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Abstract

Consider a network of nodes running ML programs that exchange data. How can data which has
an abstract type on one node be accepted on another node? A safe approach is to treat abstract
types as distinct whenever they are defined on different nodes. However this is too restrictive in
practice, for example in the common case where an abstract type enforces a semantic invariant.

The main contributions of this thesis are threefold: I define a notion of hash of an abstract
type, whereby abstract types that have the same hash are deemed compatible; I give an operational
semantics for a module system that preserves types, including abstract types; I also propose a new,
more general module system that is well-suited to distributed applications.

The hash of an abstract type must reflect its intended semantics, which is often not apparent
from the program’s code. In practice, two modules have the same hash if they have the same code.
Compound modules are compatible when they are built from compatible components.

Existing operational semantics for ML modules lose information as they erase abstraction bound-
aries. I use coloured brackets to track the visibility of abstract types. I study two calculi equipped
with brackets, a simply-typed lambda-calculus and a rich ML module calculus.

I use singleton signatures to keep track of not only type but also code sharing, so that module
equivalence is defined at arbitrary signatures. A simple effect system limits type constraint to a
statically checkable fragment, while permitting both applicative and generative functors. I discuss
static and dynamic forms of module sealing.
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Introduction

Objective

The objective of the present dissertaion is to extend an ML-like language to adapt it to distributed
systems. Specifically, we are interested in the requirements that the distributed nature of the
environment imposes on the type system — we will not concern ourselves with other aspects such
as concurrent execution and fault tolerance.

Consider two machines A and B , each executing a program. At some point in time, A and B

start exchanging data. The central question of this dissertation is, how can we make sure that A

and B agree on the semantics of the exchanged data?

A network link carries sequences of bits (usually arranged in bytes). When A sends data to
B , the data is encoded as a sequence of bits. This operation is known as marshaling (the words
pickling and serialisation are synonyms). Upon reception of the bit sequence, B must perform
the opposite operation (known as unmarshaling, unpickling or deserialisation). Many languages
provide a standard representation of data as strings: s-expressions in Lisp, Marshal library in Ob-
jective Caml [L+], Pickle library in Standard ML [PSL], Serializable interface in Java [Sun]. . .
Several standards (ASN.1, XML) specify language-independent string encodings of data for com-
munication. While the exact set of supported data shapes varies greatly, serialisation libraries and
data representation standards usually specify at least how to encodes numbers (n-bit integers, little-
or big-endian, decimal notation. . . ), strings (character sets and encodings: ASCII, Unicode, . . . ),
sequences of such. . .

Marshaling data entails transforming it to an unambiguous sequence of bits. Unmarshaling
consists of two parts: the bit sequence must be transformed back into a workable representation of
the data, and one must verify that the resulting data has the expected type or shape. For example,
if the program running on B expects a number, and the program on machine A sends the string
"foo", the error must be detected. The usual approach in ML-like languages is to detect such errors
as soon as possible, which is as soon as the program has been written (during the type-checking
phase of compilation). It seems natural in an ML-like language to express the unmarshal-time check
as a type constraint; but how can this constraint be imposed?

According to the ML approach, the error must be detected when compiling the program on A or
B . Thus the program on A would declare a communication channel of type string (on which one
may send "foo"), and the program on B would declare a channel of type int (on which only numbers
may be received). But this only delays the problem, since the fact that A and B disagree on the
type of their shared communication channel cannot be detected until A and B start communicating.

This observation leads us to desire a run-time type-check, specifically a type-check when es-
tablishing a communication channel between programs that have not yet communicated. (Once the
programs have communicated, such a check is no longer necessary, since the programs may now
have agreed on the types of future communications. For example JoCaml [MM01] has a static type
system [FLMR97]; however two independently started JoCaml programs that wish to communicate
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INTRODUCTION

must get a shared channel via a “name server”, which is currently not well-typed.)

Although ML is designed to be statically typed, and most compilers erase types to save memory
during execution, there are ways of checking whether a value has a certain type at run-time. However
existing systems do not manage abstract types correctly, allowing only types with a predefined
structure to be shared between separate programs.

One solution is to forbid values of abstract types to be marshaled. Another is to require the
author of the abstract type to provide marshaling and unmarshaling functions. This however
does not solve our problem: a serialisation format can usually be deduced automatically from the
representation of the type, but this does not fully solve the problem of checking whether the type
of the sent data is the type that is expected at the point of reception. Herein lies the gist of the
matter: when are two abstract types the same?

There are two main intuitions to the nature of an abstract type. One point of view states that an
abstract type in hidden. It has an implementation, which is a “concrete” type (the implementation
may make use of other abstract types, but these can be traced through in turn all the way to built-in
types). Hence an abstract type is a concrete type — but we do not know which. Another view is
that an abstract type is a new, fresh type, distinct form any other type (in particular it is distinct
from any concrete type, and it is distinct from its implementation type, in that one may not convert
freely between the two).

When are two hidden types the same? One prerequisite that comes to mind immediately is that
the implementation types must be the same. But this condition is neither necessary nor sufficient.
One may wish to consider two hidden types as the same when their implementations have identical
behaviour, even if their code differs. Conversely, just because the implementations match exactly
does not mean that the types can be matched freely — for example a Euro type and a Dollar type
may have the same implementation, yet should definitely not be compatible. Type abstraction can
play multiple rôles, and usages may differ in terms of ideal degree of compatibility.

When are two fresh types the same? The simplest answer is “when they were created in the
same operation”. This approach has often been refined by proposing language constructs that may
or may not create fresh types. In ML, control of type freshness is given to the module language,
which we shall therefore study.

General outline of the dissertation

Chapter I presents the basic concepts upon which the dissertaion is based. We first study the
notion of abstraction, its uses and how to express it. In ML-like languages, abstraction arises via
the module language, and we highlight some points of its rich history. We also study how to add
dynamic type-checking to a statically typed language.

Chapter II develops a notion of imprint. The imprint of a software component identifies the
abstraction that it provides. We examine many sample programs in order to decide how much
compatibility is desired in various conditions, and we discuss how to compute imprints so that two
components have the same imprint if and only if they are supposed to be compatible.

Chapter III presents a simple first language equipped with imprints, the hat language. This
language extends the simply-typed lambda-calculus with simple modules. We keep track of abstrac-
tion domains throughout program execution using coloured brackets. The language also includes
dynamically typed communication primitives that use imprints to test the equality of abstract types.

Chapter IV describes a new module system for ML which is suitable for distributed programs,
the tophat language. This language includes central concepts in module calculi, such as functors
and sealing. Singleton types with no signature restriction allow for the expression of code equalities
as well as type equalities, generalising the usual notion of type sharing. We show how to express
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INTRODUCTION

different kinds of sealing, depending on the expected level of generativity. Like hat, tophat uses
imprints to perform run-time type equality tests involving abstract types, and coloured brackets to
preserve abstraction barriers during program execution.

We conclude with a survey of related work and future work perspectives.
Appendix A summarises the formal definition of the tophat language introduced in chapter

IV. Appendix B contains a proof of the soundness of tophat.

A note about code snippets

We usually present code snippets in Objective Caml syntax. We do not expect the reader to
know the fine points of the language, and will in particular explain any subtlety concerning the
semantics of modules. When features that Objective Caml does not have are illustrated, we use
Objective Caml-like syntax augmented as desired and describe the intended semantics in the text.
Readers used to Standard ML may wish to consult a correspondance table between the two dialects
[Ros].
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Chapter IV

Tophat: a module calculus suited to

distributed environments

IV.1 Introduction

Objectives

The purpose of this chapter is to present a module system that combines the usual features found
in ML-like languages with a flexible management of abstract types that, as in hat, is suited to
distributed programs.

This module system is described as a typed lambda-calculus, for which we provide typing rules
and a type-preserving small-step operational semantics. The system described herein purports to
be a theoretic model, not a full-blown programming language, although our design choices will be
motivated by practical concerns. As such, it lacks some practical features that might be thought of
as syntactic sugar. We will also for the most part delay implementation considerations until section
V.3.3.

Existing module systems already span a wide range of features and style With respect to ex-
pressivity, our aim is to cover the features that we think are fundamental to our specific objective of
coping well with abstract types in a distributed environment. Style-wise, we have tried to provide
a compositional approach, where each aspect of the language is embodied in a separate language
construct that can be easily understood on its own.

Vocabulary and notations

We will endeavour to distinguish between the words “expression”, meaning a specific language
category (expressions typically have types, and can be evaluated), and “term”, which denotes an
element of any syntactic category (expression, type, module, environment, etc.). We will usually
denote by ℵ or i a term of unknown syntactic category.

Let ℵ be any term, x a variable and E an expression. We will write the substitution of E for x

in ℵ as {x←E}ℵ. Similarly, we will write {X←M}ℵ for the substitution of module expression M for
module variable X in ℵ.

Outline

We will present the tophat language incrementally. Each of the following five steps refines or
extends the previous language.

11



CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .

B We will start with a basic module system, including only module-building constructs that would
be sufficient for our purpose in the absence of types. This system is simple but lacks expres-
sivity as far as types are concerned.

S We will add singleton types (which generalise singleton kinds) to the basic system, in order to
keep track of equalities between types. The resulting system will adequately model modules
with no type abstraction.

E We will then add a sealing construct to the language in order to permit making types abstract.
We will see that sealing makes the langage impure, and will equip our type system with a
suitable effect system.

C The previous system can express type abstraction at the source level, but abstraction is lost
when the program is evaluated. We will therefore provide a way of keeping track of abstraction
boundaries during program evaluation, in the form of module identities and coloured brackets.

D We will finally be able to equip our language with dynamic typing constructs that behave rea-
sonably in a distributed setting.

System D constitutes the full tophat language1.

At each stage, we will motivate the features to be introduced with examples, and we will examine
how these features can be used in programs. We will discuss the choices we made when designing
the theory presented here. We will then state precise the semantics of the language we define, in the
form of typing rules (the static semantics) and small-step reduction rules (the dynamic semantics).

IV.2 A module calculus B

The present section presents the core of a module description language. This core, which we call B,
builds on two essential features: aggregates of values and types, called structures; and parametric
modules, called functors.

IV.2.1 Fundamental constructs

[Sorry, this fragment has not been translated yet.]

IV.2.2 About the base language

[Sorry, this fragment has not been translated yet.]

IV.2.3 Formal description of the core language

IV.2.3.1 Syntax

We can now formally state the syntax and semantics of our core language. We limit ourselves to
the features mentioned so far, and delay singletons until section IV.3.

Since we have decided to unify the module and expression languages, objects formerly noted
E and objects formerly noted M now belong to the same world, and shall be noted E and called

1Total Or Partial Hashed Abstract Types, in which the words “total” and “partial” refer to total and partial
functors, also known as applicative and generative functors.
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expressions. Similarly we will write T rather than S and speak of types. Nonetheless some
expressions will intuitively be seen as modules, and their types as signatures.

E ::= expression or module
x
∣

∣ y
∣

∣ t
∣

∣ . . . variables
() unit value
false

∣

∣ true boolean (generically bv)
0
∣

∣ 1
∣

∣ . . . integer (generically n)
〈T〉 type field

(E1, E2) pair
πiE projection (i ∈ {1, 2})
λx : T . E lambda-abstraction
E1 E2 application
let x = E0 inE : T local binding

T ::= type or signature

unit unit
bool booleans
int integers
type abstract type field
TypE projection from a type field
Σx : T1. T2 dependent sum

Πx : T0. T1 dependent product

We will use the following abbreviations.
T1 ∗ T2 := Σx : T1. T2 product type

T1→ T2 := Πx : T1. T2 arrow (function) type
In the definitions of T1 ∗ T2 and T1→ T2, x is a fresh variable, i.e., a variable that is not free in T2.

IV.2.3.2 Variables

We use standard definitions of free variables, bound occurrences, alpha-conversion and sub-
stitutions. A closed term is one with no free variable.

We write fv ℵ for the set of free variables of ℵ. We write {x←E}ℵ for the substitution of E for
x in ℵ.

We will systematically work up to alpha-conversion, i.e., any term that we write down will
formally denote its equivalence class modulo alpha-conversion. Any typing or reduction step may
rename variables. For example, if a typing or reduction rule requires more than one instantiation
of a metavariable, each instantiation may use different representative for bound variables. This
follows the tradition of the Barendregt variable convention, which allows for substantially clearer
exposition. We will generally not mention the omnipresent possibility of alpha-conversion; syntax
descriptions will mention the binding structure in the text.

IV.2.3.3 Environments

An environment is a finite list of (variable, type) pairs. We write nil for the empty environment,
x : T for an environment of length 1, and use “,” for concatenation, which we treat as associative.
For example, an environment binding three variables will usually be written as x : T , y : T ′, z : T ′′;
other ways of writing the same environment are ((x : T , y : T ′), z : T ′′) and (x : T , y : T ′), z : T ′′ and
(((nil, x : T), y : T ′), z : T ′′).

Environments are built from the following grammar:
Γ ::= environnement

nil empty
Γ , x : T binding of the variable x

Alternatively, environments may be seen as objects of the form x1 : T1, . . . , xk : Tk with k ∈ N.
The domain of an environnement Γ = x1 : T1, . . . , xk : Tk is the set of variables {x1, . . . , xk}. It

is written dom Γ .
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An environment binds the variables of its domain, and they are as usual subject to alpha-
conversion. Writing (Γ , Γ ′) supposes that Γ and Γ ′ have disjoint domains; alpha-conversion must be
performed if necessary. In a concatenation (Γ , Γ ′), the variables in the domain of Γ bind in Γ ′.

Note that our environments must be ordered since we have dependent types. Thus (x : int, y :

Typ x) is a well-formed environment, whereas (y : Typ x, x : int) is not (it could have been written
as (y : Typ x, z : int) after renaming the bound variable to z, with the remaining occurrence of x

being free).

