Size Does Matter: Two Certified Abstractions for Disproving Entailment between Separation Logic Formulas

François Bobot* Clément Hurlin

Alexander Summers

Alexander Su

*INRIA Saclay - Île-de-France, France

INRIA Sophia Antipolis – Méditerranée, France Twente University, The Netherlands

[♣]Imperial College London

January 8th 2009

ParSec

Motivation

- Disprove entailment between formulas
- \vdash I.e. to prove $A \not\vdash B$
- \blacksquare A and B are separation logic formulas.

Motivation

- Disprove entailment between formulas
- \vdash I.e. to prove $A \not\vdash B$
- \blacksquare A and B are separation logic formulas.

Technique:

 \blacksquare By discriminating models of A and B

Separation Logic: $a \stackrel{\pi}{\mapsto} v$

 $a \stackrel{\pi}{\mapsto} v$ (called "points-to predicate") has a dual meaning:

- \blacksquare Address *a* contains value *v*.
- Permission π to access address a.

 π is a *fraction* in (0,1]:

- 1 is the permission to write access a location.
- Any $0 < \pi < 1$ is the permission to read-only access a location.

Separation Logic: ★

$A \star B$ is the *separating conjunction*:

- \blacksquare Permissions to access heap A and heap B
- \blacksquare $A \star A$ does not imply A (no weakening).
- But *A* does not imply $A \star A$ (no copying).
- * separates permissions.

Separation Logic: ★

$A \star B$ is the *separating conjunction*:

- \blacksquare Permissions to access heap A and heap B
- $A \star A$ does not imply A (no weakening).
- But A does not imply $A \star A$ (no copying).
- * separates permissions.

Last item means:

- $\blacksquare a \neq b: a \xrightarrow{1} \star b \xrightarrow{1} \checkmark$
- But: $a \stackrel{1}{\mapsto} _{-} \star a \stackrel{\pi}{\mapsto} _{-}$

Separation Logic: ★

Two axioms:

$$a \xrightarrow{\pi} v \Rightarrow a \xrightarrow{\frac{\pi}{2}} v \star a \xrightarrow{\frac{\pi}{2}} v$$
 (Split)

$$a \stackrel{\frac{\pi}{2}}{\mapsto} v \star a \stackrel{\frac{\pi}{2}}{\mapsto} v \Rightarrow a \stackrel{\pi}{\mapsto} v$$
 (Merge)

Separation Logic: →

 $A \rightarrow B$ is the linear implication (or "baguette magique"):

- \blacksquare Reads "consume A yielding B" or "trade A and receive B"
- $A \star (A \rightarrow B)$ implies B

Semantics: $\mathcal{M} \models A$

- \blacksquare Models \mathcal{M} are lists of couples of an address and a permission.
- \rightarrow An example model is $(245, \frac{1}{2}) :: (246, 1) :: (245, \frac{1}{3}) :: [].$

Semantics: $\mathcal{M} \models A$

- \blacksquare Models \mathcal{M} are lists of couples of an address and a permission.
- Arr An example model is $(245, \frac{1}{2})$:: (246, 1) :: $(245, \frac{1}{3})$:: [].

$$\mathcal{M} \models a \xrightarrow{\pi} \quad \text{iff} \quad \mathcal{M} = (a, \pi) :: []$$

$$\mathcal{M} \models A \star B \quad \text{iff} \quad \exists \mathcal{M}_A, \mathcal{M}_B, \mathcal{M} = \mathcal{M}_A \uplus \mathcal{M}_B, \text{and}$$

$$\mathcal{M}_A \models A \text{ and } \mathcal{M}_B \models B$$

$$\mathcal{M} \models A \rightarrow B$$
 iff $\forall \mathcal{M}_A, \mathcal{M}_A \models A$ and $\mathcal{M}_A \cap \mathcal{M} = \emptyset$ implies $\mathcal{M}_A \oplus \mathcal{M} \models A \star B$

Semantics: $\mathcal{M} \models A$

$$\mathcal{M} \models a \stackrel{\pi}{\mapsto} _{-} \text{ iff } \mathcal{M} = (a, \pi)$$

$$\mathcal{M} \models A \star B$$
 iff $\exists \mathcal{M}_A, \mathcal{M}_B, \mathcal{M} = \mathcal{M}_A \uplus \mathcal{M}_B$, and $\mathcal{M}_A \models A$ and $\mathcal{M}_B \models B$

$$\mathcal{M} \models A \rightarrow B$$
 iff $\forall \mathcal{M}_A, \mathcal{M}_A \models A$ and $\mathcal{M}_A \cap \mathcal{M} = \emptyset$ implies $\mathcal{M}_A \models \mathcal{M} \models A \rightarrow B$

implies
$$\mathscr{M}_A \uplus \mathscr{M} \models A \star B$$

$$\mathcal{M} \models A \land B$$
 iff $\mathcal{M} \models A$ and $\mathcal{M} \models B$

$$\mathcal{M} \models A \lor B$$
 iff $\mathcal{M} \models A$ or $\mathcal{M} \models B$

