do {
b5 i j .pc2 := ("b5", [i ; j]);
i f ((a8 i j .y) mod 2) = 1
then {b5 i j .x := (a1 i j .x) + 9}
e l se { skip; b5 i j .x := a1 i j .x};
c a l l (a4 i j) }

Fournet, Le Guernic, Rezk ParSec - CFlow 14/22

Introduction Source Compilation Security Conclusion

Cryptographic Protection

ensure IF policy
encrypt and sign variables sent on the network
select adequate keys
use thread id as tag to compute MAC

check Verify (b . pc1s , "a8."ˆ i ˆ"."ˆ j ˆ".pc1" , b.pc1mc , Ks
1HL

) do {
check Verify (b . ys , "a8."ˆ i ˆ"."ˆ j ˆ".y" , b.ymc , Ks

1HL
) do {

b.xmc := Decrypt (b . xe , Ke
1HL

) ;

b . x := Unmarshal (b.xmc) ;
b . y := Unmarshal (b.ymc) ;
b . pc1 := Unmarshal (b.pc1mc) ;
check b . pc1 ∼= ("a8" , [i ; j]) do {
b . pc2 := ("b5" , [i ; j]) ;
i f (b . y mod 2) = 1
then {b . x := b . x + 9}
else {b . x := b . x} ;
b.xmc := Marshal (b . x) ;
b.pc2mc := Marshal (b . pc2) ;
b . xe := Encrypt (b.xmc , [Ke

1HL
]) ;

Fournet, Le Guernic, Rezk ParSec - CFlow 15/22

Introduction Source Compilation Security Conclusion

What about security?

Fournet, Le Guernic, Rezk ParSec - CFlow 16/22

Introduction Source Compilation Security Conclusion

Integrity attack

Fournet, Le Guernic, Rezk ParSec - CFlow 17/22

http://www.msr-inria.inria.fr/projects/sec/cflow/videos/integrity.mp4

Introduction Source Compilation Security Conclusion

Confidentiality attack

Fournet, Le Guernic, Rezk ParSec - CFlow 18/22

http://www.msr-inria.inria.fr/projects/sec/cflow/videos/confidentiality.mp4

Introduction Source Compilation Security Conclusion

Conclusion

Fournet, Le Guernic, Rezk ParSec - CFlow 19/22

Introduction Source Compilation Security Conclusion

Experimental Results

Program LOC l/t crypto keys Time (s)
empty 2 102 1 (1+0) 0/0 0/0 0/0 1.59 1.63
running 18 464 3 (5+3) 2/2 4/4 1/2 1.58 1.71
rpc 11 321 2 (3+3) 2/2 4/4 1/1 1.63 2.58
guess 52 912 7 (13+3) 2/2 13/16 2/3 1.69 1.98
hospital 33 906 5 (9+0) 4/4 11/11 4/8 1.70 1.84
taxes 55 946 4 (7+2) 8/8 16/16 4/6 1.71 1.77

RPC = 6000 symmetric-key cryptographic operations

Fournet, Le Guernic, Rezk ParSec - CFlow 20/22

Introduction Source Compilation Security Conclusion

Experimental Results

Program LOC l/t crypto keys Time (s)
empty 2 102 1 (1+0) 0/0 0/0 0/0 1.59 1.63
running 18 464 3 (5+3) 2/2 4/4 1/2 1.58 1.71
rpc 11 321 2 (3+3) 2/2 4/4 1/1 1.63 2.58
guess 52 912 7 (13+3) 2/2 13/16 2/3 1.69 1.98
hospital 33 906 5 (9+0) 4/4 11/11 4/8 1.70 1.84
taxes 55 946 4 (7+2) 8/8 16/16 4/6 1.71 1.77