IV.2.4 Typing

IV.2.4.1 Introduction

We consider a correct program (fragment) to be an expresion E associated with a type T such
that E has the type T . When E contains free variables, these must be assigned a type through an
environment.

We will manipulate several forms of typing judgements, which will always be local judgements,
of the form Γ ⊢ J (in system B — later local judgements will bear more annotations). System B

has three forms of right-hand side for a local typing judgement. .
J ::= typing judgement

Γ ⊢ J local judgement

J ::= local judgement right-hand side
ok environment correction
T ok correction of the T

E : T expression typing

We present typing rule under the usual presentation as a deduction rules.

IV.2.4.2 Γ ⊢ ok Environment corrections

Environments are built from left to right, binding by binding. Each type assigned to a variable
must be valid in the environment that precedes the binding under consideration. Note that variables
bound by an environment are automatically distinct as per our alpha-conversion convention.

(B/envok.nil)
nil ⊢ ok

Γ ⊢ T ok
(B/envok.x)

Γ , x : T ⊢ ok

IV.2.4.3 Γ ⊢ T ok Type correctness

The correctness rules for types are standard: for base types, we require that the environment
be well-formed, and for constructed types, we require each part to be well-formed (treating depen-
dencies properly).

Γ ⊢ ok
(B/tok.base.unit)

Γ ⊢ unit ok

Γ ⊢ ok
(B/tok.base.bool)

Γ ⊢ bool ok

Γ ⊢ ok
(B/tok.base.int)

Γ ⊢ int ok

Γ ⊢ ok
(B/tok.type)

Γ ⊢ type ok

Γ ⊢ T ′ ok Γ , x : T ′ ⊢ T ′′ ok
(B/tok.pair)

Γ ⊢ Σx : T ′. T ′′ ok

Γ ⊢ T ′ ok Γ , x : T ′ ⊢ T ′′ ok
(B/tok.fun)

Γ ⊢Πx : T ′. T ′′ ok

14
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IV.2.4.4 Γ ⊢ E : T Expression typing

Constants Basic constants have their respective type in a correct environment.
Γ ⊢ ok

(B/et.base.unit)
Γ ⊢ () : unit

Γ ⊢ ok
(B/et.base.bool)

Γ ⊢ bv : bool

Γ ⊢ ok
(B/et.base.int)

Γ ⊢ n : int

Variables Variables have the type stated in the environment.
Γ ⊢ ok when x : T ∈ Γ

(B/et.x)
Γ ⊢ x : T

Pairs Although our syntax allows dependent sums, system B is too restricted to take advantage
of them (this defect will be remedied in system S). We can only give pairs an ordinary pair type.
Γ ⊢ E1 : T1 Γ ⊢ E2 : T2

(B/et.pair)
Γ ⊢ (E1, E2) : T1 ∗ T2

Γ ⊢ E : T1 ∗ T2

(B/et.proj.1)
Γ ⊢ π1E : T1

Γ ⊢ E : T1 ∗ T2

(B/et.proj.2)
Γ ⊢ π2E : T2

Functions We state classical rules for typing functions (or functors) and application, keeping in
mind that we have dependent types. Note that in order to type the application of a function that
has a dependent type, the occurrences of the formal parameter x must be replaced by the actual
argument E0 inside the result type E. Thus an arbitrary expression can appear in a type where a
simple variable formally was. This illustrates the difficulty of restricting the presence of expressions
in types to certain syntactic categories.

Γ , x : T0 ⊢ E : T1

(B/et.fun)
Γ ⊢ λx : T0. E : Πx : T0.T1

Γ ⊢ E1 : Πx : T0.T Γ ⊢ E0 : T0

(B/et.app)
Γ ⊢ E1 E0 : {x←E0}T

Local binding In order to type the local binding of a variable to a value, we request that the
programmer specify the resulting type of the whole expression. Furthermore this type is not allowed
to mention the locally bound variable. This last point is easily understood from the fact that while
it would make sense for the variable x to be bound in the type of the body E, this variable cannot
be free in (let x = E0 inE : T). In particular, if E0 were to create abstract types, there is no way to
reference them outside the binding. The necessity for the programmer to specify the type is due to
the avoidance problem mentioned in section I.2.2.6, which makes inference of T undecidable.

Γ ⊢ E0 : T0 Γ , x : T0 ⊢ E : T Γ ⊢ T ok
(B/et.let)

Γ ⊢ (let x = E0 inE : T) : T

IV.2.4.5 〈T〉, TypE Type fields

We can see 〈 〉 as a constructor for the type type and Typ as the corresponding destructor.
This approach yields suitable typing rules.

Γ ⊢ T ok
(B/et.type)

Γ ⊢ 〈T〉 : type

Γ ⊢ E : type
(B/tok.field)

Γ ⊢TypE ok

IV.2.5 Run-time

Values The class of values (generically written V) is given as a subgrammar of expressions.
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V ::= value
()
∣

∣ bv
∣

∣ n constant
〈T〉 type field
(V1, V2) pair
λx : T . E lambda-abstraction

IV.2.5.1 E −→ E ′ Expression reduction

We define the dynamic behaviour of expressions via small-step reduction rules.

Head reduction rules In the language that we have defined so far, head reduction confronts each
destructor with a matching constructor, and performs local bindings. We impose a call-by-value
strategy in the rules (B/ered.app) and (B/ered.let). For the time being, we could allow β-reduction in
its full generality, and obtain a confluent system; however we will ultimately introduce side effects,
which suggests sticking to call-by-value.

(λx : T . E)V −→ {x←V}E (B/ered.app)

πi (V1, V2) −→Vi (B/ered.proj)

let x = V inE : T −→ {x←V}E (B/ered.let)

No reduction in types We do not define any reduction relation on types. Accordingly there is
no restriction on T in order for 〈T〉 to be a value; in particular, if 〈T〉 contains embedded expressions
(as in e.g., 〈Typ ((λx : type. x) 〈int〉)〉) these need not be values. The reason is that computations
in types traditionally belong in the compile-time world, hence to typing rules (and where relevant
typing algorithms), rather than in the run-time world now under scrutiny. We will later (in system
D) add a construct for run-time type-checking, thus type computations will need to occur during
program execution; run-time manipulation of types is also useful for generic programming (see
section V.3.2.3).

Evaluation contexts We generically write C for an evaluation context of depth 1. These
evaluation contexts are defined by the following grammar.
C ::= evaluation context (of depth 1)

E1 function argument
V2 applied function

( , E2) first component of a pair
(V1, ) second component of a pair
πi projection (i ∈ {1, 2})
let x = inE : T local bound

We have arbitrarily fixed the evaluation order for function application (argument first, then
function) and pairing (left to right). This somewhat simplifies the metatheory by not introducing
spurious local nondeterminism. We could relax these constraints by authorising the reduction
contexts E2 et (E1, ); it is folklore that the resulting reduction relation would be confluent.

The following reduction rule allows expressions to be reduced under contexts. The notation C ·E
means the expression resulting from placing E inside the context C.

E −→ E ′

(B/ered.context)
C · E −→C · E ′
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IV.3 Singletons S

IV.3.1 Motivation

IV.3.1.1 Abstract types, concrete types

[Sorry, this fragment has not been translated yet.]

IV.3.1.2 Type sharing

[Sorry, this fragment has not been translated yet.]

IV.3.1.3 Value singletons

So far, we have used singleton types to express type equalities: our singletons were of the form S(〈T〉)
for some type T . The purpose of these singletons was to enable making x have the type T ′ when x has
the type T and 〈T〉 and T ′ are equivalent: in other words, the judgement t : S(〈T〉), x : T ⊢ x : Typ t

should be derivable (one could then substitute 〈T ′〉 for t).

Let us now consider a functor f which creates an abstract type from a type and a value, with a
signature of the form Πx : (Σt : type. T0). (Σt : type. T1). As we saw in sections I.2.1.3 and II.5.1.1,
Typπ1 (f x) and Typπ1 (f y) are the same types only when x and y have the same behaviour: it is
not enough for them to provide the same types.

Let us consider an example potential argument for f, with T0 = Typ t ∗ (Typ t→ unit)).

module A = struct type t = int let x = (... : t * (t->unit)) end

The principal signature of the module A in Objective Caml is

module type S = sig type t = int val x : t * (t->unit) end

If we want to express that some module B is compatible with A, the best we can do (whether in
Objective Caml or in some other ML dialect, or in the language defined so far) is to specify that
B has the signature S. Unfortunately this specification is incomplete since it does not distinguish
between modules that have x fields with the same type but different values.

One way to illustrate this limitation is to consider an identity functor Id1 capable of taking A

as an argument. The principal signature of such a functor (which is based on Leroy’s manifest type
theory with applicative functors [Ler95]) is the following:

functor (A : sig type t val x : t * (t->unit) end) ->

sig type t = A.t val x : t * (t->unit) end

Notice that the signature of Id1(A) is the signature S defined above: while it does indicate
that Id1(A).t is equal to A.t, nothing connects Id1(A).x with A.x beyond them having the same
type. The higher-order module theory of Dreyer, Crary and Harper [DCH03] does not perform
any better on this example. With our notations, the signature of the functor Id1 is Πx : (Σt :

type. Typ t ∗ (Typ t→ unit)). (Σt ′ : S(π1x). Typ t ′ ∗ (Typ t ′→ unit)).

In the case of an identity functor EId0 acting solely on a type, i.e., whose argument has the
signature type, we get a more precise signature: Πx : type. S(x), clearly indicating that the result
of applying the identity functor is equivalent to the argument — TypEId0 (EA0) has the signature
S(EId0 (EA0)). We shall extend our language so that this property also holds for value fields.
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We add singleton types of the form S(E), where E is any value. For example the principal
type of the expression 3 is now S(3), the type of values that are equal to 3. We can now give
Id1 a more precise signature, by also giving the second component a singleton type: Πx : (Σt :

type. Typ t ∗ (Typ t→ unit)). (Σt ′ : S(t). S(π1x) ∗ S(π2x)), i.e., in an Objective Caml-like notation

functor (A : sig type t val x : t * (t->unit) end) ->

sig type t = A.t val x = A.x end

Thanks to this signature, Id1(A) can have the signature sig type t = A.t val x = A.x end,
which makes it interchangeable with A.

IV.3.1.4 Higher-order singletons

[Sorry, this fragment has not been translated yet.]

IV.3.1.5 A practical example

Let us illustrate higher-order singletons on an example from the author’s programming experience.
The standard library of Objective Caml provides an implementation of finite sets via a functor
Set.Make. This functor takes an argument with the following signature:

module type Set.OrderedType = sig

type t

val compare : t -> t -> int

end

A module of signature Set.OrderedType provides a type as well as a function which must
implement a total order; a set is represented as a search tree. An example of a module with this
signature is String: Set.Make(String).t is therefore a type for sets of strings. The result returned
by Set.Make has a signature called Set.S from which we quote a relevant excerpt:

module type Set.S = sig

type elt (*type of elements *)

type t (*type of sets *)

val add : elt -> t -> t (*addition function *)

...

end

An annotation in the definition of Set.Make specified that Set.Make(M).elt = M.t.

The program under consideration manipulates symbols, which are internally implemented as
strings. However only suitable approved strings may be symbols, therefore the type of symbols is
an abstract type provided by a module which we call Syntax.

module Syntax : sig

type symbol

val name : symbol -> String.t

...

end
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Since several other modules in the program manipulate sets of symbols, we wish to provide this
type alongside symbol. How do we mention the type of symbol sets in the signature of Syntax? We
must specify a module of signature Set.S, indicating that the element type is that of symbols. For
that purpose we need to define a symbol module.

module Syntax : sig

module Symbol : Set.OrderedType

module SymSet : Set.S with type elt = Symbol.t

and type t = Set.Make(Symbol).t

...

end

We could also write as follows:

module Syntax : sig

module Symbol : Set.OrderedType

module SymSet : Set.S

...

end with module SymSet = Set.Make(Symbol)

The signatures above are equivalent in Objective Caml.
The difficulty arises when writing the implementation of the Syntax module. We may write

module Syntax = struct

module Symbol = struct type t = String.t let compare = String.compare end

module SymSet = Set.Make(Symbol)

...

end

or even

module Syntax = struct

module Symbol = String

module SymSet = Set.Make(Symbol)

...

end

Unfortunately the resulting SymSet module is not compatible with Set.Make(String). Since
Objective Caml only ever compares type fields of modules, its type analysis remembers the equality
between Symbol.t and String.t but not that between Symbol and String, therefore the types
Set.Make(String).t and Set.Make(Symbol).t cannot safely be declared compatible.

Since our Syntax module calls other, lower-level modules that manipulate sets of strings, the in-
compatibility of Set.Make(String).t with Set.Make(Symbol).t is a major problem. The solution
we chose was to only expose the symbol type, and not its comparison function:

module Syntax = struct

type symbol = String.t

module SymSet = Set.Make(String)

...
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end : sig

type symbol

module SymSet : Set.S with type t = symbol

...

end

The disadvantage of this signature is that is hides the choice of a set implementation: that fact
that SymSet is the result of an application of the Set.Make functor does not appear. This is a
problem because some users of the Syntax modules manipulate data with more complex structures
(e.g., sets of sets of symbols) built from functors that take an argument produced by Set.Make. We
had to provide these data structures alongside SymSet in the Syntax module, even though these
extra data structures had nothing to do in Syntax from a code organisation point of view.

In this case, simply being able to write module Symbol = String in the implementation of the
Syntax module in such a way as to make the types Set.Make(String).t and Set.Make(Symbole).t

interchangeable would have permitted the code to be organised properly, in particular with respect
to abstraction. In system S, this is possible, since the Symbol module will have the signature S(x

called "String") which result in Set.Make(String) and Set.Make(Symbol) being compatible
within the implementation of the Syntax module.

