Contracts for Mobile Processes

Giuseppe Castagna Luca Padovani

Laboratoire PPS, CNRS, Université Paris Diderot
Istituto di Scienze e Tecnologie dell'Informazione, Università di Urbino
Parsec meeting, January 26th, 2009

Outline

(1) Motivation

Protocols and processes
 Contracts and mobile systems

(3) Results
(4) Concluding remarks

Protocols and processes

Session types

- prescriptions on the use of channels

$$
u: \sigma, v: \tau, \cdots \vdash P
$$

Contracts

- overall process behavior

$$
u: \mathrm{Ch}, v: \mathrm{Ch}, \cdots \vdash P: T
$$

Summary

- both are behavioral types
- $\sigma=$ projection of T on u

What session types and contracts are for

Characterizing well-formed systems

- the system eventually terminates
- the system never deadlocks

Characterizing well-typed processes

- sent messages have the correct/expected type
- messages sent/delivered in the right order

Reasoning about processes by means of their type

- refactoring processes
- searching for services

A problem of abstraction

Session types
?Int.?Int.(!Real \oplus !Error) ?(!Bool.!Bool)
Contracts
a.a. $(\bar{b} \oplus \bar{c})$
a
?

A natural candidate

Contracts without channel passing

Contracts with channel passing
$\Rightarrow \quad \pi$-calculus

A problem of abstraction

Session types
?Int.?Int.(!Real \oplus !Error)
?(!Bool.!Bool)

A natural candidate
Contracts without channel passing \Rightarrow ccs
Contracts with channel passing $\quad \Rightarrow \pi$-calculus

An example

process store? $(x) \cdot x$? (y : Item).
if y is in stock then bank! (x) else $x!\langle$ available $(y)\rangle$

An example

An example

An example

Some typing rules

V-SEND
$\Gamma \vdash e: t \quad \Gamma \vdash P: T$
$\Gamma \vdash \alpha!e . P: \alpha!t . T$
$\because-.-{ }^{\pi}$

C-SEND
$\Gamma \vdash P: T$
$\Gamma \vdash \alpha!(\beta) \cdot P: \alpha!\beta . T$

V-RECV
$\Gamma, x: t \vdash P: T$
$\Gamma \vdash \alpha ?(x: t) . P: \alpha ? t . T$
$\because, . . ., \quad$

C-RECV
$\Gamma, x: \mathrm{Ch} \vdash P: T$
$\Gamma \vdash \alpha ?(x) \cdot P: \alpha ?(x) \cdot T$

Some typing rules

undecidable \rightarrow decidable

Outline

(1) Motivation

Protocols and processes
 Contracts and mobile systems

(2) Contracts

Syntax
Semantics

(4) Concluding remarks

Syntax

failure, success
$T::=\mathbf{0}|\mathbf{1} \quad \pi . T| T+T|T \oplus T \quad T| T \mid(\boldsymbol{\nu} a) T$
$\pi::=\alpha ? f|\alpha!f| \alpha!(a)$
$f::=x|(x)| a \mid$ Int \mid Bool $\mid \cdots$

Infinite behaviors $=$ infinite terms

- regularity
- boundedness

Syntax

$$
\begin{aligned}
& \text { dynamic operators } \\
& T::=\mathbf{0} \mid \mathbf{1} \\
& \pi . T|T+T| T \oplus T \\
& T|T|(\nu a) T \\
& \pi \quad::=\alpha ? f|\alpha!f| \alpha!(a) \\
& f::=x|(x)| a \mid \text { Int } \mid \text { Bool } \mid \cdots
\end{aligned}
$$

Syntax

$$
\begin{aligned}
T & ::=\mathbf{0}|\mathbf{1} \quad \pi \cdot T| T+\left.T|T \oplus T \quad T| T\right|^{\text {systems }} \\
\pi & ::=\alpha ? f|\alpha!f| \alpha!(a) \\
f & ::=x|(x)| a|\operatorname{Int}| \text { Bool } \mid \cdots
\end{aligned}
$$

Syntax

$$
\begin{aligned}
& T::=\mathbf{0}|\mathbf{1} \quad \pi \cdot T| T+T|T \oplus T \quad T| T \mid(\boldsymbol{\nu} a) T \\
& \pi::= \\
& f: \alpha ? f|\alpha!f| \alpha!(a) \&-------- \text { - prefixes } \\
& f \quad x|(x)| a \mid \text { Int } \mid \text { Bool } \mid \cdots
\end{aligned}
$$

