Size Does Matter:
Two Certified Abstractions for Disproving Entailment

between Separation Logic Formulas

Frangois Bobot* £ Alexander Summers™

*INRIA Saclay — ile-de-France, France

4 INRIA Sophia Antipolis — Méditerranée, France
Twente University, The Netherlands

'Z‘Imperial College London

January 8 2009

ParSec

Parallelism and Security

Motivation

m Disprove entailment between formulas
L, Le. toprove At B

m A and B are formulas.

Motivation

m Disprove entailment between formulas
L, Le. toprove At B

m A and B are separation logic formulas.

Technique:
= By of A and B

Separation Logic: a +> v

a > v (called “points-to predicate”) has a dual meaning:
m Address a contains value v.

m Permission 7 to access address a.

T is a fraction in (0, 1]:
m 1 is the permission to a location.

m Any 0 < 7 < 1 is the permission to read-only access a location.

Separation Logic:

A B is the separating conjunction:
m Permissions to access heap A and heap B
m A xA does not imply A ().
m But A does not imply A xA ().

m * separates permissions.

Separation Logic:

A B is the separating conjunction:
m Permissions to access heap A and heap B
m A xA does not imply A (no weakening).
m But A does not imply A xA (no copying).

m * separates permissions.

Last item means:

= a;«éb:an—l>,*b|—l>,

1
m But: ar> _xa+s _ X

Two axioms:

Separation Logic: x

b3 T
2 2
a—v=aqa—=>vxa—y

T T
2 2
a—yvxa—vyv=da—YVy

(Split)

(Merge)

Separation Logic: —*

A = B is the linear implication (or “baguette magique’):
m Reads “consume A yielding B” or “trade A and receive B”
m Ax (A~ B) implies B

Semantics: .Z = A

m Models .# are lists of couples of an and a permission.

. An example model is (245, 3) i (246,1) :: (245, 4) =1 [].

Semantics: .Z = A

m Models .# are lists of couples of an address and a permission.
. An example model is (245, 1) :: (246,1) =: (245,%) =]

MEas it M= (a,7):]]

ME=AxB it My, Mp, M = Mpw Mp,and
My =Aand 4p =B

ME=EA*B Mf N My, My =Aand My M= D
implies A4, w # |=AxB

Semantics: .Z = A

M=as it M= (a,7)

MEAXB it My, My, M = Mp© Mp,and
My =Aand Ap =B

M=A*B ff Ny, My = Aand My M =T
implies A4y w 4 =A*B

ME=ANB iff A =Aand 4 =B

ME=AVB iff M =Aor.M =B

Disproving Technique

Soundness of the proof system:

A+ Bimplies (V.4 , # |=A — 4 = B)

Disproving Technique

Soundness of the proof system:
A+ Bimplies (V4 , # =A— 4 = B)

Contraposition:

(3, M =A N— A |=B) implies A I B

Goal of this work:
m Take A and B and prove that A I/ B
= By models of A and B

Disproving Technique

Contraposition:

Objective:

(3, M =A N —. A |=B) implies A I B

Find .# such that .# |=A and —.# =B

Disproving Technique
Objective:

Find .# such that # =A and —.# =B

To do that:

m We compute bounds on the size of models.
m max: Formula —» S (S is the set of sizes)
m min : Formula —» S

m size: Model — S

Properties of max and min:

VA, # = A implies min(A) < size(.#) < max(A)

Disproving Technique

(3, M =A N—.A |=B) implies A I B

VM, # = A implies min(A) < size(.#) < max(A)

l

max(A) < min(B) implies A ¥ B

Disproving Technique

(3, M |=A A~ = B) implies A i/ B
VA, # = Aimplies min(A) < size(.#) < max(A)

l

max(A) < min(B) implies A ¥ B

Defining size (1)

m size(.#) = sum of .//’s permissions
m size: Model — Q

Defining size (1)

m size(.#) = sum of .//’s permissions
m size: Model — Q

size((245,1) :: (246,1) :: (245,) 2 []) =

Defining max/min (1)
max(_— _)= min(_+—)=
max(A x B) =max(A)-+gmax(B) min(A x B) =min(A)+gmin(B)

MEe=a—_ iff A = (a,n)
MEAXB it Ay, My, M = Mpaw Mp, My |=A and A =B

Defining max/min (1)

max(_+>) =x min(_5) =1
max(A «B) =max(A) +gmax(B) min(A*B) =min(A) +g min(B)
max(A + B)=max(B) —omin(A) min(A -+ B)=min(B) —, max(A)