Soundness of the proof system:

$$A \vdash B \text{ implies } (\forall \mathcal{M}, \mathcal{M} \models A \rightarrow \mathcal{M} \models B)$$

Soundness of the proof system:

$$A \vdash B \text{ implies } (\forall \mathcal{M}, \mathcal{M} \models A \rightarrow \mathcal{M} \models B)$$

Contraposition:

$$(\exists \mathcal{M}, \mathcal{M} \models A \land \neg \mathcal{M} \models B) \text{ implies } A \not\vdash B$$

Goal of this work:

- Take *A* and *B* and prove that $A \not\vdash B$
- \blacksquare By discriminating models of *A* and *B*

Contraposition:

$$(\exists \mathcal{M}, \mathcal{M} \models A \land \neg \mathcal{M} \models B) \text{ implies } A \not\vdash B$$

Objective:

Find \mathcal{M} such that $\mathcal{M} \models A$ and $\neg \mathcal{M} \models B$

Objective:

Find
$$\mathcal{M}$$
 such that $\mathcal{M} \models A$ and $\neg \mathcal{M} \models B$

To do that:

- We compute bounds on the size of models.
- \blacksquare max : Formula $\rightarrow \mathbb{S}$

(\mathbb{S} is the set of sizes)

- \blacksquare min : Formula $\rightarrow \mathbb{S}$
- size : Model $\rightarrow \mathbb{S}$

Properties of max and min:

$$\forall \mathcal{M}, \mathcal{M} \models A \text{ implies } \min(A) \leqslant \operatorname{size}(\mathcal{M}) \leqslant \max(A)$$

$$(\exists \mathcal{M}, \mathcal{M} \models A \land \neg \mathcal{M} \models B) \text{ implies } A \not\vdash B$$

$$\forall \mathcal{M}, \mathcal{M} \models A \text{ implies } \min(A) \leqslant \mathsf{size}(\mathcal{M}) \leqslant \max(A)$$

 $\max(A) < \min(B) \text{ implies } A \not\vdash B$

$$(\exists \mathcal{M}, \mathcal{M} \models A \land \neg \mathcal{M} \models B)$$
 implies $A \not\vdash B$

$$\forall \mathcal{M}, \mathcal{M} \models A \text{ implies } \min(A) \leqslant \underline{\mathsf{size}}(\mathcal{M}) \leqslant \max(A)$$

 $\max(A) < \min(B) \text{ implies } A \not\vdash B$

Defining size (1)

- size(\mathcal{M}) $\stackrel{\triangle}{=}$ sum of \mathcal{M} 's permissions
- \blacksquare size: Model $\rightarrow \mathbb{Q}$

Defining size (1)

- size(\mathcal{M}) $\stackrel{\triangle}{=}$ sum of \mathcal{M} 's permissions
- size: Model $\rightarrow \mathbb{O}$

$$size((245, \frac{1}{2}) :: (246, 1) :: (245, \frac{1}{3}) :: []) = \frac{1}{2} + 1 + \frac{1}{3} = \frac{11}{6}$$

Defining max/min (1)

 $\min(_\stackrel{\pi}{\mapsto}_)=\pi$

$$\begin{aligned} \max(A \star B) &= \max(A) +_{\mathbb{Q}} \max(B) & \min(A \star B) &= \min(A) +_{\mathbb{Q}} \min(B) \\ \\ \mathscr{M} &\models a \xrightarrow{\pi}_{-} & \text{iff} \quad \mathscr{M} = (a, \pi) \\ \mathscr{M} &\models A \star B & \text{iff} \quad \exists \mathscr{M}_A, \mathscr{M}_B, \mathscr{M} = \mathscr{M}_A \uplus \mathscr{M}_B, \mathscr{M}_A \models A \text{ and } \mathscr{M}_B \models B \end{aligned}$$