Infinite behaviors $=$ infinite terms

- regularity
- boundedness

Syntax

$$
\begin{gathered}
T::=\mathbf{0}|\mathbf{1} \quad \pi \cdot T| T+T|T \oplus T \quad T| T \mid(\boldsymbol{\nu} a) T \\
\pi \quad::=\alpha ? f|\alpha!f| \alpha!(a) \\
f::=x|(x)| a \mid \text { Int } \mid \text { Bool } \mid \cdots \\
\quad \hat{i} \\
\text { patterns }=\text { sets of values and names }+ \text { binders }
\end{gathered}
$$

Syntax

$$
\begin{aligned}
T & ::=\mathbf{0}|\mathbf{1} \quad \pi . T| T+T|T \oplus T \quad T| T \mid(\boldsymbol{\nu} a) T \\
\pi & ::= \\
f & ::= \\
& x|(x)| a \mid \text { Int } \mid \text { Bool } \mid \cdots
\end{aligned}
$$

Infinite behaviors $=$ infinite terms

- regularity

$$
\begin{array}{r}
X=c ? \text { Int. } X \\
X=a ?(x) \cdot(c!x \cdot 1 \mid X)
\end{array}
$$

Labeled operational semantics

Example

$$
c!\text { Int. } \mathbf{1} \mid c \text { ?Real. } \mathbf{1} \xrightarrow{\dot{\imath}} c!20.1 \mid c ? \text { Real. } \mathbf{1} \xrightarrow{\dot{\imath}} \mathbf{1} \mid \mathbf{1} \xrightarrow{\stackrel{ }{4}}
$$

Contracts as behavioral types

Systems

$$
S \stackrel{\text { def }}{=} T_{1}\left|T_{2}\right| \cdots \mid T_{n}
$$

(1) when is a system well-formed?
(2) when is a process well-typed?
(3) when are two types equal?

Participant satisfaction

Definition

$T \triangleleft S$ if $T\left|S \Longrightarrow T^{\prime}\right| S^{\prime}$ and $T^{\prime} \hookrightarrow$ implies

- $T^{\prime} \xrightarrow{\mu_{1}}$ and $S^{\prime} \xrightarrow{\mu_{2}}$
- $\mu_{1} \# \mu_{2}$
$(c!m \# c ? m, \checkmark \# \checkmark)$
for some μ_{1} and μ_{2}

Examples

- c ! Int. $1 \triangleleft c$?Real. 1
- c!Real. $1 \not \& c$?Int. 1
$c!$ Real. $1 \mid c$?Int. $1 \longrightarrow c!\sqrt{2} .1 \mid c$?Int. 1

Well-formed systems

$$
S \stackrel{\text { def }}{=} T_{1}\left|T_{2}\right| \cdots \mid T_{n}
$$

Definition
 S is well formed if $\quad T_{k} \triangleleft \prod_{i \in\{1, \ldots, n\} \backslash\{k\}} T_{i} \quad$ for every $1 \leq k \leq n$

Examples

- $c!$ Int. $\mathbf{1} \mid c$?Real. $\mathbf{1}$ is well formed
- c!Real. $\mathbf{1} \mid c$? Int. $\mathbf{1}$ is ill formed

Well-typed participant

Definition

T is viable if $T \mid S$ is well formed for some S

Example

$$
\begin{aligned}
& T \stackrel{\text { def }}{=} c \text { ?Int. } 1+c \text { ?Bool. } 0 \\
& S \stackrel{\text { def }}{=} c \text { ?Int. } 0+c \text { ?Bool. } 1
\end{aligned}
$$

- T is viable
- S is viable
- $T \oplus S$ is not viable

Example: global order on channels

- deadlock because of cyclic dependency
- $T_{P} \mid T_{Q}$ ill-formed (not viable!)

Example: global order on channels

- imposing global order
- $T_{P} \mid T_{Q^{\prime}}$ well-formed

Example: global order on channels

$$
\begin{aligned}
P & \stackrel{\text { def }}{=} a ?(x) \cdot b ?(y) \cdot x!3 \cdot x ?(z: \text { Int }) \cdot y!\text { true } 0 \\
P^{\prime} & \stackrel{\text { def }}{=} a ?(x) \cdot b ?(y) \cdot x!3 \cdot y!\text { true } \cdot x ?(z: \text { Int }) \cdot 0 \\
Q & \stackrel{\text { def }}{=} a!(c) \cdot b!(d) \cdot c ?(z: \text { Int }) \cdot d ?(z: \text { Bool }) \cdot c!5 \cdot 0 \\
Q^{\prime} & \stackrel{\text { def }}{=} a!(c) \cdot b!(d) \cdot c ?(z \text { : Int }) \cdot c!5 \cdot d ?\left(z^{\prime}: \text { Bool }\right) \cdot 0
\end{aligned}
$$

