Data races in Java and static analysis J

Frédéric Dabrowski

1INRIA, LANDE

Frédéric Dabrowski (INRIA, LANDE) Static race detection 1/33

e
Outline

© Concurrency in Java

@ Static Detection of dataraces

. Flanagan, Abadi & Freund
@ lock-based typing . .
Boyapati, Lee & Rinard

@ Points-to analysis : Naik & Aiken
(Points-to analysis + Type and effect system)

© Conclusion and ongoing work

Frédéric Dabrowski (INRIA, LANDE) Static race detection 2 /33

Concurrency in Java

Frédéric Dabrowski (INRIA, LANDE) Static race detection 3/33

Concurrency in Java

Concurrency model

@ Thread-based concurrency : shared memory (fields of shared objects)

@ lexically scoped locking construct : synchronized(x){...}

@ Preemptive scheduling (Interleaving semantics)

Frédéric Dabrowski (INRIA, LANDE) Static race detection 4 /33

Concurrency in Java

Interleaving semantics

(small step) interleaving semantics
sequential semantics
ti, Mem — geq t/, Mem'
/ / 7
t, Mem —geq t', Mem {- . ti,...}, Mem —jpter {- .., ty.. .}, Mem’

Problem : This semantics is incomplete with respect to the Java Memory
Model, unless you write well-synchronized programs

Frédéric Dabrowski (INRIA, LANDE) Static race detection 5/33

Concurrency in Java

Natural hypothesis : sequential consistency

Intuivively, sequential consistency means that all executions respect the
program order.

void mn(){
a a should not observe b

b

Problem : enforcing sequential consistency for all Java programs
makes many of the compiler/processor optimizations illegal.

Why 7 some optimizations assume well-synchronized programs!

Frédéric Dabrowski (INRIA, LANDE) Static race detection 6 /33

Concurrency in Java

Example : code reordering (cache mechanisms,...)

Original code Optimized code
Cf=Cg=0 Cfr=Cg=0
l1:x=C.g;|3:y=C.1; 2:Cf=1;,|4:Cg=1,
2:Cf=1;14:Cg=1; 1:x=C.g;|3:y=C.f;

{Perm(1,2,3,4) |1 < 2, 3 < 4}

{Perm(1,2,3,4)|2< 1, 4 <3}

1 3 {x=0,y=0}
: 2 3

4 1
3 4» 1 {x=0,y=0}

4

4 {x=0,y=1}
2 {x=1,y=0}

3 {x=ly=1}

original

optimized

Frédéric Dabrowski (INRIA, LANDE)

Static race detection

7/33

I
Concurrency in Java

Java's memory model is weak memory model

- Admissible behaviors (w.r.t the JMM)
Sequential consitency

Behaviors captured by the interleaving sem.

All executions of well-synchronized programs are sequentially consistent 2.

“Manson, Pugh & Adve : The Java Memory Model (Special Popl issue)

Programs must be well-synchronyzed

several static analysis depend on it

Frédéric Dabrowski (INRIA, LANDE) Static race detection 8 /33

Concurrency in Java

Well-synchronized programs

(P1) : For all execution (w.r.t the interleaving semantics), every
conflicting actions a and b are synchronized

synchronized(C){

synchronized(C){
1:x=C.g);(2: C.f =1)}

lock(C) 1:x=C.g unlock(C) lock(C) 4:Cy=1 unlock(C)
NN AN
seq locking seq
lock(C) (3y=C.f) 4:Cy=1 unlock(C) lock(C) 1:x=C.g (2:Cf=1) unlock(C)
NN N D AN

seq seq locking seq seq

3:y=Ch);(4: Cg=1)}

compiler/jvm/jit : (P1) = every exec. is captured by the inter. sem.

Frédéric Dabrowski (INRIA, LANDE) Static race detection

)

9/33

Concurrency in Java

Happens-before relation
<pp is the transitive closure of the following rules :
o sequentiality a’ <}, b
1 .t
.. . . t.start() <3, a
@ start/join synchronisation A () .hb
at <y, t.join()
@ lock-based synchronisation

unlock(m) <}, lock(m)
write(x.f) <}, read(x.f) (f volatile)

Frédéric Dabrowski (INRIA, LANDE) Static race detection 10 / 33

Concurrency in Java

Data races

definition (JMM) : a program has a data race is there exists an
execution with two conflicting actions not not ordered by <pp.

alternative definition : a program has a data race if there exists an
execution such that, at some point, there is a non deterministic choice
(interleaving semantics) among two conflicting actions.

