
On convergence-sensitive bisimulation

and the embedding of CCS in timed CCS

Roberto M. Amadio

Université Paris Diderot (Paris 7)

1

Motivations

1. Build a notion of bisimulation just from internal reduction and
(static) contexts.

Internal reduction induces a notion of convergence. Take this
as basic observable (rather than labels or barbs).

NB Previous approaches (we are aware of) take (some form of)
convergence and labels (or barbs) as basic observable

Ref Walker 90.

2. Have an ‘intuitive’ semantic framework that spans both
asynchronous/untimed and synchronous/timed models. In
particular understand how asynchronous/untimed behaviours
can be embedded fully abstractly into synchronous/timed ones.
Ref Milner 83, CCS vs. SCCS.

2

Time and convergence

Time passes exactly when no internal computation is possible, i.e.,
when the system has converged.

Ref Berry-Cosserat 88, Yi 91, Nicolin-Sifakis 94, Hennessy-Regan 95. . .

Formally, suppose τ→ describes internal computation and tick→
describes the passage of one unit of time. Then

P
tick→ · iff P 6 τ→ ·

3

An elementary playground: timed CCS

CCS processes with else next operator

P ::= 0 || a.P || (P | P) || P . P || . . .

‘Sequential’ evaluation context

E ::= [] || E . P

Internal reduction Assuming | AC:

E[a.P] | E′[a.Q] | R τ→ (P | Q) | R

Passage of time

0 tick→ 0 a.P
tick→ a.P

E[a.P] . Q
tick→ Q

Pi
tick→ Qi (P1 | P2) 6

τ→ ·

(P1 | P2)
tick→ (Q1 | Q2)

4

Untimed vs. timed behaviours

Definition P is a CCS process if it does not contain the else next
operator.

Remark The language is designed so that CCS processes are a
good candidate to represent untimed/asynchronous behaviours:

• CCS processes are closed under internal reduction (and
‘labelled’ reduction too).

• CCS processes are time insensitive: if P is a CCS process and
P

tick→ Q then P = Q.

5

Questions (cf. motivations)

1. Can we define a bisimulation semantics starting from the τ→
and tick→ reductions and a notion of (static) context?

2. Is the resulting equivalence on TCCS processes conservative
over the equivalence on CCS processes?

6

Convergence sensitive bisimulation

Some notation:

• P ↓ if P 6 τ→ ·.

• P ⇓ if P
τ⇒ Q and Q ↓.

• Static contexts: C ::= [] || C | P || νaC.

A symmetric relation R on processes is a bisimulation if PRQ

implies:

cxt
C static context

C[P]RC[Q]

red
P

µ⇒ P ′, µ ∈ {τ, tick}

Q
µ⇒ Q′, P ′RQ′

where
µ⇒ is ‘weak’ reduction. Let ≈ be the largest bisimulation.

7

Remarks

• On CCS processes, P
tick→ · iff P ↓.

• Hence on CCS processes we have: (1) may convergence as basic
observable, (2) bisimulation under internal reduction, and (3)
preservation under static CCS contexts.

• Because CCS contexts are less than TCCS contexts, it is not
obvious that the TCCS bisimulation is conservative over the
CCS one.

• Indeed, conservativity fails for:

– testing semantics Ref Hennessy-Regan 95

a.(b + c.b) + a.(d + c.d) =test
CCS a.(b + c.d) + a.(d + c.b).

– the usual convergence-insensitive bisimulation:
0 ≈u

ccs Ω.

8

Some useful concepts

Stable commitment P ⇓a if P
τ⇒ Q, Q ↓ and Q is ready to

communicate on a.

Contextual convergence P ⇓C if ∃C static context C[P] ⇓.

NB P ⇓C iff ∃Q CCS process (P | Q) ⇓.

Ω = τ.τ . . . is the prototypical process such that Ω 6⇓C .