RPC = 6000 symmetric-key cryptographic operations

Fournet, Le Guernic, Rezk ParSec - CFlow 20/22

Introduction Source Compilation Security Conclusion

Experimental Results

Program LOC l/t crypto keys Time (s)
empty 2 102 1 (1+0) 0/0 0/0 0/0 1.59 1.63
running 18 464 3 (5+3) 2/2 4/4 1/2 1.58 1.71
rpc 11 321 2 (3+3) 2/2 4/4 1/1 1.63 2.58
guess 52 912 7 (13+3) 2/2 13/16 2/3 1.69 1.98
hospital 33 906 5 (9+0) 4/4 11/11 4/8 1.70 1.84
taxes 55 946 4 (7+2) 8/8 16/16 4/6 1.71 1.77

RPC = 6000 symmetric-key cryptographic operations

Fournet, Le Guernic, Rezk ParSec - CFlow 20/22

Introduction Source Compilation Security Conclusion

Conclusion

Provide programming language for secured distributed
programs

simple memory model: universally shared globals
simple security mechanism: label for access to globals
code size efficient
but: not flexible enough for now

Theorem 1 (Main guarantee)

If an attack exists in the target semantics then it exists in the
source semantics

Make security a piece of cake

. . . Ok! . . . a wedding cake, but . . .

. . . handling security labels instead of keys, makes it
easier to . . .
design the security policy at the source level
analyze the program security at the source level

Fournet, Le Guernic, Rezk ParSec - CFlow 21/22

Introduction Source Compilation Security Conclusion

Conclusion

Provide programming language for secured distributed
programs

Theorem 1 (Main guarantee)

If an attack exists in the target semantics then it exists in the
source semantics

Make security a piece of cake

. . . Ok! . . . a wedding cake, but . . .

. . . handling security labels instead of keys, makes it
easier to . . .
design the security policy at the source level
analyze the program security at the source level

Fournet, Le Guernic, Rezk ParSec - CFlow 21/22

Introduction Source Compilation Security Conclusion

Conclusion

Provide programming language for secured distributed
programs

Theorem 1 (Main guarantee)

If an attack exists in the target semantics then it exists in the
source semantics

Make security a piece of cake

. . . Ok! . . . a wedding cake, but . . .

. . . handling security labels instead of keys, makes it
easier to . . .
design the security policy at the source level
analyze the program security at the source level

Fournet, Le Guernic, Rezk ParSec - CFlow 21/22

Introduction Source Compilation Security Conclusion

Conclusion

Provide programming language for secured distributed
programs

Theorem 1 (Main guarantee)

If an attack exists in the target semantics then it exists in the
source semantics

Make security a piece of cake

. . . Ok! . . . a wedding cake, but . . .

. . . handling security labels instead of keys, makes it
easier to . . .
design the security policy at the source level
analyze the program security at the source level

Fournet, Le Guernic, Rezk ParSec - CFlow 21/22

Introduction Source Compilation Security Conclusion

Conclusion

Provide programming language for secured distributed
programs

Theorem 1 (Main guarantee)

If an attack exists in the target semantics then it exists in the
source semantics

Make security a piece of cake

. . . Ok! . . . a wedding cake, but . . .

. . . handling security labels instead of keys, makes it
easier to . . .

design the security policy at the source level
analyze the program security at the source level

Fournet, Le Guernic, Rezk ParSec - CFlow 21/22

Introduction Source Compilation Security Conclusion

Conclusion

Provide programming language for secured distributed
programs

Theorem 1 (Main guarantee)

If an attack exists in the target semantics then it exists in the
source semantics

Make security a piece of cake

. . . Ok! . . . a wedding cake, but . . .

. . . handling security labels instead of keys, makes it
easier to . . .
design the security policy at the source level
analyze the program security at the source level

Fournet, Le Guernic, Rezk ParSec - CFlow 21/22

CFlow
A Demo with a Pinch of Theory

Cédric Fournet, Gurvan Le Guernic, Tamara Rezk

INRIA - Microsoft Research Joint Center
gleguern@gmail.com

January 29th, 2010

	Introduction
	Source Language
	How it works
	What about security?
	Conclusion