IV.3.2 Properties

[Sorry, this fragment has not been translated yet.]

IV.3.3 Typing rules

We state typing rules for system S. The operational semantics (consisting of the reduction rules
(S/ered.app), (S/ered.proj), (S/ered.let), (S/ered.context), as well as the definitions of values and reduction
contexts) is unchanged from system B.

System S contains new typing judgements for subtyping, conversion and convertibility.
J ::= local judgement right-hand side

. . .
T −→ T ′ typing conversion
T ≡ T ′ convertibility equivalence on types
E −→ E ′ expression conversion
E ≡ E ′ convertibility equivalence on expressions
T1 <: T2 subtyping

Most typing rules of B are included in S. The following rules are taken as is from B (and will
not be repeated here):

• environment correction: all rules — (S/envok.nil), (S/envok.x);

• type correction: all rules — (S/tok.base.unit), (S/tok.base.bool), (S/tok.base.int), (S/tok.type),
(S/tok.pair), (S/tok.fun), (S/tok.field);

• expression typing: all rules except projections and local binding — (S/et.base.unit),
(S/et.base.bool), (S/et.base.int), (S/et.x), (S/et.pair), (S/et.fun), (S/et.app), (S/et.type).

We omit local binding in system S because it is superfluous (see section IV.2.1.4), thus avoiding the
need to take them into account in singleton typing rules.
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IV.3.3.1 Γ ⊢ T <: T ′ ; ... Subtyping

The subtyping relation explains how an expression may have more than one type, some of which
are more precise than others. Intuitively, the type T is a subtype of T ′ whenever any expression that
has the type T also has the type T ′. We engrave the forward implication with an implicit subtyping
rule.

Γ ⊢ E : T Γ ⊢ T <: T ′

(S/et.sub)
Γ ⊢ E : T ′

Our subtyping relation is defined syntactically (by deduction rules) rather than semantically, in that nothing

mandates the reverse application: it is possible for Γ ⊢ E : T ′ to be derivable whenever Γ ⊢ E : T is without the

judgement Γ ⊢ T <: T ′ being derivable. Whether a subtyping relation should be semantic (i.e., fully capture type

subsumption for expressions) is debatable. On the one hand, a semantic subtyping relation permits a set-theoretic

interpretation of types as sets of expressions. On the other hand, the rules needed to enforce semanticity would be

fragile, in that they would not play well with extensions of the system. For example, if V is a value of type T , then with

semantic subtyping T <: S(V) must hold whenever T contains the single value V, which may happen coincidentally.

Consider for instance the type Πt : type. Typ t→ Typ t, which obviously contains the polymorphic identity function

(λt : type. λx : Typ t. x)). In a suitably weak system, such as system S, a parametricity [Wad89] result ensures that

there is no other function of this type. However adding either dynamic type-checking (as we will do in system D) or

an unrestricted fixpoint combinator would let one write other functions of this type.

If two types are interconvertible, they are subtypes of one another. Thus subtyping includes
computational equivalences on types.

Γ ⊢ T ≡ T ′

(S/tsub.eq)
Γ ⊢ T <: T ′

Subtyping is a preorder. The rule (S/tsub.eq) enforces reflexivity; we state transitivity.

Γ ⊢ T <: T ′ Γ ⊢ T ′ <: T ′′

(S/tsub.trans)
Γ ⊢ T <: T ′′

IV.3.3.2 S(E) Singletons

Singleton types appear through three generic rules, which have no constraint on the type of the
expression whose singleton is taken. The singleton S(E) is well-formed as soon as E has some type
T ; any well-typed expression E thus has the type S(E), and S(E) is a subtype of any of its types.
Note that in order to prove that E has the type S(E), one must first find some type T that E has
and then apply (S/et.sing).

Γ ⊢ E : T
(S/tok.sing)

Γ ⊢ S(E) ok

Γ ⊢ E : T
(S/et.sing)

Γ ⊢ E : S(E)

Γ ⊢ E : T
(S/tsub.sing)

Γ ⊢ S(E) <: T

The rule (S/et.sing) (combined with the subtyping rules) is a particularly powerful instance of a
selfification rule in a module language with manifest types [HL94, Ler94] (see section I.2.2.2).

IV.3.3.3 Γ ⊢ E : T ; Γ ⊢ T1 <: T2 Expression typing

As in system B, we first assign non-dependent types to pairs. A dependent type can be obtained
via the subtyping rule (S/tsub.cong.pair) (recall that T1 ∗ T2 is an abbreviation for Σx : T1. T2). In this
rule, note that the second premise contains the stronger hypothesis on x, namely x : T ′1 , which
follows from the fact that the hypothesis x : T ′2 might not be enough to ensure that T ′′1 be valid. A
third premise ensures that Σx : T ′2 . T ′′2 is well-formed, which requires that T ′′2 be well-formed under
the weaker hypothesis x : T ′2 .
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Γ ⊢ T1 <: T ′1 Γ , x : T1 ⊢ T2 <: T ′2 Γ , x : T ′1 ⊢ T ′2 ok
(S/tsub.cong.pair)

Γ ⊢ Σx : T1. T2 <: Σx : T ′1 . T ′2

In order to type a projection, the argument expression must be given a (dependent) pair type.
Typing the first projection is simple, as its type is readily available in the pair type. Typing the
second projection is more complicated. If the expression E has the type Σx : T1. T2 then π2E only
has the type T2 with a suitably strong hypothesis on the variable x. For instance the expression
(3, 3) has the type Σx : int. S(x), and while x : S(3) ⊢ π2 (3, 3) : S(x) holds, x : int ⊢ π2 (3, 3) : S(x)

does not.
Γ ⊢ E : Σx : T1. T2

(S/et.proj.1)
Γ ⊢ π1E : T1

Γ ⊢ E : Σx : T1. T2 Γ ⊢ E1 : S(π1E)
(S/et.proj.2)

Γ ⊢ π2E : {x←E1}T2

The premises of the rule (S/et.proj.2) are usually unduely constraining, and we will often use one
of two admissible variants that only require the first premise Γ ⊢ E : Σx : T1. T2. The most common
rule replaces the variable x by the first projection of E in T2. Another variant keeps track of the
first component via a variable x which is constrained to the type S(π1E).

Γ ⊢ E : Σx : T1. T2

(et.proj.2s)
Γ ⊢ π2E : {x←cπ1E}T2

Γ ⊢ E : Σx : T1. T2

(et.proj.2x)
Γ , x : S(π1E) ⊢ π2E : T2

We state the usual congruence rule for subtyping through dependent products. This rule is
similar to (S/tsub.cong.pair), with hypotheses suitably reversed when dealing with the contravariant
argument type.

Γ ⊢ T ′0 <: T0 Γ , x : T ′0 ⊢ T1 <: T ′1 Γ , x : T0 ⊢ T1 ok
(S/tsub.cong.fun)

Γ ⊢Πx : T0.T1 <: Πx : T ′0 .T
′
1

IV.3.3.4 Γ ⊢ T ≡ T ′ ; Γ ⊢ E ≡ E ′ Convertibility equivalences

We define an equivalence relation on types and one on expressions as the smallest equivalence
relation containing the appropriate conversion relation. (Strictly speaking these are two families of
relations, indexed by environments.) These relations are called convertibility.

Γ ⊢ T ok
(S/teq.refl)

Γ ⊢ T ≡ T

Γ ⊢ T2 ≡ T1

(S/teq.sym)
Γ ⊢ T1 ≡ T2

Γ ⊢ T1 ≡ T2 Γ ⊢ T2 ≡ T3

(S/teq.trans)
Γ ⊢ T1 ≡ T3

Γ ⊢ T1 −→ T2

(S/teq.conv)
Γ ⊢ T1 ≡ T2

Γ ⊢ E : T
(S/eeq.refl)

Γ ⊢ E ≡ E

Γ ⊢ E2 ≡ E1

(S/eeq.sym)
Γ ⊢ E1 ≡ E2

Γ ⊢ E1 ≡ E2 Γ ⊢ E2 ≡ E3

(S/eeq.trans)
Γ ⊢ E1 ≡ E3

Γ ⊢ E1 −→ E2

(S/eeq.conv)
Γ ⊢ E1 ≡ E2

IV.3.3.5 Γ ⊢ T −→ T ′ Type conversion

Type conversion mostly consists in conversion of embedded expressions. Types additionally
undergo some slight simplification.

Conversion is only defined on valid types; the rules defining conversion contain correction
premises in addition to the conversion premises in context rules.

Contexts At the type level, conversion applies recursively to all subtypes. We state this via
context rules which allow conversion of both type and expression subterms of types.
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Γ ⊢ T1 −→ T ′1 Γ , x : T1 ⊢ T2 ok
(S/tconv.cong.pair.1)

Γ ⊢ Σx : T1. T2 −→ Σx : T ′1 . T2

Γ , x : T1 ⊢ T2 −→ T ′2 Γ ⊢ T1 ok
(S/tconv.cong.pair.2)

Γ ⊢ Σx : T1. T2 −→ Σx : T1. T ′2

Γ ⊢ T0 −→ T ′0 Γ , x : T0 ⊢ T1 ok
(S/tconv.cong.fun.arg)

Γ ⊢Πx : T0.T1 −→ Πx : T ′0 .T1

Γ ⊢ T0 ok Γ , x : T0 ⊢ T1 −→ T ′1
(S/tconv.cong.fun.ret)

Γ ⊢Πx : T0.T1 −→ Πx : T0.T
′
1

Γ ⊢ E −→ E ′

(S/tconv.cong.sing)
Γ ⊢ S(E) −→ S(E ′)

Γ ⊢ E −→ E ′ Γ ⊢ E : type
(S/tconv.cong.field)

Γ ⊢TypE −→ TypE ′

Simplifications The term Typ 〈T〉 can be seen as a destructor applied to the matching constructor
applied to T ; it is equivalent to T .

Γ ⊢ T ok
(S/tconv.field)

Γ ⊢Typ 〈T〉 −→ T

Semantic rules We declare that the unit type contains a single value: this type is isomorphic
to a singleton, and the rule (S/tconv.unit) enshrines this equivalence into the syntactic definition of
type equivalence. The choice of orientation in this rule does not matter greatly.

Γ ⊢ ok
(S/tconv.unit)

Γ ⊢ S(()) −→ unit

IV.3.3.6 Γ ⊢ E −→ E ′ Expression conversion

If E evaluates to E ′ and E has the type S(E), then type preservation requires that E ′ have
the type S(E). This is ensured by making E convertible to E ′. Conversion thus includes run-time
reduction2.

Conversion is only defined on well-typed expressions; the rules defining conversion contain cor-
rection premises in addition to the conversion premises in context rules.

We do not state any conversion rule for local binding expressions (i.e., expressions of the form
let x = E0 inE : T). As indicated in section IV.2.1.4, this construct is just syntactic sugar when E0

is pure; in E, where local binding becomes useful, it is always judged impure and thus not subject
to conversion.

Contexts Unlike for the run-time reduction relation, there is no particular advantage to keeping
conversion deterministic, while confluence of conversion is a key property of our metatheoretic
study. We therefore permit arbitrary evaluation strategies, and allow reduction in any context. In
preparation for the addition of impure constructs to the language, which only come in conversion
inside function bodies that hide the impurity, we state the slightly peculiar rule (S/econv.cong.fun.body)

to allow the conversion of any pure subexpression of an impure subexpression of a pure expression.

Γ ⊢ T0 −→ T ′0 Γ , x : T0 ⊢ E1 : T1

(S/econv.cong.fun.arg)
Γ ⊢ (λx : T0. E1) −→ (λx : T ′0 . E1)

2For pure expressions, as we shall see in system E.
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Γ , x : T0 ⊢ E −→ E ′ Γ , x : T0, y : S(E) ⊢ E1 : T1

(S/econv.cong.fun.body)
Γ ⊢ (λx : T0. {y←E}E1) −→ (λx : T0. {y←E ′}E1)

Γ ⊢ E −→ E ′ Γ ⊢ E : Πx : T0.T1 Γ ⊢ E0 : T0

(S/econv.cong.app.fun)
Γ ⊢ EE0 −→ E ′ E0

Γ ⊢ E −→ E ′ Γ ⊢ E : T0 Γ ⊢ E1 : Πx : T0.T1

(S/econv.cong.app.arg)
Γ ⊢ E1 E −→ E1 E ′

Γ ⊢ E −→ E ′ Γ ⊢ E2 : T2

(S/econv.cong.pair.1)
Γ ⊢ (E, E2) −→ (E ′, E2)

Γ ⊢ E −→ E ′ Γ ⊢ E1 : T1

(S/econv.cong.pair.2)
Γ ⊢ (E1, E) −→ (E1, E

′)

Γ ⊢ E −→ E ′ Γ ⊢ E : Σx : T1. T2

(S/econv.cong.proj)
Γ ⊢ πiE −→ πiE

′

Γ ⊢ T −→ T ′

(S/econv.cong.field)
Γ ⊢ 〈T〉 −→ 〈T ′〉

Head reduction The following rules describe the usual evaluation of lambda terms with pairs.
Γ , x : T0 ⊢ E1 : T1 Γ ⊢ E0 : T0

(S/econv.app)
Γ ⊢ (λx : T0. E1)E0 −→ {x←E0}E1

Γ ⊢ E1 : T1 Γ ⊢ E2 : T2

(S/econv.proj)
Γ ⊢ πi (E1, E2) −→ Ei

IV.3.3.7 Extensionality

We state extensionality rules for system S. Such rules can have many forms; we choose to use
conversion rules, oriented as eta-expansions. For example the rule (S/econv.eta.pair) may be read as
“any expression that is typable as a pair can be rewritten in such a way as to expose the pair
structure”.

