
Fair Cooperative Multithreading

or

Typing Termination in a Higer-Order
Concurrent Imperative Language

Gérard Boudol

INRIA Sophia Antipolis

CONCUR’07, Lisboa

1

COOPERATIVE THREADS (1/2)

Concurrent sequential programs that:

◮ share a memory,

◮ may spawn new threads,

◮ run until completion or cooperation.

6= interleaving, where threads (or rather their executable code) are

preempted by the scheduler.

A thread leaves its turn of execution for another thread by performing

specific cooperation instructions like yield (or synchronization

operations).

2

COOPERATIVE THREADS (2/2)

Pros – as opposed to preemptive scheduling:

◮ no data race, no need for mutual exclusion,

◮ modularity: no need to rewrite libraries,

◮ scheduling controlled at the application level (no ill-timed context

switching), with a deterministic implementation,

➥ easier to program with, better performance.

Cons:

◮ not directly suited for “true concurrency” (exploiting multicore

achitectures),

◮ threads must be fair, or cooperative.

3

A PROBLEM/A SOLUTION?

Purposely non-terminating programs: any server for instance should

not be programmed to terminate.

How can we guarantee that such a program is fair?

◮ distinguish a specific recursion construct ∇yP for “purposely

non-terminating programs”, 6= ordinary recursive functions,

◮ yield the scheduler on every recursive call ∇yP → {y 7→∇yP}P .

Is this fair? Should be... (provided ordinary recursive programs

terminate).

4

A LANGUAGE (1/2)

An imperative and functional language: Core ML (cf. JAVA: mutable

fields and methods), plus threads.

Syntax:

M, N . . . ::= V value

| (MN) application of the function M

to the argument N

| (refM) creation of a new memory location

| (!M) contents of a memory location

| (M := N) assignment

| (threadM) creation of a new thread

5

A LANGUAGE (2/2)

Values:

V ::= x variable

| λxM anonymous function, of x, returning M

| ∇yM “yield-and-loop”

| () termination

Examples:

yield = (∇y()())

(repeat M) = µy.(thread y()) ; M where

µyM = {y 7→∇yM}M

6

SEMANTICS (HIGHLIGHTS)

Transitions between configurations (µ,M, T, S).

Configuration = shared memory µ,

active thread M ,

multiset T of threads in the current turn,

multiset S of threads in the next turn of execution.

(µ,E[(thread M)], T, S) → (µ,E[()], T + M,S)

(µ,E[(∇yM())], T, S) → (µ, (), T, S + E[{y 7→∇yM}M])

(µ, V,N + T, S) → (µ,N, T, S)

(µ, V, ∅, N + S) → (µ,N, S, ∅)

Sequential constructs: as usual.

7

PROBLEM: Recursion without Recursion

Two ways of diverging in an imperative and functional language,

without explicit recursive call:

◮ recursion by means of λ-calculus fixpoint combinators.

➥ type system.

◮ recursion by means of circular references [Landin 64]:

rec f(x)M ≃ let y = (refλxM)

in y := λx(λfM(! y)) ; !y

➥ type and effect system, to eliminate circularities in the memory.

Expected result: typed threads are fair, i.e.

(µ,M) typable ⇒ ∃V... (µ,M, ∅, ∅)
∗

→ (µ′, V, T, S)

8

The REALIZABILITY TECHNIQUE (1/2)

To prove properties akin to termination (strong normalization,

evaluation to a head-normal form...) for typed expressions: define an

interpretation of types as sets of expressions, s.t.

◮ the interpretation [[τ]] of a type contains only expressions enjoying

the intended computational property (e.g. to be “fair”);

◮ an expression typed τ belongs to [[τ]], or realizes τ (|= M : τ),

by induction on types. Main ingredient:

|= M : τ → σ ⇔ ∀N. |= N : τ ⇒ |= (MN) : σ

A very general technique for typed λ-calculi.

9

The REALIZABILITY TECHNIQUE (2/2)

not available for higher-order imperative (and concurrent) languages.