 $\max(_\stackrel{\pi}{\mapsto}_)=\pi$

Defining max/min (1)

$$\begin{aligned} \max(_\overset{\pi}{\mapsto}_) &= \pi & \min(_\overset{\pi}{\mapsto}_) &= \pi \\ \max(A \star B) &= \max(A) +_{\mathbb{Q}} \max(B) & \min(A \star B) &= \min(A) +_{\mathbb{Q}} \min(B) \\ \max(A \star B) &= \max(B) -_{\mathbb{Q}} \min(A) & \min(A \star B) &= \min(B) -_{\mathbb{Q}} \max(A) \end{aligned}$$

$$\mathscr{M} \models o \overset{\pi}{\mapsto}_ & \text{iff} \quad \mathscr{M} = (o, \pi)$$

$$\mathscr{M} \models A \star B & \text{iff} \quad \exists \mathscr{M}_A, \mathscr{M}_B, \mathscr{M} = \mathscr{M}_A \uplus \mathscr{M}_B, \mathscr{M}_A \models A \text{ and } \mathscr{M}_B \models B$$

implies $\mathcal{M}_A \oplus \mathcal{M} \models A \star B$

 $\mathcal{M} \models A \rightarrow B$ iff $\forall \mathcal{M}_A, \mathcal{M}_A \models A$ and $\mathcal{M}_A \cap \mathcal{M} = \emptyset$

Defining max/min (1)

$$\begin{aligned} \max(A \wedge B) &= \min_{\mathbb{Q}} \left(\max(A), \max(B) \right) & \min(A \wedge B) &= \max_{\mathbb{Q}} \left(\min(A), \min(B) \right) \\ \max(A \vee B) &= \max_{\mathbb{Q}} \left(\max(A), \max(B) \right) & \min(A \vee B) &= \min_{\mathbb{Q}} \left(\min(A), \min(B) \right) \end{aligned}$$

$$\mathcal{M} \models A \land B \text{ iff } \mathcal{M} \models A \text{ and } \mathcal{M} \models B$$

 $\mathcal{M} \models A \lor B \text{ iff } \mathcal{M} \models A \text{ or } \mathcal{M} \models B$

Demo

Demo

$$0 \stackrel{\frac{1}{2}}{\mapsto} - \star 0 \stackrel{\frac{1}{4}}{\mapsto} \stackrel{?}{\mapsto} 0 \stackrel{1}{\mapsto} -$$

$$0 \stackrel{\frac{1}{2}}{\mapsto} _{-} \star 0 \stackrel{\frac{1}{4}}{\mapsto} _{-} \star 2 \stackrel{\frac{1}{4}}{\mapsto} _{-} \star 3 \stackrel{1}{\mapsto} _{-} \stackrel{?}{\vdash} ((0 \stackrel{1}{\mapsto} _{-} \star 1 \stackrel{\frac{1}{2}}{\mapsto} _{-}) \wedge (1 \stackrel{\frac{1}{2}}{\mapsto} _{-} \star 0 \stackrel{1}{\mapsto} _{-})) \star 3 \stackrel{1}{\mapsto} _{-}$$

Refinement and Extension

Previously:

■ Whole heap abstraction

$$\rightarrow$$
 size $((245, \frac{1}{2}) :: (246, 1) :: (245, \frac{1}{3}) :: []) = \frac{1}{2} + 1 + \frac{1}{3} = \frac{11}{6}$

☐ Information on different addresses is lost.

Refinement and Extension

Previously:

- Whole heap abstraction
- \rightarrow size $((245, \frac{1}{2}) :: (246, 1) :: (245, \frac{1}{3}) :: []) = \frac{1}{2} + 1 + \frac{1}{3} = \frac{11}{6}$
- ☐ Information on different addresses is lost.

Next slides:

- Per address abstraction.
- Pure formulas
- Semantics of pure formulas is permission-independent.

Per Address Abstraction

Previously:

- \blacksquare max : Formula $\rightarrow \mathbb{Q}$
- \blacksquare min : Formula $\rightarrow \mathbb{Q}$
- \blacksquare max(A) < min(B) where < is on \mathbb{Q} .

Now:

- \blacksquare max : Formula \rightarrow Model
- min : Formula → Model
- \mod max(A) < min(B) where < is on Model.