Given the choice of using conversion rules (η conversions to supplement the β conversions above),
there is a further choice between expansions and contractions. A major technical advantage of
expansions is that they do not hurt the confluence of the system, unlike eta-contractions [Klo80].
Expansions do however have the obvious defect of breaking normalisation. In practice, it seems
preferable to express extensionality using expansions, and when normalisation is required to restrict
their use to a finite domain (given by the structure of the type of the converted expression) [Gog05].

Γ ⊢ E : type
(S/econv.eta.field)

Γ ⊢ E −→ 〈TypE〉

Γ ⊢ E : Πx : T0.T1

(S/econv.eta.fun)
Γ ⊢ E −→ (λx : T0. Ex)

Γ ⊢ E : Σx : T1. T2

(S/econv.eta.pair)
Γ ⊢ E −→ (π1E, π2E)

IV.4 Sealing E

IV.4.1 Sealing

[Sorry, this fragment has not been translated yet.]

IV.4.2 An effect system

IV.4.2.1 Introduction

[Sorry, this fragment has not been translated yet.]
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IV.4.2.2 Purity

[Sorry, this fragment has not been translated yet.]

IV.4.2.3 Projectibility, separability and comparability

In the system we are describing, a “well-behaved” module is a pure module. Purity is a very strong
notion: a pure module is fully known statically (it has its singleton type, and singleton types fully
characterise an object). There are finer notions to determine legitimate uses of a module; in this
section we will discuss some of these.

Classical module calculi, notably Harper and Lillibridge’s translucent sums [HL94, Lil97] and
Leroy’s manifest types [Ler94, Ler95] focus on the concept of projectibility (see section I.2.2.2).
The question is, given a module expression M, whether the term M.t may be used to form a type.
If so, the module M is said to be projectible. In our notation, E is projectible if and only if Typπ1E

is a correct type. We approximate projectibility by purity: Typπ1E is correct if and only if E is
pure (and has an appropriate signature). This is indeed an approximation since purity is a stronger
notion; for example, in the following code fragment, the modules A and B are both projectible, but
only A is pure, while B is impure.

module A = struct type t = int let x = 3 end

module B = struct type t = int let x = ref 3 end

A closely related notion is that of comparability: a module is said to be comparable when
its equivalence with another module can be tested. In the calculus of Dreyer, Crary and Harper
[DCH03], the notions de comparability and projectability coincide, since testing the equivalence
of two modules amounts to comparing their type components. In our calculus, purity stands for
comparability as well as projectability (we treat type and value components identically).

In section I.3.1.1, we mentioned the issue of phase separation, i.e., clearly differentiating between
the static phase of the program, which includes a type-check that rejects programs that would go
wrong, and the dynamic phase, during which computation proceeds without errors. In the core
of ML, each phase is closely associated with one part of the language: type-checking is mostly
concerned with types, and computation is mostly concerned with expressions. This is no longer true
when modules are considered, as they mix types and expressions at the syntactic level. Nevertheless
one usually tries to separate types and expressions in the metatheory of modules, in order to
distinguish between the static and dynamic aspects.

In his analysis of ML modules [Dre05], Dreyer distinguishes between two levels of purity in
modules. A module is said to be totally pure3 if it is pure in our sense, i.e., that its evaluation
does not trigger an effect of any kind. A module is said to be partially pure if its type components
can be fully determined without triggering an effect. For example the module B above is partially
pure but not totally pure. A projectible module must be partially pure.

One difficulty with partial purity is in deciding whether the effects of an expression have an
influence on its type parts. Total purity is of course a sufficient condition. A weaker sufficient
condition is separability. This notion was introduced by Harper, Mitchell and Moggi [HMM90]
and is expounded in the context of a module calculus with functors by Dreyer [Dre05]. A module is
separable if its type components do not depend at all on any computation that may have effects,
in particular any core-expression-level computation. A separable module is always partially pure,

3Actually Dreyer uses the wording “dynamically pure” and “statically pure” where we use “totally pure” and
“partially pure”. We changed the terminology because we will use “dynamically pure” and “statically pure” in a
different sense, following other work by Dreyer [DCH03].
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hence projectible, but may be impure, like B above. Conversely, in a language with first-class
modules, one can easily write pure inseparable modules, such as the module C in the following
program fragment.

let n = read_int ()

module A = struct type t = int let x = 3 end

module B = struct type t = int let x = ref 3 end

module A’ = struct type t = bool let x = true end

module B’ = struct type t = bool let x = ref true end

module C = if n >= 0 then A else A’

module D = if n >= 0 then B else B’

The module D is partially pure but neither totally pure nor separable.

An important conclusion of the discussion of type singletons and module equivalence in IV.3.1
was that in the presence of functors, separability is hard to analyse — and this is why we did not
try to analyse it, and instead integrated expressions with types when testing module equivalence.
Separability looks all the less enticing to us as we eventually want to be able to compare types
dynamically, which means that our notion of equivalence must work well even in inseparable cases.
In the present work, we do no try to go further than (total) purity. If refinements are desired, rather
than introduce separability, we suggest instead to make the effect system more sophisticated, and in
particular to make it possible to detect partial purity by “declassifying” effects that do not impact
the value of an expression.

IV.4.3 Formal presentation

We give a formal description of system E, which consists of adding the sealing construct to S and,
more importantly, an effect system.

IV.4.3.1 Syntax

We first give the syntax of effects.
γ ::= effect

P pure
I impure

Recall that effects are ordered: the relation γ1 ⊑ γ2 is such that P ⊑ I (but not the converse).
We write γ1⊔γ2 for the least upper bound of γ1 and γ2, and γ1⊓γ2 for their greatest lower bound.

The syntax of system E extends that of system S by adding an effect annotation where necessary,
viz.,

• on function types, henceforth written Πx : T0.
γT1; they are abbreviated as T0→

γ T1 when x

is not free in T1;

• on expression typing judgements, henceforth written E :γ T .

We sometimes omit the effect annotation when it is P, thus we might write the type of a pure
function as Πx : T0. T1 or T0→ T1. Furthermore the syntax of expressions now comprises sealing.
T ::= type

. . .
Πx : T0.

γT1 dependent product (also written T1→
γ T2 when x /∈ fv T1)
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E ::= expression (module)
. . .
E !! T sealing

J ::= typing judgement right-hand side
. . .
E :γ T expression typing

IV.4.3.2 E −→ E ′ Run-time

The only run-time novelty of system E is the need to reduce a sealing construct. The usual
intuition in ML-like languages is that types have no bearing on execution, only on static type-
checking; in this light, E !! T is equivalent to E at run-time.

V !! T −→V (E/ered.seal)

The sealed expression is first reduced to a value.
C ::= evaluation context (of depth 1)

. . .
!! T sealing

The rules (E/ered.app), (E/ered.proj), (E/ered.let) et (E/ered.context) are inherited from system B via S.

IV.4.3.3 Γ ⊢ . . . Typing: correction, equivalences, subtyping

System E contains all the typing rules of system S, and adds one for sealing. However the
inherited rules must usually be modified to add an effect annotation. We will restate affected rules
and explain the effect of effects.

Inhreited rules The following rules are taken as is from system B via S:

• (E/envok.nil), (E/envok.x);

• (E/tok.base.unit), (E/tok.base.bool), (E/tok.base.int), (E/tok.type), (E/tok.pair);

• (E/teq.refl), (E/teq.sym), (E/teq.trans), (E/teq.conv);

• (E/eeq.sym), (E/eeq.trans), (E/eeq.conv);

• (E/tconv.cong.pair.1), (E/tconv.cong.pair.2), (E/econv.cong.field), (E/tconv.cong.sing), (E/tconv.field),
(E/tconv.unit);

• (E/tsub.trans), (E/tsub.eq), (E/tsub.cong.pair).

Apart from expression typing and from (E/tsub.cong.fun), the modifications to the rules of system
S consist of requiring expressions embedded in types to be pure, and allow dependent product
types to bear effect annotations. The rules (E/econv.cong.fun.arg) and (E/econv.cong.fun.body) do however
permit the body of the function to be pure, as all that is required is that the function itself be a
pure expression.

Γ ⊢ T ′ ok Γ , x : T ′ ⊢ T ′′ ok
(E/tok.fun)

Γ ⊢Πx : T ′. γT ′′ ok

Γ ⊢ E :P type
(E/tok.field)

Γ ⊢TypE ok

Γ ⊢ E :P T
(E/tok.sing)

Γ ⊢ S(E) ok
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Γ ⊢ E :P T
(E/eeq.refl)

Γ ⊢ E ≡ E

Γ ⊢ E :P T
(E/tsub.sing)

Γ ⊢ S(E) <: T

Γ ⊢ T0 −→ T ′0 Γ , x : T0 ⊢ T1 ok
(E/tconv.cong.fun.arg)

Γ ⊢Πx : T0.
γT1 −→ Πx : T ′0 .

γT1

Γ ⊢ T0 ok Γ , x : T0 ⊢ T1 −→ T ′1
(E/tconv.cong.fun.ret)

Γ ⊢Πx : T0.
γT1 −→ Πx : T0.

γT ′1

Γ ⊢ E −→ E ′ Γ ⊢ E :P type
(E/tconv.cong.field)

Γ ⊢TypE −→ TypE ′

Γ ⊢ T0 −→ T ′0 Γ , x : T0 ⊢ E1 :γ T1

(E/econv.cong.fun.arg)
Γ ⊢ (λx : T0. E1) −→ (λx : T ′0 . E1)

Γ , x : T0 ⊢ E −→ E ′ Γ , x : T0, y : S(E) ⊢ E1 :γ T1

(E/econv.cong.fun.body)
Γ ⊢ (λx : T0. {y←E}E1) −→ (λx : T0. {y←E ′}E1)

Γ ⊢ E −→ E ′ Γ ⊢ E2 :P T2

(E/econv.cong.pair.1)
Γ ⊢ (E, E2) −→ (E ′, E2)

Γ ⊢ E −→ E ′ Γ ⊢ E1 :P T1

(E/econv.cong.pair.2)
Γ ⊢ (E1, E) −→ (E1, E

′)

Γ ⊢ E −→ E ′ Γ ⊢ E :P Σx : T1. T2

(E/econv.cong.proj)
Γ ⊢ πiE −→ πiE

′

Γ ⊢ E −→ E ′ Γ ⊢ E :P Πx : T0.
PT1 Γ ⊢ E0 :P T0

(E/econv.cong.app.fun)
Γ ⊢ EE0 −→ E ′ E0

Γ ⊢ E −→ E ′ Γ ⊢ E :P T0 Γ ⊢ E1 :P Πx : T0.
PT1

(E/econv.cong.app.arg)
Γ ⊢ E1 E −→ E1 E ′

Γ ⊢ E1 :P T1 Γ ⊢ E2 :P T2

(E/econv.proj)
Γ ⊢ πi (E1, E2) −→ Ei

Γ , x : T0 ⊢ E1 :P T1 Γ ⊢ E0 :P T0

(E/econv.app)
Γ ⊢ (λx : T0. E1)E0 −→ {x←E0}E1

Γ ⊢ E :P type
(E/econv.eta.field)

Γ ⊢ E −→ 〈TypE〉

Γ ⊢ E :P Πx : T0.
γT1

(E/econv.eta.fun)
Γ ⊢ E −→ (λx : T0. Ex)

Γ ⊢ E :P Σx : T1. T2

(E/econv.eta.pair)
Γ ⊢ E −→ (π1E, π2E)

Subtyping for functions The congruence rule for subtyping accross dependent products needs
to take effects into account. A function type is smaller than another function type when the domain
of the first is smaller, the image of the first is larger, and the first allows fewer effects to occur during
execution.

Γ ⊢ T ′0 <: T0 Γ , x : T ′0 ⊢ T1 <: T ′1 Γ , x : T0 ⊢ T1 ok when γ ⊑ γ ′

(E/tsub.cong.fun)
Γ ⊢Πx : T0.

γT1 <: Πx : T ′0 .
γ ′T ′1

IV.4.3.4 Γ ⊢ E :γ T Expression typing

Expression typing judgements now carry an effect annotation.

Constants, variables, type fields Constantes, variables and type fields are always pure.
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Γ ⊢ ok
(E/et.base.unit)

Γ ⊢ () :P unit

Γ ⊢ ok
(E/et.base.bool)

Γ ⊢ bv :P bool

Γ ⊢ ok
(E/et.base.int)

Γ ⊢ n :P int

Γ ⊢ ok when x : T ∈ Γ
(E/et.x)

Γ ⊢ x :P T

Γ ⊢ T ok
(E/et.type)

Γ ⊢ 〈T〉 :P type

Pairs Pairs are simple data structures: the type of a pair simply indicates the types of its com-
ponents. The information as to which component of the pair carries which effect is lost. Therefore
typing a pair requires a common effect annotation to be found for its components (the rule (E/et.sub)

used on each side allows one to use the least upper bound). Similarly, the effects of a first projec-
tion are the effects of the original expression. The second projection can only be used on a pure
expression since the expression appears in a type4.

Γ ⊢ E1 :γ T1 Γ ⊢ E2 :γ T2

(E/et.pair)
Γ ⊢ (E1, E2) :γ T1 ∗ T2

Γ ⊢ E :γ Σx : T1. T2

(E/et.proj.1)
Γ ⊢ π1E :γ T1

Γ ⊢ E :P Σx : T1. T2 Γ ⊢ E1 :P S(π1E)
(E/et.proj.2)

Γ ⊢ π2E :P {x←E1}T2

Functions An immediate function is always pure. The abstraction construct suspends the effects
of the function, which are reflected in the effect annotation on the function type. When a function
is applied, the effects of the body are released and add to the effects of the function expression. We
require the argument of a function to be pure as it is substituted into the result type.

Γ , x : T0 ⊢ E :γ T1

(E/et.fun)
Γ ⊢ λx : T0. E :P Πx : T0.

