
Data races in Java and static analysis

Frédéric Dabrowski

1INRIA, LANDE

Frédéric Dabrowski (INRIA, LANDE) Static race detection 1 / 33

Outline

1 Concurrency in Java

2 Static Detection of dataraces

lock-based typing

{

Flanagan, Abadi & Freund

Boyapati, Lee & Rinard

Points-to analysis : Naik & Aiken
(Points-to analysis + Type and effect system)

3 Conclusion and ongoing work

Frédéric Dabrowski (INRIA, LANDE) Static race detection 2 / 33

Concurrency in Java

Frédéric Dabrowski (INRIA, LANDE) Static race detection 3 / 33

Concurrency in Java

Concurrency model

Thread-based concurrency : shared memory (fields of shared objects)

lexically scoped locking construct : synchronized(x){. . .}

Preemptive scheduling (Interleaving semantics)

Frédéric Dabrowski (INRIA, LANDE) Static race detection 4 / 33

Concurrency in Java

Interleaving semantics

(small step)
sequential semantics

t, Mem →seq t ′, Mem′

interleaving semantics

ti , Mem →seq t ′i , Mem′

{. . . , ti , . . .}, Mem →inter {. . . , t ′i , . . .}, Mem′

Problem : This semantics is incomplete with respect to the Java Memory
Model, unless you write well-synchronized programs

Frédéric Dabrowski (INRIA, LANDE) Static race detection 5 / 33

Concurrency in Java

Natural hypothesis : sequential consistency

Intuivively, sequential consistency means that all executions respect the
program order.

void mn(){
a a should not observe b

. . .

b

}

Problem : enforcing sequential consistency for all Java programs
makes many of the compiler/processor optimizations illegal.

Why ? some optimizations assume well-synchronized programs !

Frédéric Dabrowski (INRIA, LANDE) Static race detection 6 / 33

Concurrency in Java

Example : code reordering (cache mechanisms,...)

Original code Optimized code

C .f = C .g = 0 C .f = C .g = 0
1 : x = C .g ; 3 : y = C .f ;
2 : C .f = 1; 4 : C .g = 1;

2 : C .f = 1; 4 : C .g = 1;
1 : x = C .g ; 3 : y = C .f ;

{Perm(1, 2, 3, 4) | 1 < 2, 3 < 4} {Perm(1, 2, 3, 4) | 2 < 1, 4 < 3}

{x=1,y=1}2 4 31

3

1

2

4

3

1

3 {x=0,y=0}

1 {x=0,y=0}

{x=0,y=1}

2 {x=1,y=0}
4 original

optimized

Frédéric Dabrowski (INRIA, LANDE) Static race detection 7 / 33

Concurrency in Java

Behaviors captured by the interleaving sem.

Admissible behaviors (w.r.t the JMM)

Sequential consitency

Java’s memory model is weak memory model

All executions of well-synchronized programs are sequentially consistent a.

aManson, Pugh & Adve : The Java Memory Model (Special Popl issue)

Programs must be well-synchronyzed
several static analysis depend on it

Frédéric Dabrowski (INRIA, LANDE) Static race detection 8 / 33

Concurrency in Java

Well-synchronized programs

(P1) : For all execution (w.r.t the interleaving semantics), every
conflicting actions a and b are synchronized

synchronized(C){
(1 : x = C .g); (2 : C .f = 1)}

synchronized(C){
(3 : y = C .f); (4 : C .g = 1)}

1:x=C.glock(C) lock(C) 4:C.y=1 unlock(C)unlock(C)

seq locking seq

2:C.f=1 3:y=C.f

lock(C) lock(C) unlock(C)unlock(C)

seq locking seq

3:y=C.f 4:C.y=1 2:C.f=11:x=C.g

seq seq

compiler/jvm/jit : (P1) ⇒ every exec. is captured by the inter. sem.

Frédéric Dabrowski (INRIA, LANDE) Static race detection 9 / 33

Concurrency in Java

Happens-before relation

≺hb is the transitive closure of the following rules :

sequentiality at ≺1
hb bt

start/join synchronisation

{

t.start() ≺1
hb at

at ≺1
hb t.join()

lock-based synchronisation

{

unlock(m) ≺1
hb lock(m)

write(x .f) ≺1
hb read(x .f) (f volatile)

Frédéric Dabrowski (INRIA, LANDE) Static race detection 10 / 33

Concurrency in Java

Data races

definition (JMM) : a program has a data race is there exists an
execution with two conflicting actions not not ordered by ≺hb.

alternative definition : a program has a data race if there exists an
execution such that, at some point, there is a non deterministic choice
(interleaving semantics) among two conflicting actions.