- global order is not necessary
- $T_{P^{\prime}} \mid T_{Q}$ well-formed

Example: linearity

$$
\begin{aligned}
& a ?(x) \cdot b ?(y) \cdot x!(y) \cdot x ?(z: \text { Int }) \cdot y!\text { true. } 0 \\
& a!(c) \cdot b!(d) \cdot c ?(z) \cdot c!5 \cdot z ?\left(z^{\prime}: \text { Bool }\right) \cdot 0
\end{aligned}
$$

Subcontract

Definition

$T \preceq S$ if $T \mid R$ well formed implies $S \mid R$ well formed for every R

Examples

- $T \oplus S \preceq T$
- $\pi . T+\pi . S \approx \pi .(T \oplus S)$
... very much like the must preorder ...
- $\mathbf{0} \preceq T$

\preceq is not a precongruence

$$
\mathbf{0} \preceq T
$$

Definition (strong subcontract)

Let \sqsubseteq be the largest precongruence included in \preceq

Theorem

If T is viable, then $T \preceq S$ iff $T \sqsubseteq S$

- $T \sqsubseteq \mathbf{0}$ iff T is not viable
- if $\mathbf{1}+T \sqsubseteq T$, then T is well formed
- $\pi .0 \sqsubseteq \pi . T$

Outline

(1) Motivation

Protocols and processes
 Contracts and mobile systems

(2) Contracts

Syntax
Semantics
(3) Results
(4) Concluding remarks

On progress

Theorem
 If $\vdash P: T$ and T w.f. and $P \stackrel{\tau}{\Longrightarrow} Q \stackrel{\tau}{\hookrightarrow}$, then Q has succeeded

- success $=$ "no pending actions"

On decidability

Proposition

- well-formedness
- viability
- subcontract
are decidable provided that c!f matches finitely many names

If a name is sent:

- either it is fresh
- or it is a public name c!a
- or it was received earlier

$$
c ?(x) \cdots d!x
$$

Outline

(1) Motivation

Protocols and processes
 Contracts and mobile systems

(2) Contracts

Syntax
Semantics
(3) Results
(4) Concluding remarks

Session types and contracts: a comparison

- optimistic vs conservative
- global vs compositional

Concluding remarks

Contributions
(1) contracts for processes with channel mobility
(2) straightforward solution to global progress (of bounded systems)

Our wish list

- algorithms (almost done)
- choreographic specifications
- expressiveness

Concluding remarks

Contributions
(1) contracts for processes with channel mobility
(2) straightforward solution to global progress (of bounded systems)

Our wish list

- algorithms (almost done)
- choreographic specifications
- expressiveness

Thank you.

Regular does not mean finite-state

- unbounded participants
- unbounded buffers
- state encoded within processes

$$
\begin{aligned}
P(x: \text { Int })= & \text { deposit? }(y: \operatorname{Int}) \cdot P(x+y) \\
& + \text { withdraw? }(y: \operatorname{Int}) \cdot P(\max \{0, x-y\})
\end{aligned}
$$

$P(0)$
$P=c ?(x:$ Int $) \cdot($ deposit? $(y:$ Int $) \cdot c!\langle x+y\rangle . P$ + withdraw? ($y: \operatorname{Int}) . c!(\max \{0, x-y\}\rangle . P)$
$Q=c ?(x: \operatorname{Int}) \cdot c!\langle x\rangle \cdot Q$

$$
(\boldsymbol{\nu} c)(P \mid c!\langle 0\rangle . Q)
$$

Simulating asynchrony

$$
\begin{aligned}
& \text { INPUT } \\
& \frac{\Gamma \vdash \alpha: \mathrm{Ch} \quad \Gamma, x: t \vdash P: T}{\Gamma \vdash \alpha ?(x: t) \cdot P: \alpha ? t . T+\alpha ? \neg t .0} \\
& \frac{\Gamma \vdash \alpha: \mathrm{Ch} \quad \Gamma, x: \mathrm{Ch} \vdash P: T}{\Gamma \vdash \alpha ?(x) \cdot P: \alpha ?(x) \cdot T+\alpha ? \neg \mathrm{Ch} .0}
\end{aligned}
$$