γT1

Γ ⊢ E1 :γ1 Πx : T0.
γ2T Γ ⊢ E0 :P T0

(E/et.app)
Γ ⊢ E1 E0 :γ1⊔γ2 {x←E0}T

Local binding In the rule (E/et.app), the argument E0 must be pure. In order to lift this restriction,
one may use a local binding construct instead, as discussed in section IV.2.1.4. One may then no
longer substitute E0 in the result type, thus a premise of (E/et.let) imposes that the result type does
not mention the locally bound variable x — T is the type of the whole expression as well as the
type of the body E. The effects of the expression are the union of that of E0 and E. Since we
only distinguish between two effects, and the case where both E0 and E is not useful as function
application can be used instead, we directly state the rule assuming the impure effect I throughout.
With a richer effect system, we would use the least upper bound of the effects of E0 and E as the
result effect, although we would impose that this bound not be P in order to keep the pure fragment
of the language as small as possible.

Γ ⊢ E0 :I T0 Γ , x : T0 ⊢ E :I T Γ ⊢ T ok
(E/et.let)

Γ ⊢ (let x = E0 inE : T) :I T

If E is an impure expression of type T1 ∗ T2, the second projection of E can be encoded as
let x = E inπ2x : T2. If E0 is an impure expression and E has the type T1, then the application of E

to E0 can be encoded as let x = E0 inEx : T2. Note that in both cases T2 is not allowed to contain
x: the type of E may not be dependent.

Subtyping The rule (E/et.sub) combines implicit subtyping with implicit subeffectuation: any
expression whose effects are constrained by γ has its effects constrained by any γ ′ such that γ ⊑ γ ′.

4Actually it would suffice to require E1 to be pure, with effects allowed in E, however we will not have a use for
this generalisation.
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Γ ⊢ E :γ T Γ ⊢ T <: T ′ when γ ⊑ γ ′

(E/et.sub)
Γ ⊢ E :γ

′
T ′

Singletons We qualify the rule (E/et.sing) to restrict singletons to pure expressions.

Γ ⊢ E :P T
(E/et.sing)

Γ ⊢ E :P S(E)

Sealing A new rule describes how to type a sealing. In general, in the expression E !! T , the
“natural” type for E is a subtype of T , and the subtyping rule must be applied. The effects of E !! T

are those of E, plus the effect of the sealing; since we do not distinguish between effects, the effect
annotation on E !! T is always I.

Γ ⊢ E :γ T
(E/et.seal)

Γ ⊢ (E !! T) :I T

IV.4.4 Applicativity

IV.4.4.1 Applicative functors

Consider a functor whose body is sealed, i.e., λx : T0. (E !! T). According to our description of
sealing, each application of this functor causes the expression E !! T to be evaluated, producing a
fresh batch of abstract types. Therefore the types Typπ1x1 and Typπ1x2 in the following program
are incompatible:

let f = λx : unit. ((〈T ′〉, E) !! Σx : type. T1) in

let x1 = f () in let x2 = f () in . . .

This means that f is a generative functor (see section I.2.2.3). A functor whose body is sealed
is always generative; this is reflected by its type, which has the form Πx : T0.

IT indicating that the
application of the functor has a side effect (namely type creation). On the other hand, a functor
whose body is pure (thus in particular not sealed) has a type of the form Πx : T0.

PT , and does not
participate in creating abstraction: it is a transparent functor.

Sometimes we would like for a functor to create abstraction, but for repeated applications of the
functor to the same arguments to produce compatible abstract types. A typical example is a functor
creating a data structure, where the arguments describe the elements of the data structure. Such
functors are called applicative functors [Ler95]. We shall see two ways of supporting applicative
functors.

One method is to add a new notion of sealing to the language, such that sealing the same module
twice yields compatible results (in the sense that their abstract types are equivalent). This notion of
sealing is called weak sealing, and we will write a weak sealing as E :: T . The form of sealing which
always creates fresh abstract types, which we already know as E !! T , is called strong sealing. We
will see how to formalise weak sealing in section IV.4.4.2. Using it, the types Typπ1x1 and Typπ1x2

in the following program are compatible:

letg = λx : unit. ((〈T ′〉, E) :: Σx : type. T1) in

let x1 = f () in let x2 = f () in . . .

There is actually another way to build applicative functors without extending the language. One
may seal the functor itself, rather than its body. Then all abstraction happens when the functor
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is defined, and none when it is applied. For example, in the following program, g is an applicative
functor, and the types Typπ1y1 and Typπ1y2 are compatible (we assume that E is pure).

letg = (λx : unit. (〈T ′〉, E)) !! (Πx : unit. PΣx : type. T1) in

lety1 = g () in lety2 = g () in . . .

In either case, an applicative functor has a pure functor type Πx : T0.
PT1, as opposed to the

impure functor type Πx : T0.
IT1 of a generative functor. This does not prevent an applicative functor

from creating abstract types, if the result signature T1 contains type fields. The method for defining
an applicative functor using strong sealing conveys an interesting idea about how abstract types are
created: the side effect of creating the abstract types happens when the functor is defined, or more
precisely when the functor is sealed, making an applicative functor from a transparent functor. If
the functor is defined and sealed at the top level of the program, the side effect happens during
program initialisation.

An applicative functor can be transformed into a generative functor at any time by sealing it to
the appropriate generative functor signature (just like a transparent functor can be made applica-
tive): Πx : T0.

PT1 is a subtype of Πx : T0.
IT1 (this is contained in the subtyping rule (E/tsub.cong.fun)).

The converse transformation, of an abstraction-creating functor to a less-abstracting functor (gen-
erative to applicative, or applicative to transparent), is undesirable, since there would be a loss of
abstraction. Our effect system prevents such loss: applying a generative functor triggers an effect,
and the only way to hide this effect is to wrap it in a lambda-abstraction whose type records the
effect.

IV.4.4.2 Static sealing: formalisation W

Introduction We shall define a new, “weak” notion of sealing such that sealing the same module
twice produces compatible results. The purpose of this notion is to define applicative functors, and
these provide a good way to understand weak sealing. We have seen how to seal a transparent
functor to make it applicative: there is then an effect when the applicative functor is defined. The
family of abstract types created by an applicative functor (which is indexed by the arguments of
the functor) is fixed once and for all. We mentioned earlier that when encoding applicative functors
using strong sealing, the effect happens during program initialisation. In fact the effect of weak
sealing can be considered to happen at compile-time (more precisely during type-checking). Such a
weak sealing is called static sealing, as opposed to the dynamic sealing E !! T . (We will discuss
other weak forms of sealing in section IV.4.4.4). Let us now formally define static sealing.

Syntax We define system W which extends system E. The expression language has the new
static sealing construct E :: T . Local binding now carries an effect annotation, whose meaning we
will explain when commenting on the typing rule (W/et.let); we will often omit this extra annotation
in examples where it does not matter. The type language remains unchanged.
E ::= expression (module)

. . .
let x = E0 inE :γ T local binding
E :: T static sealing

The main novation is that the effect system is now larger.

31



CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .

γ ::= effect
P pure
I dynamic effect
S static effect
IS both a static and a dynamic effect

The order relation on effects is given by P ⊑ I ⊑ IS and P ⊑ S ⊑ IS. Only P and I may appear
in function types, i.e., as the γ in Πx : T0.

γT1.

The type system of W is mostly identical with E: the differences are confined to a few rules
that feature impure expressions. Rules that are parametric over an effect instantiation may have
the effect instantiated by S or IS, with (for (W/et.sub)) the extended order relation.

Typing a static sealing is similar to typing a dynamic sealing. In either case, the effect of the
sealing is added to the effects of the function body. The effect of the sealing is either I for dynamic
sealing or S for static sealing.

Γ ⊢ E :γ T
(W/et.seal.dyn)

Γ ⊢ (E !! T) :γ⊔I T

Γ ⊢ E :γ T
(W/et.seal.stat)

Γ ⊢ (E :: T) :γ⊔S T

Lambda-abstraction hides dynamic effects (although the type of the abstraction remembers the
effect), but static effects always remain apparent. The functor result effect γ⊓S can be seen as “the
static part of γ”, while the effect of the whole functor γ ⊔ I is the dynamiac part of γ. We recall
the rule for application, which is unchanged, but do note that γ2 ⊑ I always holds.

Γ , x : T0 ⊢ E :γ T1

(W/et.fun)
Γ ⊢ λx : T0. E :γ⊓S Πx : T0.

γ⊓IT1

Γ ⊢ E1 :γ1 Πx : T0.
γ2T Γ ⊢ E0 :P T0

(W/et.app)
Γ ⊢ E1 E0 :γ1⊔γ2 {x←E0}T

In system E, we forced local binding expressions let x = E0 inE : T to be impure, in order to keep
the set of pure, hence comparable expressions small (as soon as E0 is pure the expression can be
written (λx :T0. E)E0). We will keep doing this here; however we cannot simply force the expression
to have the effect I since there are now other effects: if the expression should have the effect S, we
do not want to force it to IS (nor “forget” the static effect and only keep I). We now require that
the programmer specify the overall effect along with the type (because of the avoidance problem);
since we do not want the expression to be pure we simply forbid this effect annotation from being
P.

Γ ⊢ E0 :γ T0 Γ , x : T0 ⊢ E :I T Γ ⊢ T ok when γ 6= P
(W/et.let)

Γ ⊢ (let x = E0 inE :γ T) :γ T

Execution The dynamic semantics of system W is the same as that of E, with the rule (W/ered.seal)

indifferently accepting a dynamic or static sealing. Since this reduction simply erases the abstrac-
tion, the degree of generativity does not matter.

IV.4.4.3 Equivalences in the presence of static sealing

We saw in section IV.4.4.1 that dynamic sealing does not commute with functor abstraction: λx :

T0. (E !! T) and (λx : T0. E) !! (Πx : T0.
γT) are not equivalent — if γ = I, they have the same type

(they are both generative functors), but the first expression is pure while the second is impure. In
contrast, static sealing commutes with functor abstraction: the expressions E1 = λx : T0. (E :: T)

and E2 = (λx : T0. E) :: (Πx : T0.
γT) can be used interchangeably. ML (or at least Objective Caml)

programmers often take this equivalence for granted. We will say that E1 and E2 are equitypable,
meaning that for any Γ , γ ′ and T ′, the typing judgement Γ ⊢ E1 :γ

′
T ′ is derivable if and only if

Γ ⊢ E1 :γ
′
T ′ is. Equitypability will be the notion of interest in the present section, as we will look
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at program fragments that have the same run-time behaviour apart from the usage of sealing, but
are distinguishable at the typing level as they create abstraction in different amounts.

To prove that E1 and E2 are equitypable, first note that both E1 and E2 require Γ , x : T0 ⊢ E :γ T

to hold in order for each of them to be well-typed (by case analysis on their potential typing
derivations). Then E1 is typable by the rule (W/et.seal.stat) followed by (W/et.fun), while E2 is typable
by the rule (W/et.fun) followed by (W/et.seal.stat) (extra applications of (W/et.sub) may be inserted, but
they do not have significant impact as all operations involved are covariant in the result type). Both
E1 and E2 have the principal type Πx : T0.

γ⊓IT and the principal effect S.

Static sealing also commutes with other constructs. For example, (E1, E2) :: (T1 ∗ T2) is equity-
pable with (E1 :: T1, E2 :: T2), as well as with (E1 :: T1, E2) and (E1, E2 :: T2), assuming that each Ei

has the type Ti. The key reason is that the presence of static sealing in any position makes the whole
pair statically impure. Similarly the expressions πi (E :: T1 ∗ T2) and (πiE) :: Ti are equitypable when
E has the type T1 ∗ T2.

Let us now consider a local binding E ′ = let x = E0 inE :γ T . Sealing only E is manifestly not
equivalent to sealing E ′, since the set of signatures that E or E ′ may be sealed to is different: only E

may be sealed by a type mentioning x. However the difference is but of little importance, the reason
being that the influence of sealing on effects is the same in both cases, viz., introducing S if sealing
statically, or introducing I if sealing dynamically. As for the type of the expression, it remains T if
E is sealed (assuming the whole expression remains well-typed), and it becomes some subtype of T

is E ′ is sealed. In particular, let x = E0 in (E :: T1) : T is equitypable with (let x = E0 inE :γ T) :: T as
long as E has the type T1 in the appropriate environment.

A sealing (whether dynamic or static) cannot appear in a function argument. These consider-
ations show us that we do not lose expressivity if we limit the presence of static sealing inside a
program to just two kinds of places: on a locally bound module let x = (E0 :: T0) inE :γ T and on
an applied functor (E1 :: T2)E0. In the first case, removing the sealing could allow E to make use
of a more precise type for x (any type of E0, not limited by E0) — in other words the abstraction
provided by the sealing would vanish with it. The usefulness of sealing an applied functor is of
the same order: in order for (E1 :: T2)E0 to be well-typed, T2 must be a function5 Πx : T0.

γT1. If
T1 is smaller than necessary, the abstraction could migrate above the application (one could write
(E1 E0) :: {x←E0}T1 instead). If T0 is larger than necessary, the choice of possible types of E0 is
limited, so E0 becomes more abstract than as seen by the function. In fact, (E1 :: Πx : T0.

γT1) is
equitypable with let x = (E0 :: T0) inE1 x :γ T1. Hence, in summary, static sealing is only useful on a
locally bound module.

IV.4.4.4 Other forms of sealing

We have so far formalised two forms of sealing: static sealing, which creates a new family of abstract
types for each syntactic occurrence of the sealing operator, and dynamic sealing, which creates a new
family of abstract types each time the sealing operator is evaluated. These two forms correspond to
the weak sealing E :: T and strong sealing E :> T proposed by Dreyer, Crary and Harper [DCH03],
and our effect system follows theirs6 (with one minor difference: they declare strong sealing as
having a static effect as well as a dynamic effect, which uselessly strict but of little incidence).

