
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

100 101 102 103 104 105 106 107 108
Refl

App_Inv
Union_Right
App_Super

Tuple
R_Intro

Top
R_Right
R_Le
L_Intro

Type_Type
Tuple_Li_Union

Union_Le
SuperTuple
Type_Le

L_Le
L_Right

Type_Right
R_L

Tuple_Unli_Union

(a) Number of rule applications (log-scaled)

0.00 0.25 0.50 0.75 1.00

Refl
App_Inv

Union_Right
App_Super

Tuple
R_Intro

Top
R_Right
R_Le
L_Intro

Type_Type
Tuple_Li_Union

Union_Le
SuperTuple
Type_Le

L_Le
L_Right

Type_Right
R_L

Tuple_Unli_Union

(b) Application success rate

Fig. 1. Statistics for the usage of the subtype rules when validating specification against GitHub packages

Julia Subtyping: A Rational Reconstruction

FRANCESCO ZAPPA NARDELLI, Inria and Northeastern U.

JULIA BELYAKOVA, Czech Technical U. in Prague

ARTEM PELENITSYN, Czech Technical U. in Prague

BENJAMIN CHUNG, Northeastern U.

JEFF BEZANSON, Julia Computing

JAN VITEK, Northeastern U. and Czech Technical U. in Prague

STATISTICS OF USE OF SUBTYPE RULES
Figure 1 reports the number of uses (1a) and successes (1b) of each rule while building the derivations

for the 6 million real-word tests we relied upon for validation. Scale on (1a) is logarithmic.

The first remark is that all our rules are actually considered by the algorithm at some point. The

most frequent rule in derivations is, unsurprisingly, reflexivity (applied 37’298’823 times); we note

that it was used, as expected, only against certain parts of the type grammar: kinds (Tuple, Union,

UnionAll, DataType), class names, variable names and values. On the other hand, the two least

frequent rules are tuple_unlift_union and R_L (occurred 27 and 1163 times); these are used in

subtle corner cases of the algorithm. They have different success rates: the former succeeded every

time it was invoked, while the latter never returned true.

Julia subtyping is a mixture of structural (tuples and unions) and nominal (user-defined types

with prescribed supertypes) features. Setting aside Refl, four most common rules, App_inv,

Union_right, App_super and Tuple, show that the combination is vital in practice. Moreover,

it is clear that the ability to use parametric types is appreciated, although among all App_super

applications only somewhat 10% is about proper (non-nullary) type constructors.

From the multiple dispatching point of view it seems natural that the rules handling “inter-

esting” right part of a judgment (union_right and R_intro) were tried more often than their

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 F. Zappa Nardelli, J. Belyakova, A. Pelenytsin, B. Chung, J. Bezanson, J. Vitek

left-counterparts (8’333’016 and 5’991’060 versus 1’278’605 and 2’241’454), because when resolving

dispatch we have method signatures on the right and run-time type-tags of the values on the left.

The same reasoning applies to R-variable being pervasive: R_left applies 2’349’341 out of 2’356’449

and R_right applies 2’622’011 out of 2’533’770. Also vital for the dispatching mechanism, Tuple is

fifth most common rule, succeeding two thirds of times approximately (4’035’838 out of 6’550’185

tries to be precise) — this is a high success ratio, given that often tuples of different lengths appear

in the logged tests (allegedly, those account for the cases when several overloadings of a function

have different numbers of arguments and testing method applicability entails comparison of tuples

of different sizes).

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.