Problem (undecidable) :

Given a program, are all executions of that program race free ?

Frédéric Dabrowski (INRIA, LANDE) Static race detection 11 / 33

Static detection of data races

Frédéric Dabrowski (INRIA, LANDE) Static race detection 12 / 33

RCC Java

[PLDI’00] Type-based race detection for Java (Flanagan and Freund)

supports classes parameterized by locks of given types (Dependent
types)

introduce a notion of thread local classes

Fields protected by locks (static fields)

Encapsulation : self-protected class

Extend previous work based on a simple thread calculus

Frédéric Dabrowski (INRIA, LANDE) Static race detection 13 / 33

Example

class A〈ghost Object x〉{
Object y = new Object() guarded by x ;
void set(Object z) requires x{

this.y = z ;
}

}

class B{
final Object z = new Object();
A〈this.z〉 x = new A〈this.z〉();
void f (){

synchronized(this.z){set(new Object())}
}

}

Frédéric Dabrowski (INRIA, LANDE) Static race detection 14 / 33

Ownership types

[OOPSLA’02] Ownership types for safe programming : preventing data races and

deadlocks (Boyapati, Lee and Rinard)

Basic idea

Write generic code and create different instance with different protection
mechanisms.

Frédéric Dabrowski (INRIA, LANDE) Static race detection 15 / 33

Ownership types

Ownership types

Each object is owned by











another object (final field)

itself (self)

a thread (thisThread)

class C 〈Owner0, Owner1, . . .〉 {. . . new D〈Owner1〉() . . .}

Frédéric Dabrowski (INRIA, LANDE) Static race detection 16 / 33

Ownership types

Static analysis

1 The ownership relation builds a forest of trees

2 The fields of an object must be protected by the ancester of this
object (a root, i.e. an object protected by itself or a thread)

Extensions

support for read-only/single pointer objects

Frédéric Dabrowski (INRIA, LANDE) Static race detection 17 / 33

Ownership types

Example

class Account〈thisOwner〉{
int balance = 0;
void deposit(int x) requires thisOwner{

this.balance = this.balance + x ;
}

}
Account 〈thisThread〉 a1 = new Account〈thisThread〉
a1.deposit(10);

final Account〈self 〉 a2 = new Account〈self 〉;
fork{synchronized(a2){a2.deposit(10); }}

Account〈a2〉 a3 = new Account〈a2〉;

Frédéric Dabrowski (INRIA, LANDE) Static race detection 18 / 33

Type inference

[VMCAI’04] Type Inference for Parameterized Race-Free Java (Agarwal
and Stoller)

idea :

Perform a set of execution

Extract types from this set

Check types

problem : incomplete

[SAS’04, SCP’07] Type inference against races (Flanagan and Freund)

consider parameterization of classes as introduced by Boyapati,Lee
and Rinard

by reduction of the problem of finding a satisfying assignment for a
boolean formula (NP-complete)

Frédéric Dabrowski (INRIA, LANDE) Static race detection 19 / 33

Bytecode analysis

[Sigplan Not.] A type system for preventing data races and deadlocks in
the java virtual machine language
(Permandla, Roberson, Boyapati)

problem : monitorenter/monitorexit replace synchronized blocks
solution : use indexed types to recover structured locking

Indexed types : [TCS’03] A type system for JVM threads (Laneve)

very simple alias analysis

i : Load n, {. . . n 7→ τ . . .}, stack− > {. . . n 7→ τi . . .}, τi :: stack

Frédéric Dabrowski (INRIA, LANDE) Static race detection 20 / 33

Limitations of type-based approaches

very strict lock-based discipline

can’t handle other synchronization patterns

Frédéric Dabrowski (INRIA, LANDE) Static race detection 21 / 33

Naik and Aiken & al

Frédéric Dabrowski (INRIA, LANDE) Static race detection 22 / 33

a = new h1[N];
for(i = 0; i < N; i + +){

a[i] = new h2;
a[i].f = new h3;

}

while (∗){
x = a[∗];
fork{

sync(x){x .f .g = ∗; }
}

}

2h (2)
h (1)

2h (n)

2
h (1)3
h (2)3

h (n)3

2h (2)
h (1)

2h (n)

2
h (2)3

h (n)3

h (1)3

Frédéric Dabrowski (INRIA, LANDE) Static race detection 23 / 33

Language

s ::= | x = null | x = new h

| x = y | x = y .f | x .f = y

| s1; s2 | if (∗) then s1 else s2 | whilew (∗) do s

h allocation site
w ∈ W loop counter

Dynamic semantics

Obj ::= 〈h, π〉 π : W → N

C ::= {. . .Obj ⊲ Obj ′ . . .}

Frédéric Dabrowski (INRIA, LANDE) Static race detection 24 / 33

Conditional Must Not Aliasing

synchronized(x){
x .f .g = ∗;