◮ A difficulty: applying a function of type τ → σ may read/update

memory locations of type θ, not smaller than τ or σ (cf. “Landin’s

trick”).

➥ cannot define a realizability interpretation by induction on types.

(Pitts & Stark 98: memory restricted to contain only values of basic

types – boolean, integer... no function in the memory.)

10

The TYPE and EFFECT SYSTEM (1/3)

[Lucassen & Gifford 88]:

◮ The memory is partitionned into regions ρ.

◮ Judgements: Γ ⊢ M : e, τ , meaning “M has effect e and type τ

in the typing context Γ.”

◮ Effect: set of regions e where M may create, read or update a

reference.

◮ Types:

τ, θ, σ . . . ::= unit | θ refρ | (τ
e
−→ σ)

11

The TYPE and EFFECT SYSTEM (2/3)

Main idea here: stratification of the memory by means of regions:

a function of type (τ
e
−→ σ) stored in region ρ does not have a latent

effect in region ρ, i.e. ρ 6∈ e.

➥ “Landin’s trick” is not typable.

◮ New: enriched judgements ∆;Γ ⊢ M : e, τ with a region typing

context ∆ = ρ1 : θ1, . . . , ρn : θn associating types to regions,

◮ with predicates ∆ ⊢ and ∆ ⊢ τ of “well-formedness” of region

contexts and types resp.

12

The TYPE and EFFECT SYSTEM (3/3)

Well-formedness:

∅ ⊢
∆ ⊢ θ

∆, ρ : θ ⊢
ρ 6∈ dom(∆)

∆ ⊢ ∆(ρ) = θ

∆ ⊢ θ refρ

∆ ⊢
∆ ⊢ unit

∆ ⊢ τ ∆ ⊢ σ e ⊆ dom(∆)

∆ ⊢ (τ
e
−→ σ)

➥ applying a function of type (τ
e
−→ σ) only has effects at strictly

“smaller” types.

The typing rules are standard, except that the types are checked for

well-formedness against the region context.

13

IMPERATIVE REALIZABILITY (1/2)

For M closed: ∆ |= M : e, τ ⇔def if the memory µ satisfies

ρ ∈ e & ∆(ρ) = θ ⇒ ∆ |= µ(uρ) : θ (∗)

then computing (µ,M, ∅, ∅)

◮◮ has only effects in e,

◮◮ cooperates, i.e. converges to a value V (while possibly spawning new threads),

◮◮ which realizes τ : ∆ |= V : τ (∗),

(∗) where ∆ |= V : τ is defined by induction on τ :

◮◮ ∆ |= V : unit ⇔def V = ()

◮◮ ∆ |= V : θ refρ ⇔def V is a reference in region ρ

◮◮ ∆ |= V : (θ
e
−→ σ) ⇔def ∀W.∆ |= W : θ ⇒ ∆ |= (V W) : e, σ

14

IMPERATIVE REALIZABILITY (2/2)

For ∆ ⊢, the definition of ∆ |= M : e, τ is well-founded w.r.t. an

ordering ≺∆ on pairs (e, τ) s.t.

◮◮ ρ ∈ e & ∆(ρ) = θ ⇒ (∅, θ) ≺∆ (e, τ)

◮◮ (∅, τ) ≺∆ (e, (τ
e
′

−→ σ)) and (e′, σ) ≺∆ (e, (τ
e
′

−→ σ))

Main result: The type and effect system is sound w.r.t. the

realizability interpretation.

Corollary (Fairness/Type Safety):
◮◮ any typable expression cooperates, i.e. yields a value;
◮◮ the “current turn” always terminates: any typable thread system

(µ,M, T, S) reduces to (µ′, V, ∅, S + S′) for some value V .

15

CONCLUSION

The “yield-and-loop” construct for programming non-terminating

processes is indeed a solution to our fairness problem (together with

a stratification of types) – but the proof needs some machinery...