Defining max/min (2)

```
Previously: \max(\_\overset{\pi}{\mapsto}\_) = \pi \qquad \min(\_\overset{\pi}{\mapsto}\_) = \pi \\ \max(A \star B) = \max(A) +_{\mathbb{Q}} \max(B) \qquad \min(A \star B) = \min(A) +_{\mathbb{Q}} \min(B)
Now: \max(a \overset{\pi}{\mapsto}\_) = (a,\pi) :: [] \qquad \min(a \overset{\pi}{\mapsto}\_) = (a,\pi) :: [] \\ \max(A \star B) = \max(A) @ \max(B) \qquad \min(A \star B) = \min(A) @ \min(B)
```

Defining max/min (2)

Previously:

$$\max(A \land B) = \min_{\mathbb{Q}} (\max(A), \max(B))$$
$$\max(A \lor B) = \max_{\mathbb{Q}} (\max(A), \max(B))$$

$$\begin{aligned} & \min(A \wedge B) {=} \max_{\mathbb{Q}} (\min(A), \min(B)) \\ & \min(A \vee B) {=} \min_{\mathbb{Q}} (\min(A), \min(B)) \end{aligned}$$

Now:

$$\max(A \land B) = \min_{\mathscr{M}} (\max(A), \max(B))$$
$$\max(A \lor B) = \max_{\mathscr{M}} (\max(A), \max(B))$$

$$\begin{aligned} & \min(A \wedge B) = \max_{\mathscr{M}} (\min(A), \min(B)) \\ & \min(A \vee B) = \min_{\mathscr{M}} (\min(A), \min(B)) \end{aligned}$$

- max_M: Per address maximum
- \blacksquare min_{\mathcal{M}}: Per address minimum

Defining max/min (2)

```
\begin{array}{ll} \max(A \wedge B) = \min_{\mathscr{M}} \left( \max(A), \max(B) \right) & \min(A \wedge B) = \max_{\mathscr{M}} \left( \min(A), \min(B) \right) \\ \max(A \vee B) = \max_{\mathscr{M}} \left( \max(A), \max(B) \right) & \min(A \vee B) = \min_{\mathscr{M}} \left( \min(A), \min(B) \right) \end{array}
```

- max_M: Per address maximum
- \blacksquare min_{\mathcal{M}}: Per address minimum

```
\max( (245, \frac{1}{2}) :: (245, \frac{1}{2}) :: [] , (245, \frac{1}{2}) :: (246, 1) :: [] )
= (245, \frac{1}{2}) :: (245, \frac{1}{2}) :: (246, 1) :: []
```

Pure Formulas

Pure formulas include:

- Address comparison: a = a', $a \neq a'$.
- \rightarrow With arithmetic: a + a' = b.
 -

Pure Formulas

Pure formulas include:

- Address comparison: a = a', $a \neq a'$.
- \rightarrow With arithmetic: a + a' = b.
 - ...

Semantics of a pure formula A^p :

$$\mathcal{M} \models A^p \text{ iff } \operatorname{oracle}(A^p)$$

 \rightarrow No size constraint on \mathcal{M}

Pure Formulas

$$\mathcal{M} \models A^p \text{ iff } \operatorname{oracle}(A^p)$$

- \rightarrow No size constraint on \mathcal{M}
- $\,\,\,\,\,\,\,\,\,\,$ We add $\,\,\,\,\,\,\,\,\,\,$ in max/min's range.
- \rightarrow max(A) = \top : A's models cannot be max-bounded.

$$\max(A^p) = \top \qquad \min(A^p) = \lceil$$

☐ Does Not Harm Bounding Too Much

■ A^p a subformula of B does not imply $max(B) = \top$ (see case \land).

$$\max(A \star B) \quad = \quad \left\{ \begin{array}{l} \top & \text{iff } A = \top \text{ or } B = \top \\ \max(A) @ \max(B) & \text{otherwise} \end{array} \right.$$

$$\max(A \wedge B) \quad = \quad \left\{ \begin{array}{l} \top & \text{iff } A = \top \text{ and } B = \top \\ \max(A) & \text{if } B = \top \\ \max(B) & \text{if } A = \top \\ \min_{\mathcal{M}}(\max(A), \max(B)) & \text{otherwise} \end{array} \right.$$

Conclusion

- Lightweight method for disproving entailment for an undecidable fragment of separation logic
- Two different abstractions of different precision
- Certified with Coq

Conclusion

- Lightweight method for disproving entailment for an undecidable fragment of separation logic
- Two different abstractions of different precision
- Certified with Coq

■ Deal with fractional permissions

(this talk)

Deal with counting permissions

(work in progress)

Future Work

- Unified model of permissions (fractional + counting)
- 2 Intuitionistic flavor of separation logic
- 3 Extend the mechanical proof to quantifiers
- 4 Abstraction mechanisms (Parkinson's abstract predicates)