Dreyer [Dre05] distinguishes between three forms of sealing:

5T2 could actually also be a singleton, but then the sealing would not be creating any abstraction.
6We use different notations however: we see effect annotations as indicating effects, whereas they see these annoa-

tions as purity annotations; thus we write S for a static effect where they write D for dynamic purity, and we write I

for a dynamic effect where they write S for static purity.
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• impure sealing impure(E :> T) is the strong sealing of Dreyer, Crary and Harper [DCH03]
mentioned in the previous paragraph;

• separable sealing E :> T and inseparable sealing pure(E :> T) both correspond to our static
sealing, being only distinguished by their separability, which we do not take into account (see
section IV.4.2.3).

Many other variants can be conceived, with varying strengths. Ascription consists in constrain-
ing an expression to a type without restricting the view to it, i.e., without introducing abstraction:
if E has the type T , the ascription E :a T has any type that E has; in particular, if E is pure, then
E :a T is also pure and has the type S(E). Ascription can be seen as a degenerate form of sealing.

Minimal sealing creates a comparable abstract type: E :s T has the type T and the purity of E.
Thus minimal sealing is a new way to construct pure expressions; two minimally sealed expressions
are comparable. Minimal sealing cheerfully generates coincidental type equivalences, whenever the
same expression happens to be sealed to the same type. A vairant of minimal sealing consists in
declaring E :s T to be equivalent to E :s T ′ whenever both are valid. Yet another variant consists in
having a whole family of minimal sealings indexed by a name, considering two minimal sealings of
the same expression to be equivalent if and only if they carry the same name.

Note that minimal sealing can be emulated using static sealing. All we need is a standard library
function providing an applicative functor

fminseal = λt : type. λx : string.
((t, ((λx : Typ t. x), (λx : Typ t. x))) ::

Σt ′ : type. (Typ t→ Typ t ′) ∗ (Typ t ′→ Typ t))

or in Objective Caml syntax

let MinSeal = functor (A : sig type t end) ->

struct type t = A.t let a x = x let c x = x end :

sig type t val a : t->A.t val c : A.t->t end

end

For any type T and any name x, fminseal 〈T〉 x provides an abstract type and conversion functions
between that type and T . (In Objective Caml, we should define once module MnameT = struct type

t = T end for every type T and name name since structures are generative.) This defines the
named variant of minimal sealing; getting rid of x yields the basic variant. As we remarked in
section IV.4.4.1, fminseal could equally well be defined using dynamic sealing.

We have limited our exposition to two forms of sealing because, together with the easily definable
minimal sealing, they seem to be sufficient for all practical purposes. We can roughly partition uses
of sealing into three categories:

• abstract datatypes, in which abstraction enforces algebraic properties that go beyond the
expressive power of the type system: static sealing is the perfect match;

• named variants of isomorphic types (e.g., dollar and euro): minimal sealing is suitable;

• abstract types used to limit access to some resource, which require dynamic sealing.
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IV.4.4.5 Mutual encodings of static and dynamic sealing

Can we go even further and be content with a single form of sealing? The answer is “sort of”: while
static and dynamic sealing can be encoded in terms of one another, a global program transformation
is required either way.

Let us first express static sealing in terms of dynamic sealing. We start with two observations.
Firstly, the two forms of sealing are equivalent if the sealing is executed exactly once. Secondly,
we saw in section IV.4.4.3 that it suffices to study static sealing on locally bound expressions
let x = E0 :: T0 inE :γ T .

We can see any program as a sequence of local bindings let x1 = E1 :: T1 in . . . let xk = Ek :: Tk inE

(we omit the return type on lets as they are not important here). We call E the body of the program,
and the exposed local bindings are said to be toplevel. A program is said to be in prenex sealings
form if none of the expressions E1, . . . , Ek contain any static sealing. Finally a clean program is
one in prenex sealings form where E contains no static sealing either, i.e., all static sealings are
toplevel. In a clean program, static sealings can be replaced by dynamic sealings without affecting
the typing of the program. We will show how to transform any program into an equitypable clean
program.

Le E0 :: T0 be a subexpression of the program, so that the body of the program is E0 :: T0 in some
context C, which we write E = C ·(E0 :: T0). We can replace E0 :: T0 by E ′0 = (λy1 :T1. . . . λyj :Tj. E0 ::

T0 . . .)y1 . . . yj where y1, . . . , yj are the variables bound by C from outermost to innermost,
omitting toplevel bindings. If j = 0 we instead take j = 1, T1 = unit and E ′0 = (λy :unit. E0 :: T0) ().
In every case, E ′0 is the application of a lambda-abstraction to one or more parameters. All free
variables in this lambda-abstraction are bound at the toplevel. We can therefore extract it out of
the context C in order to bind it above, going by beta-expansion and let lifting from E = C ·(E0 :: T0)

to E ′ = (let f = E ′0 inC · (f y1 . . . yj)) where f is a fresh variable. Now, as we saw earlier, static
sealing can be lifted out of a lambda-abstraction, so E ′0 is equitypable with some expression E ′′0 :: T ′′0 .
Let E ′′ = (let f = E ′′0 :: T ′′0 inC · (f y1 . . . yj)). Provided E0 itself contains no static sealing, E ′′ is in
prenex sealings form, and the number of toplevel bindings has increased by 1.

Iterating the transformation we have just described over all of the static sealings in the initial
program (from inside out), we can put any program in prenex sealings form. By replacing each
toplevel static sealing with a dynamic one, we obtain an equitypable program that does not use
static sealing. One intuitive view of this transformation is that each static sealing creates a single
family of abstract types, and we lift the creation of this family to be performed exactly once during
program initialisation.

We now turn to the dual problem of encoding dynamic sealing into static sealing. The difference
between static sealing and dynamic sealing is the effect of the construction. One way to force a
dynamic effect is to apply a generative functor, and a generative functor can be created by any
sealing, including static sealing, of a transparent functor. This leads Dreyer, Crary and Harper
[DCH03] to propose the following encoding of strong sealing (which is almost our dynamic sealing)
into weak sealing (identical to our static sealing):

E :> T = ((λx : unit. E) :: (Πx : unit. IT)) ()

Unlike dynamic sealing E !! T , strong sealing E :> T has a static effect in addition to its dynamic
effect: E :> T is equitypable with E !! T :: T . This effect cannot be discharged by a lambda-
abstraction, so that generative functors cannot be pure in Dreyer, Crary and Harper’s system.
Nonetheless we can move the extra static sealings to the toplevel by applying the transformation
above.
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In summary, static and dynamic sealing can be encoded in terms of one another, albeit incurring
the cost of a global transformation. In the remainder of this document, we will study a language
with only dynamic sealing (which we prefer due to its more compositional semantics). We propose to
treat static sealing as an additional construct which should be provided in a programming language
alongside dynamic sealing, and then elaborated away inside the compiler.

IV.4.4.6 On applicativity through functor sealing

The observation that the position of the sealing determines whether a functor is applicative or
generative does not seem to be universally known in the ML community. It requires being able to seal
a functor, whereas early module systems for ML only had sealing of structures. In Objective Caml,
where functors are systematically applicative, it is customary to seal the body of a functor, and
sealing the functor is considered equivalent (and needlessly complex as the type of the argument
is then repeated) [Ler]. Note that if sealing is interpreted as an effect, the fact that it does not
commute with lambda-abstraction is unsurprising.

Early module systems for ML only defined sealing on structures, and the possibilities of functor
sealing seeped in slowly and with a low profile. Russo [Rus98] distinguishes applicative functors
from generative functors by their definition rather than by their signature, with the defect that a
generative functor can be directly seen as an applicative functor [Dre02] as seen in section I.2.2.4.
Shao [Sha99] remarks in passing that sealing a transparent functor is a way of building an applicative
functor. This possibility is also mentioned by Dreyer, Crary and Harper [DCH03, Dre05] but they
recommend using weak sealing to build applicative functors.

One argument in favor of weak sealing ([DCH03], §2, p. 7) is that it can be applied to a
single member of a structure in the body of the functor, which makes some types abstract already
in following members, whereas sealing the functor only makes types abstract once the functor is
applied. In our notation, the functors under discussion are of the form λx:T0. lety = E1 :: T1 inE2 : T2.
We saw in section IV.4.4.5 that this is precisely the case when the transformation of static sealing
into dynamic sealing requires a global code reorganisation.

Dreyer [Dre05] (§1.2.7) mentions in particular the case of a functor whose body defines and
uses a “generative” declared type (datatype in Standard ML, ordinary variant or record type in
Objective Caml). If declared types are modelled by an abstract type obtained through dynamic
sealing, such a functor is automatically generative. However we do not see any reason to insist on
dynamic sealing: minimal sealing would do just fine, as the generative nature of declared types only
serves to differentiate between the constructor and destructor names of different declared types.
Since minimal sealing can easily be modelled by dynamic sealing, the lack of sealing other than
dynamic is not a problem on this count.

IV.5 Colours and brackets C

In system E, the sealing construct affects typing but not evaluation, as witnessed by the reduction
rule for sealing which just forgets the sealing:

E !! T −→ E (E/ered.seal)

This rule is type-preserving in the sense that if the left-hand side is well-typed then the right-
hand is also well-typed and has the same type. However information is clearly lost: this rule is
not abstraction-preserving. This lack is no concern when evaluating a single program, as type
preservation ensures that nothing can “go wrong” and the whole program text is available for any
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If T is of the form . . . then E !! T reduces to an expression of type. . .
Σt : type. (int→ Typ t) S(π1a) ∗ (int→ Typπ1a)

Σt : type. Σt ′ : type. (Typ t ∗ Typ t ′ ∗ int) S(π1a) ∗ S(π1π2a) ∗ Typ t ∗ Typ t ′ ∗ int

Πx : T0. Σt : type. (Typ t ∗ int) Πx : T0. S(π1 (ax)) ∗ Typ t ∗ int

In each case, a is the nonce (fresh module identity) created by the sealing operation.

Figure IV.1: Examples of nonce generation

analysis that might rely on the typing of the program. However we aim to rid ourselves of the strict
phase separation between type-checking and evaluation, by introducing a facility for type-checking.
This facility requires additional information to remember the distinction between an abstract type
and its representation type as long as it matters, which is as long as dynamic type-checking might
be performed, i.e., throughout program evaluation. We will now study system C, which is based on
E but where the reduction of a sealing preserves the abstraction.

IV.5.1 Module identities

IV.5.1.1 Nonce generation

The rule (E/ered.seal) does not properly reflect our intention regarding the semantics of sealing. We
described sealing as creating a new type. Consider the example sealing expression (〈int〉, 3) !!
Σt : type. Typ t. It reduces by (E/ered.seal) to (〈int〉, 3), which has the type Σt : S(〈int〉). Typ t =

S(〈int〉) ∗ int, whereas we would like a type of the form Σt : S(〈T ′〉). Typ t = S(〈T ′〉) ∗ T ′ where T ′

is distinct from any previously existing type (especially int).

More precisely, we do not need to create a type but a module identity, as can be seen by looking
at the sealing of modules with a more complex structure. For example, if the same sealed module
defines several abstract types, these types share a common unique identity. If the sealed module
is a functor, a new identity must be created but once when the sealing construct is evaluated, and
this identity will be used each time the functor is applied. Each module identity characterises one
instantiation of the abstraction, which may produce any number of fresh types: as many as there
are abstract type fields for a structure, an unbounded number for a functor (since the argument
must be taken into account). . .

Figure IV.1 shows a few examples of uses of module identities. A fresh module identity is called
a nonce (or (h)apax), and written a. These nonces have the same universal uniqueness property
as those used in models of security. They generalise the stamps of MacQueen [AM91]. Unlike
the stamps of many module systems, our nonces can designate modules of arbitrary signatures
(in particular functors). Also the creation of a nonce is performed when the sealing construct is
evaluated, and not whenever a module is built. Nonces correspond to the singularised identities
described in section II.6.1.2.

At the syntactic level, we will for the time being consider nonces an extra construct in the syntax
of modules, which should not appear in source programs7. However the purpose of nonces is to
designate abstract types, and we will eventually restrict their presence to “type components” (see
section IV.5.1.4). We assume an infinite supply of distinct nonces (similar to the infinite supply of
variable names).

7Note that (as we shall see) nonce-free programs have nonce-free types, so types of source programs are expressible
in the source language.
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IV.5.1.2 Lexes

Evaluating a sealing construct E !! T requires a fresh nonce, i.e., one that is not present in the original
term. We manage this freshness requirement by using a store of nonces, called a lexis (or stamp
book), and written B. A lexis keeps track of nonces in use as well as the module implementation
and signature from the sealing construct from which the nonce originated. The syntax of a lexis is
thus

B = (a1 = E1 : T1, . . . ,ak = Ek : Tk)

As with environments, we treat lexis concatenation as associative, and the empty lexis (written nil)
is a neutral element for this operation.

Lexes adorn evaluation judgements as well as typing judgement. A nonce a is well-typed and
has type T when the ambient lexis contains the binding a = E : T for some E (just as a variable
x has the type T when the environment contains the binding x : T). The reduction relation for
system C is formally defined on pairs consisting of a lexis and a type; a reduction will be written
B ⊢ E −→ B ′ ⊢ E ′. However in most instances the lexis does not affect the reduction and does not
change, and we will then continue to write E −→ E ′. Reducing a sealing augments the lexis:

B ⊢ E !! T −→ B, a = E : T ⊢ E ′

The nonce a is chosen fresh, i.e., outside the domain of B. Since the language does not include
binders for nonces, any nonce appearing in E or T must be recorded in B.

An alternative to this global store would be to introduce a “new” binder for nonces, classically
writing (νa = E0 : T0)E. We prefer the use of a global store not only because we have no need for
a nonce binder, but also because managing the migration of ν binders accross other syntax nodes
and above environments8 would be problematic.