}

synchronized(y){
y .f .g = ∗;

}

Conditional Must Not Aliasing

must not alias(x , y) ⇒ must not alias(x .f , y .f)

Frédéric Dabrowski (INRIA, LANDE) Static race detection 25 / 33

Disjoint Reachability

Disjoint reachability

h ∈ DRC (H) ⇔











o1.h ∈ H ∧ (o1 ⊲ o) ∈ C+∧

o2.h ∈ H ∧ (o2 ⊲ o) ∈ C+∧ ⇒ o1 = o2

o.h = h

Abstraction

Obj ::= 〈ĥ, Π〉

ĥ ::= h | ⊤
Π : W 7→ N⊤

N⊤ = {0, 1,⊤}

Π(w) = 0 w not active
Π(w) = ⊤ w unknown
Π(w) = Π′(w) = 1 same iteration

Judgments : W , Π, Γ ⊢ s : Γ′, K

h ∈ DRK (H) DRK (H) is a safe appr. of DRC (H)

Frédéric Dabrowski (INRIA, LANDE) Static race detection 26 / 33

Disjoint reachability

Examples

h2 ∈ DRK ({h1})?

while1 (∗){
x = new h1;
y = new h2;
x .f = y ;

}

YES : {〈h1, (1)〉⊲
〈h2, (1)〉}

while1 (∗){
x = new h1;
while2 (∗){

y = new h2;
x .f = y ;

}
}

YES : {〈h1, (1, 0)〉
⊲〈h2, (1, 1)〉}

while1 (∗){
y = new h2;

while2 (∗){
x = new h1;
x .f = y ;
}

}

NO : {〈h1, (1, 1)〉
⊲〈h2, (1, 0)〉}

Frédéric Dabrowski (INRIA, LANDE) Static race detection 27 / 33

Disjoint reachability

W , Π, Γ ⊢ x = new h : Γ[x 7→ 〈Π′, h〉], ∅

W , Π, Γ ⊢ x = y : Γ[x 7→ Γ(y)] W , Π, Γ ⊢ x .f = y , Γ, K

W , Π, Γ ⊢ x = y .f : Γ[x 7→ 〈λw .⊤,⊤〉], ∅

W , Π, Γ ⊢ s1 : Γ′, K1 W , Π, Γ′ ⊢ s1 : Γ′′, K2

W , Π, Γ ⊢ s1; s2 : Γ′′, K1 ∪ K2

W , Π, Γ ⊢ s1 : Γ1, K1 W , Π, Γ ⊢ s1 : Γ2, K2

W , Π, Γ ⊢ if (∗) then s1 else s2 : Γ1 ⊔ Γ2, K1 ∪ K2

W ∪ {w}, Π, Γw+
⊢ s : Γ, K Π(w) 6= 0

W , Π, Γ ⊢ whilew (∗) do s : Γ, K

Frédéric Dabrowski (INRIA, LANDE) Static race detection 28 / 33

Conflicting pairs elimination

Static analysis

Call graph construction and context-sensitive points-to analysis

Type and effect system

Frédéric Dabrowski (INRIA, LANDE) Static race detection 29 / 33

Conflicting pairs elimination

reachable pairs
computation

aliasing pairs
computation

escaping pairs
computation

may happen in
parallel pairs

computation

unlocked pairs
computation

may happen in
parallel
analysis

conditional must
not alias
analysis

thread−escape
analysis

call−graph
construction

analysis
alias

Frédéric Dabrowski (INRIA, LANDE) Static race detection 30 / 33

Soundness

Sound modulo :

reflection

dynamic loading

native methods

libraries ? ? ?

Frédéric Dabrowski (INRIA, LANDE) Static race detection 31 / 33

Conclusion and ongoing work

Data races detection is important

Objects offer a good framework

Type systems can handle strict lock-based discipline but lack more
elaborated synchronisation patterns

Points-to analysis can give very precise results but is much more
complex

Frédéric Dabrowski (INRIA, LANDE) Static race detection 32 / 33

Conclusion and ongoing work

Ongoing work
Certification of a static analysis for data race detection in Coq

1 Context-sensitive points-to analysis

Certification of a result checker in Coq

2 Static analysis for data race detection

Formalisation of aiken’s type and effect system for Java Bytecode
Formalisation of successive stages
Certification in Coq

Frédéric Dabrowski (INRIA, LANDE) Static race detection 33 / 33