Problem (undecidable) :

Given a program, are all executions of that program race free?

Frédéric Dabrowski (INRIA, LANDE) Static race detection 11 /33

Static detection of data races

Frédéric Dabrowski (INRIA, LANDE) Static race detection 12 /33

RCC Java

[PLDI'00] Type-based race detection for Java (Flanagan and Freund)

(4

supports classes parameterized by locks of given types (Dependent
types)

introduce a notion of thread local classes

Fields protected by locks (static fields)

Encapsulation : self-protected class

e 66 ¢ ¢

Extend previous work based on a simple thread calculus

Frédéric Dabrowski (INRIA, LANDE) Static race detection 13 /33

Example

class A(ghost Object x){
Object y = new Object() guarded by x;
void set(Object z) requires x{
this.y = z,
}

}

class B{
final Object z = new Object();
A(this.z) x = new A(this.z)();
void f(){
synchronized(this.z){set(new Object())}
}

Frédéric Dabrowski (INRIA, LANDE) Static race detection 14 / 33

Ownership types
[OOPSLA'02] Ownership types for safe programming : preventing data races and
deadlocks (Boyapati, Lee and Rinard)

Basic idea
Write generic code and create different instance with different protection
mechanisms.

Frédéric Dabrowski (INRIA, LANDE) Static race detection 15 / 33

I —
Ownership types

Ownership types
another object (final field)

Each object is owned by < itself (self)
a thread (thisThread)

class C{Ownery, Ownery, . . .) {...new D(Owner;)()...}

Frédéric Dabrowski (INRIA, LANDE) Static race detection 16 / 33

Ownership types

Static analysis
© The ownership relation builds a forest of trees

@ The fields of an object must be protected by the ancester of this
object (a root, i.e. an object protected by itself or a thread)

Extensions

@ support for read-only/single pointer objects

Frédéric Dabrowski (INRIA, LANDE) Static race detection 17 / 33

I ——
Ownership types

Example

class Account(thisOwner){
int balance = 0;
void deposit(int x) requires thisOwner{
this.balance = this.balance + x;
}
}

Account (thisThread) al = new Account(thisThread)
al.deposit(10);

final Account(self) a2 = new Account(self);
fork{synchronized(a2){a2.deposit(10); } }

Account(as) a3 = new Account(ay);

Frédéric Dabrowski (INRIA, LANDE) Static race detection

18 / 33

I
Type inference

[VMCALI'04] Type Inference for Parameterized Race-Free Java (Agarwal
and Stoller)

idea :
@ Perform a set of execution
@ Extract types from this set
@ Check types

problem : incomplete

[SAS'04, SCP'07] Type inference against races (Flanagan and Freund)

@ consider parameterization of classes as introduced by Boyapati,Lee
and Rinard

@ by reduction of the problem of finding a satisfying assignment for a
boolean formula (NP-complete)

Frédéric Dabrowski (INRIA, LANDE) Static race detection 19 / 33

Bytecode analysis

[Sigplan Not.] A type system for preventing data races and deadlocks in
the java virtual machine language
(Permandla, Roberson, Boyapati)

problem : monitorenter/monitorexit replace synchronized blocks
solution : use indexed types to recover structured locking

Indexed types : [TCS'03] A type system for JVM threads (Laneve)

very simple alias analysis

i:Loadn,{...nw— 7...},stack— > {...n— 7;...}, 7 :: stack

Frédéric Dabrowski (INRIA, LANDE) Static race detection 20 /33

I ——
Limitations of type-based approaches

@ very strict lock-based discipline

@ can't handle other synchronization patterns

Frédéric Dabrowski (INRIA, LANDE) Static race detection 21 /33

Naik and Aiken & al

Frédéric Dabrowski (INRIA, LANDE) Static race detection 22 /33

a =new h[N]; Whilj Sl‘%*]
for(i = 0;i < N;i+ +){ fork{ |

ali] = new hy;

ali].f = new hs; sync(x){x.f.g = }

}

h(l) ——— h(l hy1) hy(1)
G ol E“s‘?)
hgm) = hyn) hn))