9

Some properties of bisimulation

1. Bisimilar processes have the same stable commitments.

Reduce to the situation: P ↓, Q ↓, P
a→ ·.

Take C = ([] | a.Ω).

Then C[P] 6⇓.

Note C[Q] ⇓ if and only if Q 6 a→ ·.

2. Bisimilar processes cannot be separated by the contextual
convergence.

3. All processes which are not contextual convergent are
identified. E.g. Ω ≈ (Ω | a).

Intuition: divergence makes all observations impossible.

10

A labelled bisimulation

• To characterise the bisimulation we rely on the usual labelled
transition system for (T)CCS.

• We replace the stability under context condition with a suitable
condition on labelled transitions.

• A symmetric relation R on processes is a labelled bisimulation
if PRQ implies (a is a communication action):

lab
P ⇓C , P

a⇒ P ′

Q
α⇒ Q′, α ∈ {a, τ}, P ′RQ′, (P ′ ⇓C ⊃ α = a)

red
P

µ⇒ P ′, µ ∈ {τ, tick}

Q
µ⇒ Q′, P ′RQ′

Denote with ≈` the largest labelled bisimulation.

11

Characterisation

The labelled bisimulation characterizes the (contextual)
bisimulation

P ≈ Q iff P ≈` Q

(⇐) ≈` is preserved by static contexts.

NB This fails if we replace ⇓C by ⇓.

(⇒) Show that ≈ is a labelled bisimulation.

Key step: if P
a⇒ P ′ then, for b, c fresh, consider:

C = [] | T, T = a.((b⊕ 0)⊕ c)

12

Corollaries of characterisation

Def A process P is reactive if whenever P
µ1⇒ · · · µn⇒ Q we have

that all internal (τ) reduction sequences from Q terminate.

1. Bisimulation on timed CCS is conservative over the
bisimulation on (untimed) CCS.

2. On reactive (T)CCS processes, the bisimulation coincides with
the usual ones (denoted with ≈u and ≈u

ccs).

3. On non-reactive TCCS processes, P ≈u Q implies P ≈ Q.

4. The converse fails recalling Ω ≈ (Ω | a).

5. On non-reactive CCS processes, P ≈u Q implies both P ≈u
ccs Q

and P ≈ Q while ≈u
ccs and ≈ are incomparable.

13

Summary

• Internal reduction provides automatically an observable: may
convergence.

• Observing may convergence is quite natural in a timed context.

• The characterisation of the resulting equivalence relies on the
concept of contextual convergence.

14

More work

• One can play a similar game when additionally observing
divergence or equivalently must convergence (= strong
normalisation). One distinguishes A = τ.A + τ.0 from 0.

• The approach seems to work in other contexts. E.g.

– CCS with asynchronous communication.

– TCCS with signal based communication:

emit(s) = s.emit(s) . 0

15

Remark on previous work

• The usual bisimulation ≈u restricted to CCS processes
corresponds to a known bisimulation where one observes both
labels and may convergence.

• This bisimulation is called stable in Lohrey et al. 02 and it
provides another way to embed fully abstractly CCS into
TCCS.

16

Why testing equivalence is not conservative

Let

P = a.(b + c.b) + a.(d + c.d) Q = a.(b + c.d) + a.(d + c.b)

Then
P =test

CCS Q P 6=test
TCCS Q

Indeed, consider the test T = a.(b.> . c.b.>).

Q | T must produce the ‘observable’ action > in the first or second
instant while P | T may fail to do that.

The else next operator allows to test that a process in a stable state
cannot perform a certain action

17

Why contextual convergence is needed

• Consider

P1 = a.(b + c) P2 = a.b + a.c Q = a.(d + Ω)

• Then (P1 | Q) ≈`⇓ (P2 | Q) because both processes fail to
converge.

• On the other hand, (P1 | Q) | d 6≈`⇓ (P2 | Q) | d because the
first may converge to (b + c) which cannot be matched by the
second process.

18