IV.5.1.3 From sealing to brackets

We have seen that reducing a sealing E !! T creates a fresh nonce a, and the result is an expression
E ′ of a type T ′, where T ′ uses the nonce a as the identity of the newly created module in order to
precisely specify the abstract parts of T .

This type T ′ is called a strengthening of T , or more precisely it is what we will call the
selfification of the type T for the module identity a (see section I.2.2.2). We will write this
selfification as self

T (a). The general idea behind selfification is to mirror the original structure of
the type, but replace the parts originally left abstract by a reference to the newly created nonce.
Figure IV.1 shows a few examples of selfification; we will defer the task of formulating a precise
definition until section IV.5.1.5.

Sealing must transform the expression E of type T into an expression E ′ with essentially the
same behaviour as E but a different type self

T (a). This new type is more precise than T : it is a
subtype of T . Although T is usually not the most precise type of E, E cannot have the type self

T (a)

in general: if the same expression is sealed twice, the resulting expressions E ′1 and E ′2 should have
the respective incompatible types self

T (a1) et self
T (a2). Thus E ′ must contain a reference to the

specific choice of nonce a.

The most obvious way to construct E ′ is to start with E and apply a type coercion to it:
E ′ = coerce E to self

T (a). However how this coercion should interact with the rest of the language
is not obvious. What does an expression of the form coerce E to T ′ reduce to? With such little
information in a readily extractible form, when is coerce E to T ′ well-typed?

8A nonce may appear in the type of a bound variable.
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We were already confronted with this problem in the simpler setting of the hat language, as
discussed in III.1.1. We will use the same solution as then, to wit, coloured brackets [ZGM99].

The expression [E]
self

T (a)
a denotes the coercion of E to the type self

T (a), but records the justification
a for equating the implementation E with the abstraction. (Recall that E is recorded in the entry
for a in the ambient lexis.) More generally, if E1 is any expression, and if T2 is equivalent to the
type of E1 modulo the equivalence between a and its implementation, the expression [E1]

T2

a has type
T2. This expression is called the coloured bracket (or brackets) surrounding E1 and annotated with
the colour a and the type T2.

The expression E1 should be seen as inside the bracket, while the annotations a and T2 are
carried by the bracket. Nonces (or fresh module identities) a have the same rôle as the hashes
(or structual module identities) h in hat. The colour a indicates the possibility of using the extra
typing equality between a and its implementation E inside the bracket. We say that a is transparent
inside the bracket. We will discuss the syntax and semantics of colours in system C more fully in
section IV.5.2.

The reduction rule for sealing is thus as follows:

B ⊢ E !! T −→ B, a = E : T ⊢ [E]
self

T (a)
a

As in hat, the next reduction steps are devoted to pushing the coloured brackets towards the inside
of E.

IV.5.1.4 Abstract types

In the expression [E]
self

T (a)
a , the nonce a can only appear in two positions: as the colour annotation

on the bracket, and in building the type annotation on said bracket. It seems therefore possible to
restrict the places where nonces may appear in the syntax. But do we have to?

Treating a nonce a as a full-fledged expression definitely simplifies the overall language structure.
Under a lexis containing the binding a = E : T , the expression a has the type T , and the transparency
of a can be simply expressed by the conversion a −→ E.

Such uninhibited use of nonces nonetheless causes two problems, one theoretic, one practical.
Both problems arise from reducing certain expressions containing nonces.

Consider for instance the sealing E !! T where E = (〈int〉, (2, 3)) and T = Σt : type.Typ t∗Typ t,
resulting in the lexis binding a = E : Σt : S(π1a). Typ t ∗ Typ t. While it may be reasonable to treat
such expressions as a, maybe even π1a, as values — although π1a has a destructor at the head,
which is odd in a value — the same does not go for π2a. Typing excepted, the expected behaviour of
this expression is the same as (2, 3). Evaluating π2 (E !! T) yields the expression [(2, 3)]

Typπ1a∗Typπ1a
a .

We might reduce a to [E]
Σt:S(π1a). Typ t∗Typ t
a and then let bracket pushing do the rest; however,

for type preservation, this expression must still have the original type S(a).9. Experience with a
preliminary version of this system shows that obtaining such a typing requires a substantially more
complex metatheory as analysing the types that are equivalent to Typπ1a becomes intractable.

On the practical side, such a reduction requires the implementation of a to be available at any
time, whereas a nonce is intuitively an opaque piece of data on which only an equality predicate
is defined. In particular, the implementation of a nonce might be cryptographically hidden, as we
will see in section IV.5.2.1.

We saw that the principle of selfification is to mirror the original structure of the type while
substituting the appropriate projection of the nonce for abstract type fields (type) in the signature.

9Note that a must be pure, since it is meant for use in types.
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Therefore the nonce a only appears in self
T (a) as a projection of a field for which the signature

indicates type. Such a projection has the form TypA where A may be a nonce, a pair projection
πiA, or the application of a functor to an argument A E0. A term A of the grammar we just describe
shall be called a module component.

From now on, we will not allow a to be an expression, prefering to add a new entry to the syntax
of types. A component type LAM is a type, denoting what we would have written TypA. Where
the expression A was desired, we can now write 〈LAM〉 (provided that the projection goes all the
way to a single field of type type).

Expressing the transparency of a nonce takes on a more complicated form since the equivalence
a ≡ E (where E is the implementation of a) is no longer grammatical. Transparency must be
expressed separately for each component type. Let a be the underlying nonce of the module
component A1 (which we shall write as a = underl(A1)). When a is transparent, LA1M is equivalent
to TypE1 where E1 is the projection of E with the same shape as A1. We will say that A1 is
revealed as E1, which we write E1 = reveal

B(A1) (where B is the ambient lexis). For instance,
if T = Σt1 : type. Σt2 : type. Σt3 : S(〈int〉). T4, then transparency of a entails the equivalences
Lπ1aM ≡ Typπ1E and Lπ1π2aM ≡ Typπ1π2E.

IV.5.1.5 Selfification

The core of the sealing operation consists in replacing the abstract components of a type by the
corresponding projections of a certain nonce. Generally speaking, let us study the selfification of a
type T for a module component A, written self

T (A).

Base cases There are three kinds of elementary signatures: manifest type fields S(〈T1〉) (sig
type t = T1 end), abstract type fields type (sig type t end), and term fields (sig val x :

T2 end). The purpose of selfification is to transform abstract type fields into manifest type fields:
the selfificaiton of type by A is S(〈LAM〉). Type fields that were already manifest (i.e., S(〈T1〉)) are
left unchanged, as are term fields since no extra information is required. Type fields thus always
gain singleton types, while term fields are unchanged.

Structures Selfifying a structure conserves its decomposition into fields, with each field selfified

separately. For example, in ML notation,

sig

type t1

type t2

type u = int * t1

val f : int -> t1 -> u

end

selfified by the name

M is

sig

type t1 = M.t1

type t2 = M.t2

type u = int * t1

val f : int -> t1 -> u

end

Note that the name of the module appears more than once: the same name M is used as part of
the global designation of all the abstract types in the signature.

Selfifying a pair T1 ∗T2 by a component A naturally yields the pair self
T1(π1A)∗self T2(π2A). A

natural generalisation to dependent pairs is achieved by independently selfifying each component,
thus self

Σx:T1. T2(A) = Σx : self T1(π1A). self T2(π2A).
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It is tempting to try to go further: since x is now fully known, why not substitute it in T2? Thus in the example

above references to t1 and u could become M.t1 and M.u respectively. However this is not possible in our language,

which includes signatures that cannot be expressed in ML — to wit, dependencies (and in particular equalities) on

term fields. If the first component of a pair contains term fields, its signature does not become a singleton after

selfification, and the effort to specialise the second component cannot proceed further. For example the selfification

of Σx : int. S(x) by a is Σx : int. S(x), no more. The selfification of a dependent pair is therefore still dependent in

general.

Functors The notation type admits two radically different interpretations, depending on whether
it is used in the argument or in the result of a functor. In the argument, type denotes a type that
will remain unknown until the functor is applied, and will vary from application to application: a
functor with a type-qualified argument is polymorphic. Thus selfifying a functor type Πx : T0.

γT1

does not restrict the domain of the arguments of the functor10: the selfification has the form
Πx : T0.

γT ′1 . As for the interpretation of type in the result type of the functor, it depends on
whether the functor is applicative or generative. With an applicative type, the effective identity of
the type field is fully determined by the argument passed to the functor, and selfification consists
of eta-expanding the body as Πx : T0.

γ
self

T1(A x). On the other hand, if the functor is generative,
each application generates a new identity; the selfification operation must then be delayed until the
application is performed, and T1 must remain abstract for the duration.

Definition Selfification is defined by structural induction on the type as follows:
self

BT (A) = BT if BT is a base type (unit, bool, int)
self

Σx:T1. T2(A) = Σx : self T1(π1A). self T2(π2A)

self
Πx:T0.

PT1(A) = Πx : T0.
P(self T1(A x))

self
Πx:T0.

IT1(A) = Πx : T0.
IT1

self
S(E ′)(A) = S(E)

self
type(A) = S(〈LAM〉)

Evaluation of type fields The table above does not state how to compute self
TypE(A). The

reason for this omission is that the computation depends entirely in the value of E: the definition
of selfification cannot be purely syntactic. Intuition whispers that the selfification of two equivalent
types at the same identity should be equivalent; this implies for instance self

Typ 〈T〉(A) = self
T (A).

Therefore E must be reduced to a value, which will have the form 〈T〉 for typing reasons, in order
to compute the selfification of TypE.

IV.5.2 Colors

IV.5.2.1 Colouring

Coloured bracket According to their introduction in section IV.5.1.3, a coloured bracket [E]Ta
lets the expression E be given the type T using the typing equations resulting from the knowledge of
the implementation of a. As in hat, we will have a wider view of coloured brackets as the syntactic
manifestation of a boundary between the inside and the outside of the module. This boundary takes
the form of the sealing construct in the source code, and coloured brackets embody it at run time.

10The selfification is a functor Πx : T ′
0
. γT ′

1
per conservation of the overall structure.
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Coloured syntax One way to describe the syntax of system C from the syntax of E would be to
associate a colour to each node of the syntax. This colour would represent the origin of that node,
i.e., from which sealed module the node comes from. The brackets provide this information in a
different form: the colour of a syntax node is that carried by the innermost surrounding bracket.

In the absence of a surrounding bracket, the colour is the ambient colour carried by the
jugdement in which the term under consideration is placed. The final form of an expression typing
judgement in system C includes a colour annotation:

B; Γ ⊢c E :γ T

So does the final form of an expression reduction rule:

B ⊢ E −→c B ′ ⊢ E ′

Colours appear in other places in the syntax. The rule of thumb is that anywhere a type is
attributed to an expression, a colour must also be provided. For instance a lexis binding has
the form (a = E :c T), and an environment binding has the form (x :c T).

Colour semantics In a typing judgement, the colour determines which abstract types may be
revealed. Following the intuition outlined in section IV.5.1.4, they are the components of transparent
nonces in the indicated colour. A reduction rule (C/ered.colAbs) allows the revelation of transparent
nonces.

Reduction of a sealing We can finally state the rule for sealing reduction in full. Let us first
consider our usual example consisting of the module struct type t = int let x = 3 end sealed
to the signature sig type t val x : t end.

nil ⊢ (〈int〉, 3) !! (Σt : type. Typ t) −→•

a = (〈int〉, 3) :• (Σt : type. Typ t) ⊢ [(〈int〉, 3)]
Σt:S(〈Lπ1aM〉). Typ t
a

Subsequent reduction steps push the brackets towards the inside of the value, as in hat (see section
III.1.2.2).

In general a sealing V !! T is evaluated in the ambient colour c to [V]T
′

c ′ , where c ′ = c ∪ {a} et
T ′ = self

T (a), with a being a fresh nonce. Thus the reduction rule (C/ered.seal)11 is as follows:

B ⊢ V !! T −→c B, a = V :c T ⊢ [V]
self

T (a)

c∪{a}

The ambient colour c may be necessary just to ensure that V has the type T ; for V to have the
type self

T (a) requires the transparency of a in addition12. A colour can thus be a (finite) set of
nonces, which we shall write as c = {a1, . . . ,ak}. The semantics of a colour is to render its elements
transparent. Until now, we had only seen singleton colours {a}, abbreviated as a; we call such
colours primary colours. By synecdoche we will also call an element of a colour a primary colour.
The empty colour, for which we will prefer the notation •, makes no nonce transparent.

11Specialised to an uncoloured sealing — see section IV.5.3.6.
12This situation is possible because a sealing can be embedded inside another, possibly with a functor interposed

which prevents from pushing the brackets induced by the outermost sealing before reaching the evaluation of the
functor body containing the innermost sealing. This scenario did not arise in hat where module definitions were
always sequential.
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Transparency A nonce is said to be transparent or opaque (in a colour c, often obvious from
context) depending on whether it is, or is not, an element of the colour. (This definition will be
generalised under a more semantic form for a larger class of colours in section IV.5.2.3.)

Colour weakening Reducing a sealing moves the sealed expression from a colour to a larger
colour. Intuitively, this should not cause any typing trouble: the larger colour provides more typing
equations, so more typings are possible. We shall indeed state a colour weakening lemma: if E

has the type T in the colour c, and c ′ is a well-formed colour containing c, then E has the type T

in c ′.

Border colour In a coloured bracket [E]Tc ′ , the type annotation T lives on the border between
the inner colour c ′ and the outer (ambient) colour c. We can formalise this by requiring that T be
valid in both c and c ′. By the colour weakening lemma, it suffices that T be valid in c∩ c ′, and we
will use this requirement in typing rules.13

Colours and security Let us briefly mention the security interpretation of coloured brackets.
Colours can be seen as capabilities handed to expressions — in our application these capabilities
unlock type equations. The brackets mark and maintain the boundaries of privileged chunks of code.
Nonces are the usual nonces of abstract cryptography. This interpretation was first formulated early
in the history of coloured brackets [PS00] and has been studied, in particular, under the name λseal
[SP04].

