
Language-based access control

February 1, 2007

Language-based access control 1 / 20



Introduction

Access control for the Java platform

I Codes from different trust levels execute within the same runtime.
Java Cards cardlets, J2ME midlets, J2SE applets

I Security architectures use dynamic monitoring checks
I Java Card firewall
I J2ME interactive permissions
I J2SE stack inspection

Java Card virtual machine

OS

Java Card framework (API)

Industry add−on classes

Applet 2 Applet 3 Applet 4Applet 1

Language-based access control 2 / 20



Introduction

Local checks vs global security property

A study of the major Java security architectures:
I Analysis of Java Card firewall [TSI’04]
I Inference of security interfaces for stack-inspection [JFP’05]
I New security model for interactive devices [Esorics’06]

Are local checks sufficient to ensure a global security property?

Language-based access control 3 / 20



Stack inspection

Stack inspection

Language-based access control 4 / 20



Stack inspection

The stack inspection mechanism

Dynamic access control mechanism (Java, .NET)
I Security policy Code → P(attr)

origin, signature
I Stack inspection primitive �∧ �

success success failure

Language-based access control 5 / 20



Stack inspection

Control graph model for libraries

n0 : call n3 : check(γ)

n1 : call n4 : return

n2 : return

γ = F(Manager) ∧ F(Accountant)
ϕ = Crit ⇒ F(Manager) ∧ F(Accountant)

n0, n1 7→ {System}

n2 7→ {System, Crit}
n3, n4 7→ {Manager}

Language-based access control 6 / 20



Stack inspection

Specification of secure contexts

I Secure call contexts

secure(s, n0) = ∀(s ′ : Stack ).s:n0
[s]−→∗s ′ ⇒ s ′ � ϕ

I Call contexts that permit node traversal

transits(s, n) = ∃n ′, s:n
[s]−→+s:n ′

I Call contexts that permit method returns

returns(s, n) = ∃r , is(r) = return ∧ s:n
[s]−→∗s:r

Language-based access control 7 / 20



Stack inspection

Symbolic computation of secure contexts
I Constraint solving over a lattice of LTL formulae
I A weakest condition operator δ : LTL → LTL

s � δn(φ) ⇐⇒ s:n � φ

I Flavor of the constraints to solve
I Traversal of check nodes

is(n) = check (γ)

τn ⇐ δn(γ)

I Traversal of method calls

n inter→ m
τn ⇐ δn(ρm)

I Secure contexts for method calls

n inter→ m
σn ⇒ δn(σm)

Language-based access control 8 / 20



Stack inspection

Inference of secure call contexts
Weakest precondition over the call stack

secure(s, n0) = ∀(s ′ : Stack ).s:n0
[s]−→∗s ′ ⇒ s ′ � ϕ

is given by a LTL formulae

σn0 = ¬F(Accountant) ∨ F(Manager)

n0 : call n3 : check(γ)

n1 : call n4 : return

n2 : return

γ = F(Manager) ∧ F(Accountant)
ϕ = Crit ⇒ F(Manager) ∧ F(Accountant)

Language-based access control 9 / 20



Stack inspection

Stack inspection: a long-standing effort

T. Jensen, D. Le Métayer and T. Thorn,
Verification of control flow based security properties.
In Proc. of the 20th IEEE Symp. on Security and Privacy, pages
89–103, IEEE Computer Society, 1999.

F. Besson, T. Jensen, D. Le Métayer and T. Thorn.
Model checking security properties of control flow graphs.
Journal of Computer Security, 9:217–250, 2001.

F. Besson, T. de Grenier de Latour and T. Jensen,
Secure calling contexts for stack inspection.
In Proc. of 4th Int Conf. on Principles and Practice of Declarative
Programming, pages 76–87, ACM Press, 2002.

F. Besson, T. de Grenier de Latour, and T. Jensen.
Interfaces for stack inspection.
Journal of Functional Programming, 15(2):179–217, 2005.