Frédéric Dabrowski (INRIA, LANDE) Static race detection 23 /33

Language
s = |x=null|x=newh
| x=y|x=yf|xf=y
| s1;52 | if (%) then s; else sp | while" () do s
h allocation site

w €W loop counter

Dynamic semantics
Obj ::= (h,m) T:W—-N
C:={...0bj>0b...}

Frédéric Dabrowski (INRIA, LANDE) Static race detection 24 /33

I
Conditional Must Not Aliasing

synchronized(x){ synchronized(y){
X.f.g:*; y,f,g:*;

} }

Conditional Must Not Aliasing
must_not_alias(x, y) = must_not_alias(x.f, y.f)

Frédéric Dabrowski (INRIA, LANDE) Static race detection 25 /33

I
Disjoint Reachability

Disjoint reachability
oi.he HA (o1 >0) € CTA
he DRc(H) & § og.he HA(oz>0) € CTA = o1 =103
o.h=h

Abstraction

i?bj i 2’7’ _n|_> MN(w)=0 w not active
n T VV| N Mw)=T w unknown

' 7T L N(w) =M (w) =1 same iteration
Nt = {0,1,T}

Judgments : W, N,TFs: " K

h € DRk(H) DRk (H) is a safe appr. of DRc(H)

Frédéric Dabrowski (INRIA, LANDE) Static race detection

26 / 33

Disjoint reachability

Examples

whilel (x){
X = new hy;
y = new hy;
x.f=y;

}

YES : {(h, (1))
(h2, (1))}

h2 S DRK({hl})?

while! (x){
X = new hq;
while? (*){
y = new hy;
x.f =y,
}
}

YES : {(h,(1,0))
>(ha, (1,1))}

while! (%){

y = new hy;
while? (¥){
X = new hy;

x.f=y;
}
}
NO : {(h1,)

Frédéric Dabrowski (INRIA, LANDE)

Static race detection

27 /33

.
Disjoint reachability
W,N,T = x=new h:T[x— (I h)],0
W NTEx=y:T[x—T(y)] W,NM,TEx.f=y I, K
W,NM,TEx=y.f:T[x— QAw.T,T)],0

W, TkFs T K W,MIMEs : T" Ky
W,TILTEs;;s: T KiUK,

W,I'I,Fl—slzrl,Kl W,I'I,Fl—51:F2,K2
W, M, T if (%) then s; else sp: 1 U, K1 UK>

WU{w}, MM Fs:T,K N(w)#0
W, M, T = while” (x) dos: I, K

Frédéric Dabrowski (INRIA, LANDE) Static race detection 28 /33

I
Conflicting pairs elimination

Static analysis
@ Call graph construction and context-sensitive points-to analysis

@ Type and effect system

Frédéric Dabrowski (INRIA, LANDE) Static race detection 29 /33

I ——
Conflicting pairs elimination

reachable pairs
computation

aliasing pairs
computation

call-graph
construction

thread-escape
analysis

Frédéric Dabrowski (INRIA, LANDE)

alias
analysis

<. escaping pairs
Y computation

may happen in
parallel pairs
computation

unlocked pairs
computation

may happen in T
parallel
analysis

Static race detection

30 /33

e
Soundness

o reflection
@ dynamic loading
@ native methods

o libraries??7?

Frédéric Dabrowski (INRIA, LANDE) Static race detection 31/33

I ——
Conclusion and ongoing work

@ Data races detection is important
@ Objects offer a good framework

@ Type systems can handle strict lock-based discipline but lack more
elaborated synchronisation patterns

@ Points-to analysis can give very precise results but is much more
complex

Frédéric Dabrowski (INRIA, LANDE) Static race detection 32/33

I ——
Conclusion and ongoing work

Ongoing work
Certification of a static analysis for data race detection in Coq

© Context-sensitive points-to analysis
@ Certification of a result checker in Coq

© Static analysis for data race detection

o Formalisation of aiken's type and effect system for Java Bytecode
@ Formalisation of successive stages
@ Certification in Coq

Frédéric Dabrowski (INRIA, LANDE) Static race detection 33 /33