M=o iff M= (o,7)
MNE=AxB it 3y, My, M = My Mp, My =A and Mp =B
M =A~B iff and Ay M = &

implies .#y w M |=AxB

Defining max/min (1)

max(A A B)=ming (max(A),max(B)) min(A A B)=maxg(min(A), min(B))
max(A v B)=maxg(max(A),max(B)) min(A v B)=ming (min(A),min(B))

MI=ANB iff A =Aand.# =B
ME=AVB iff Hl=Aor . #=B

Demo

Refinement and Extension

Previously:
m Whole heap abstraction
L, size((245,1) (246, 1) (245,) [) =L+ 1+ =H
L, Information on different addresses is lost.

Refinement and Extension

Previously:
m Whole heap abstraction
L, size((245,1) (246, 1) (245,) [) =L+ 1+ =H
L, Information on different addresses is lost.

Next slides:
m Per address abstraction.
m Pure formulas

L, Semantics of pure formulas is permission-independent.

Per Address Abstraction

Previously:
m max : Formula —
® min : Formula —

m max(A) < min(B) where < is on

Now:
m max : Formula — Model
m min : Formula — Model

® max(A) < min(B) where < is on Model.

Defining max/min (2)

Previously:
max(_+5)= min(_ 5)=
max(A x B) =max(A)-+gmax(B) min(A xB) =min(A)+gmin(B)

Now:
max(a'f»,)z min(a»f»f):
max(A*B) =max(A)@max(B) min(A xB) =min(A)@min(B)

Defining max/min (2)

Previously:
max{A A B)=ming (max(A), max(B)) min(A A B)=maxg (min(A), min(B))
max(A v B)=maxg(max(A), max(B)) min(A v B)=ming (min(A), min(B))
Now:
max(A A B)=min_y (max(A),max(B)) min(A A B)=max_4(min(A),min(B))
max(A v B)=max_(max(A),max(B)) min(A v B)=min_4 (min(A), min(B))

m max_y: Per address maximum

®m min_, : Per address minimum

Defining max/min (2)

max(A A B)=min_y (max(A),max(B)) min(A A B)=max_4(min(A),min(B))
max(A v B)=max_4(max(A),max(B)) min(A v B)=min_z (min(A), min(B))

m max_,: Per address maximum

®m min_, : Per address minimum

max(. 4 | (245,%) m(246,1) 2 [])

2 (246,1)]

Pure Formulas

Pure formulas include:
m Address comparison: a =d’,a # d'.
L, With arithmetic: a +d’ = b.

Pure Formulas

Pure formulas include:
m Address comparison: a =d’,a # d'.
L, With arithmetic: a +d’ = b.

Semantics of a pure formula A”:

M= AP ff

L, No on . #

Pure Formulas

M = AP iff
L, No on.Z

L, We add T in max/min’s range.

L, max(A) = T: A’s models cannot be max-bounded.

max(A?P)=T min(A?)=|]

T Does Not Harm Bounding Too Much

m A? a subformula of B max(B) = T (see case A).
T iffA=TorB=T
max(A*B) = { max(A)@max(B) otherwise
T iffA=TandB=T
B max(A) itB=T
max(AnB) =\ Lax(B) ifA=T

min_,(max(A),max(B)) otherwise

Conclusion

m Lightweight method for disproving entailment for an undecidable
fragment of separation logic

] of different precision
m Certified with Coq

Conclusion

m Lightweight method for disproving entailment for an undecidable
fragment of separation logic

] of different precision
m Certified with Coq

m Deal with fractional permissions (this talk)

m Deal with counting permissions (work in progress)

Future Work

B Unified model of permissions (fractional + counting)
flavor of separation logic
Extend the mechanical proof to quantifiers

Abstraction mechanisms (Parkinson’s abstract predicates)

	Motivation
	Separation Logic: a v
	Separation Logic:
	Separation Logic: -0.05ex
	Semantics: M|-3muA
	Disproving Technique
	Disproving Technique
	Defining size (1)
	Defining max/min (1)
	
	Refinement and Extension
	Per Address Abstraction
	Defining max/min (2)
	Pure Formulas
	 Does Not Harm Bounding Too Much
	Conclusion
	Future Work