Language-based access control 10 / 20



Access control for interactive devices

Access control for interactive devices

Language-based access control 11 / 20



Access control for interactive devices

Current security model for interactive devices

Resources accesses is protected by permissions
I Signed applications

permissions granted forever
I unsigned applications

permissions granted&consumed at resource access time
Drawback: a coarse-grained control of permissions
I Unsigned applications may flood the user with security screens
I Operators are reluctant to sign

Language-based access control 12 / 20



Access control for interactive devices

Resource usage scenario (current model)
Inflexible usage of permissions

permission is granted
permission is consumed (resource access)

Language-based access control 13 / 20



Access control for interactive devices

Resource usage scenario (enhanced model)
Towards a fined-grained control of permissions

I Permissions are granted in advance before resource access

I Permissions are assigned quotas

I Permissions denote sets of resources

I Permissions of different kinds are independent

Language-based access control 14 / 20



Access control for interactive devices

Resource usage scenario (enhanced model)
Towards a fined-grained control of permissions

I Permissions are granted in advance before resource access

I Permissions are assigned quotas

I Permissions denote sets of resources

I Permissions of different kinds are independent

Language-based access control 14 / 20



Access control for interactive devices

Resource usage scenario (enhanced model)
Towards a fined-grained control of permissions

I Permissions are granted in advance before resource access

I Permissions are assigned quotas

I Permissions denote sets of resources

I Permissions of different kinds are independent

Language-based access control 14 / 20



Access control for interactive devices

Resource usage scenario (enhanced model)
Towards a fined-grained control of permissions

I Permissions are granted in advance before resource access

I Permissions are assigned quotas

I Permissions denote sets of resources

I Permissions of different kinds are independent

Language-based access control 14 / 20



Access control for interactive devices

Resource usage scenario (enhanced model)
Towards a fined-grained control of permissions

I Permissions are granted in advance before resource access

I Permissions are assigned quotas

I Permissions denote sets of resources

I Permissions of different kinds are independent

Language-based access control 14 / 20



Access control for interactive devices

Enforcement of the enhanced model

Programs will not use more permissions
than they have been granted.

I Dynamic monitoring
I runtime overhead
I security exception

I Static enforcement
I no runtime overhead
I no security exception

Language-based access control 15 / 20



Access control for interactive devices

Enforcement of the enhanced model

Programs will not use more permissions
than they have been granted.

I Dynamic monitoring
I runtime overhead
I security exception

I Static enforcement
I no runtime overhead
I no security exception

Language-based access control 15 / 20



Access control for interactive devices

Enforcement of the enhanced model

Programs will not use more permissions
than they have been granted.

I Dynamic monitoring
I runtime overhead
I security exception

I Static enforcement
I no runtime overhead
I no security exception

Language-based access control 15 / 20



Access control for interactive devices

Program as control-flow graphs

I A permission centric control-flow graph
I Permission nodes:

grant : Kind × P(Permission)×N ∪∞
consume : Permission

I Control-flow nodes: call, return, throw
I A model of execution

State = Stack (Node), Exception?, BagOf(Permission)

Kind(n) = grant(p, m) n intra→ n ′

n:s, ε, π → n ′:s, ε, grant(π)(p, m)

Kind(n) = call n inter→ m
n:s, ε, π → m:n:s, ε, π

Kind(n) = throw(ex) ∀h, n ex
9 h

n:s, ε, π → n:s, ex, π

Language-based access control 16 / 20



Access control for interactive devices

Safe traces and permissions

1 Formalise the notion of safe traces
Safe traces do not use more permissions than they have been

granted
2 Prove the soundness theorem (Coq proof)

Theorem
∀n ∈ Node, Pn , Err ⇒ ∀tr ∈ Trace, Safe(tr)

Language-based access control 17 / 20



Access control for interactive devices

Static analysis of permission usage

I Compute an under-approximation of the permissions

P : Node → BagOf(Permission)

I Greatest solution of a set of recursive constraints

Kind(n) = grant(p) n intra→ n ′

Pn ′ vp grant(Pn)(p)

Kind(n) = call n inter→ m n intra→ n ′

Pn ′ vp Rm(Pn)

⇒ Iterative constraint solving

Language-based access control 18 / 20



Access control for interactive devices

Inter-procedural analysis

Constraints summarise the effect of method calls

Kind(n) = grant(p, m) n intra→ n ′

Re
n v grant(p, m); Re

n ′

Kind(n) = return

Rn v λρ.ρ
Kind(n) = call n inter→ m n intra→ n ′

Re
n v Rm; Re

n ′

⇒ Amenable to symbolic resolution

Language-based access control 19 / 20



Access control for interactive devices

Further enhancements

I Language features
permission objects, multi-threading

I Precise program models
dataflow analyses, integer analyses
(nasty interaction with multi-threading)

I Strengthened security policy
Beyond enforceable security properties (eventually, all the
permissions are consumed)

I Bytecode verifier for the security model
trade-off verification power/efficiency

Language-based access control 20 / 20


	Introduction
	Stack inspection
	Access control for interactive devices