IV.5.2.2 Semantics of a type and dependencies of a nonce

Semantics of a type in a colour A colour denotes equalities between types, so that there may
be more than one way to express a type in a given colour. For instance, if the ambient lexis contains
a1 = (〈int〉, E1) :• Σt : type. T1, then Lπ1a1M is equivalent to int in the colour {a1} but not in the
empty colour •. This possibility for a term to be a valid type in different colours with different
semantics (in terms of what expressions have that type) is the key to the expressivity of coloured
brackets, as the type annotation is considered in both the inner and the outer colour. Note that
the set of terms having a given type is a monotone function of the ambient colour.

Semantics vs. validity Since a type may contain embedded expressions, the very validity of a
type (and not just its semantics) may depend on the colour. In the lexis above, the type S((λx :

Lπ1a1M. x) 3) is only valid in a colour that makes a1 transparent. Our type system can apparently
accomodate this phenomenon, simply by virtue of annotating every typing judgement with a colour,
including type correctness B; Γ ⊢c T ok.

Lexis binding Consider in particular the reduction of a sealing B ⊢ V !! T −→c B ′ ⊢ [V]
self

T (a)

c∪{a}
.

Since V and T are only known to be valid in the colour c, c must be recorded together with V and
T in B ′, hence B ′ = B, a = V :c T . The elements of c are called the dependencies of the nonce a.

13Using c∩ c ′ rather than replicating a premise in the colour c and c ′ has technical advantages, mainly in that just
because the judgements B; Γ ⊢c J and B; Γ ⊢c′ J are derivable does not automatically mean their derivations have the
same shape. We suspect that a common shape can be found, and would work equally well to derive B; Γ ⊢c∩c′ J, but
proving such a result looks very difficult in our syntactic approach. Furthermore, given the presence of variables in
colours (see section IV.5.2.3), we would have to use a semantic intersection that operates on the transparent closures
of the colours (see section B.1.2).
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Colour well-formation If the nonce a is used (as part of a type LAM) in some colour, the
equivalences between projections of a and of its implementation V must hold. Hence the colour in
question must contain c (the only colour where V is known to be valid). Therefore a nonce can only
be transparent if its dependencies are also transparent. We express this constraint in a side condition
in the rule for colour well-formation ((C/envok.c.a)). Another option would be to automatically make
all dependencies transparent, so that {a} and {a}∪ c would have the same semantic. We choose the
restriction on well-formation as simpler and because it is similar to the condition for using a nonce
in an expression.

Use of a nonce in an expression If the nonce a is used in an expression, its type T must be
valid. Therefore the ambient colour must contain c (the only colour where T is known to be valid).
Therefore a nonce can only be used if its dependencies are transparent, which is expressed in a side
condition in the rule (C/ac.a).

Concretisation We might attempt another approach to uses of nonces in an expression. Instead
of giving the nonce a the type T taken directly from the sealing expression that created a, we
might create a type T ′ that is equivalent to T in colours containing c but is valid in any colour. In
the colour c, we can replace any dependency of a by its implementation. The type resulting from
performing all such possible replacements meets the stated requirement. This operation is called
concretisation of the type T for the colour c. Concretisation is also mutually recursively defined
on types, expressions and module components. Concretisation is a copy function, except for the
following cases:
conc

B
c (LA1M) = Typ reveal

B(A1) if underl(A1) ∈ c

conc
B
c (LA1M) = LA1M if underl(A1) /∈ c

conc
B
c ([E]Tc ′) = [E]

conc
B
c∩c ′

(T)

c ′

(other cases by simple induction)

We get B; Γ ⊢c ′ T ≡ conc
B
c (T) as soon as c ′ contains c.

The advantage of concretisation is to allow the nonce a (with dependencies c) to be used in
any colour c ′, whether or not c ⊆ c ′ holds. This is achieved by giving a the type conc

B
c (T).

Unfortunately, when c is not included in the ambient colour, conc
B
c (T) is generally not equivalent

to T even if the latter is well-formed, which is somewhat confusing. Forcing concretisation instead
of restricting nonce use to a suitable colour does not on balance simplify the system design, which
is why we eschew it here.

Seal-time concretisation Could we concretise the type of a nonce when the nonce is created, rather than
when the nonce is used? The reduction rule for sealing would look like the following:

B ⊢ V !! T −→c B,a = [V ]conc
B
c (T)

c : conc
B
c (T) ⊢ [V ]

self
T (a)

c∪{a}

The type of the sealed expression is then universal, i.e., valid in any colour. A lexis binding is also universal, and
so need not be annotated with a colour. The slight loss of expressivity triggered by the forced concretisation is thus
compensated by a simplification of the type system.

Unfortunately we are here using coloured brackets outside their operating parameters. Usually the type T will

contain some abstract components (otherwise the sealing is useless). However the point of selfification was to replace

these abstract components in the type annotation on the bracket by a manifest type (using the abstract module

identity a). In fact, the type annotation on coloured brackets must be monomorphic, i.e., completely specified, free

of type fields (section IV.5.3 will discuss the concept further).
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IV.5.2.3 Variables in colours

We saw that in hat substitution of a value of type T for a variable assumed to have the type T

does not always result in a well-typed term. An addditional hypothesis is required stating that the
value have the type T in any colour at which the variable is used. One way to ensure that this
additional requirement is met is to associate a colour to each variable, which will be the colour
of the syntax node at which the variable is bound, and then only allow using the variable in this
colour. Then type preservation by substitution only require that the substituted-in value have the
right type in the colour of the variable. Reduction rules affecting colours push brackets inside data
constructors; they do not affect the colours of variables inside reduced terms (the case of pushing
a bracket inside a lambda-abstraction will be discussed in section IV.5.3.3). Compared with hat,
we gain the advantage that beta-reduction (C/ered.app) does not mention any bracket. Annotating
variable binding sites with colours is consistent with the principle stated above that anything that
is attributed a type is also attributed a colour. However we shall see that confining variables to a
colour is not, in itself, sound, and requires additional machinery to make the system sound.

As usual, the colour of a variable binding is given by the innermost surrounding bracket, or in
the absence of one by the surrounding colour. A variable binding in an environment records that
colour, so that an environment binding in system C has the form (x :c T).

The simplest way to state the variable typing rule would be x :c T ⊢c x :P T , i.e., the variable
x is (only) usable in its colour of definition. In order for colour weakening to hold, this condition
needs to be relaxed to allow using x in any colour containing the colour of definition, i.e.,

x :c T ⊢c ′ x :P T when c ⊆ c ′

Unfortunately this formulation does not suffice to ensure that colour weakening holds, as shown by
the following example:

B; nil ⊢c (λx : int. [[x]int
c ]int

c1
) :P int→ int

Provided that B, c and c1 are well-formed, this typing judgement is correct. There is no requirement
for the intermediate colour c1 to have any connection with c. If c is widened to some colour c ′

(such that c ⊆ c ′), the judgement above becomes

B; nil ⊢c ′ (λx : int. [[x]int
c ]int

c1
) :P int→ int

The colour of the innermost bracket remains c, as there is no indication that it should change during
weakening. As a result, the term is no longer well-typed — the variable x is now used in a colour
that is smaller than its colour of definition.

One way to perceive this problem is to consider the colour of a variable occurrence as explicitly
bound to the colour of the binding of the variable, as opposed to these colours merely having to
always being related. One might say that occurrence colours must be computed by name rather
than by value. Each variable is then assigned a “symbolic primary colour” (contrast with nonces
as constant primary colours). This new primary colour is written identically with the variable. A
colour therefore has the form c = {a1, . . . ,ak, x1, . . . , xn}, i.e., a finite set of nonces and colours14.
A variable can only be used if it is present in the ambient colour, which gives us the following rule:

x :c T ⊢c ′ x :P T when x ∈ c ′

A further point to note is that the colour c in which x is defined may itself contain other variables
— and it may of course contain nonces. These variables and nonces will automatically be considered

14Another, symbolic, notation might be c = {a1, . . . , ak} ∪ col(x1) ∪ · · · ∪ col(xn) where the symbol col notes the
colour of definition of its argument and the symbol ∪ is interpreted as set union.
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transparent whenever x is. In other words, if x ∈ c ′, then any element of c ∪ {x} is transparent in
c ′. We note this by the typing judgement x :c T ⊢c ′ c∪ {x} transparent. The rule for using a variable
in an expression is finally

Γ0, x :c T , Γ1 ⊢c ′ x :P T when Γ0, x :c T , Γ1 ⊢c ′ x transparent

Since variables now occur in colours, colours are subject to alpha-conversion and substitution.
Additionally, a substitution must now include a target colour along with a target expression for the
variable: the substitution of x by E in the colour c will be written {x←cE}. The following example
illustrates the interaction of substitutions and coloured brackets, assuming that x ∈ c:

{x←c0
E0}[x]

S(x)
c = [E0]

S(E0)

(c\{x})∪c0

IV.5.2.4 Absolute brackets, additive brackets

A coloured bracket [E]Tc ′ lets the expression E (of colour c ′) be used in any ambient colour c. This is
a special case of a relation between the inner colour c ′ and the outer colour c. Let R be any binary
relation on colours. We can write [E]TR for a coloured bracket with relation R, which is well-typed
in the ambient colour c if and only if there exists a colour c ′ such that E has the type T in c ′ and
(c, c ′) ∈ R (we assume throughout this discussion that T is valid in the outer colour).

When R can be an arbitrary relation, an important piece of information is lost, as the inner
colour becomes ambiguous. We will therefore limit our analysis to the case where the inner colour
is a (partial) function of the outer colour: [E]Tf is well-typed in the ambient colour c if and only if
E has the type T in f(c). Furthermore an important property that ensures that colour weakening
will hold is that any widening of the inner colour matches a widening of the outer colour, in other
words f must be monotone increasing (c1 ⊆ c2 implies f(c1) ⊆ f(c2)).

The coloured brackets that we have seen so far correspond to the case where the function f is
total and constant. Such brackets are known as absolute brackets. At this point the only way
to introduce a bracket in an expression is the reduction of a sealing, in which the bracket has some
arbitrary outer colour c0 and an internal colour of the form c0∪{a}. Rather than an absolute bracket,
we could use an additive bracket whose relation is c 7→ c ∪ {a} (a total, one-to-one function from
the inner colour to the outer colour, thus a (partial) one-to-one function from the outer colour to
the inner colour15). We write such an additive bracket as [E]T+a.

Additive brackets blend in nicely with the rest of the language. In particular occurrences of
variables under additive brackets trigger none of the problems discussed in section IV.5.2.3: in an
expression such as λx :T . [[x]T+a2

]T+a1
, the colour of the bound occurrence is automatically a superset

of the binding colour. Hence we could dispense with the additional complexity resulting from having
variables in colour, provided additive brackets were sufficient for our purposes.

Unfortunately, additive brackets are not expressive enough. They can never restrict the set of
typing equations accessible in a subexpression, and in particular do not provide a way to enforce
that an expression is independent from any surrounding colour. Although this does not impact the
intrinsic validity of C, it does limit possible applications. In the security interpretation of brackets,
an additive bracket provides additional privileges to the surrounding code, which prohibits any
modelling of a , and means that any ordinary code called by privileged code would inherit the
privileges. In the context of our objective to cope with distributed system, we will need universal
brackets, which ensure that their contents is usable in any context: these can be expressed natu-
rally as absolute brackets annotated with the empty colour • (see section IV.6.3.1). This second
application motivates our choice of only including absolute brackets in the language (other forms
of brackets being then superfluous).

15Since a is fresh, c0 cannot contain a.
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IV.5.3 Polymorphism

IV.5.3.1 Coloration of a type

We saw that how a coloured bracket can be used to build a value of an abstract type, thanks to
a suitable type annotation on the bracket. For instance, if a is a nonce whose implementation is

(〈int〉, 3) et and signature Σt : type. Typ t, the expression [3]
Lπ1aM
{a}

is a value of the abstract type

Lπ1aM, whereas [3]int

{a}
evaluates to 3. Now consider a bracket around a type field: [〈int〉]

S(〈Lπ1aM〉)
{a}

is the abstract type field written more simply as 〈Lπ1aM〉, while [〈int〉]
S(〈int〉)
{a}

is equivalent to the

simple 〈int〉. Another expression that might be written is [〈int〉]type

{a}
; but what does it mean?

In an expression of the form [〈T〉]type

c ′ , the annotation carried by the bracket is not sufficient to
decide between the abstract and the concrete version of the type T . The annotation type does not
provide any abstraction — any abstraction would result from the use of an abstract type (i.e., of a
nonce) in T . Rather type is here an incompletely specified type, a mere indication of the signature
of the module expression rather than a full specification of its type field.

The expression [〈T〉]type

c ′ denotes a type field, the type in question being described as the type
T as seen in the colour c ′. As we saw in section IV.5.2.2, the colour has a double influence on the
type. On the one hand, it contributes in determining whether the type is well-formed (i.e., whether
the judgement B; Γ ⊢c T ok holds). On the other hand, it contributes in determining the semantics
of the type, that is, which expressions have this type. For instance, if a is the above nonce, the
type Lπ1aM is well-formed in any colour; in the colour a, the values 3 and [3]

Typπ1a

{a}
both have this

type, while only the latter does in the empty colour. In general, a larger colour makes more types
valid16 makes more expressions have a given type.

We have seen a way to transform a type into an equivalent universal type, i.e., a type that
is valid in any colour and, in the original colour, characterises the same expressions: this is the
concretisation operation conc

B
c ′(T). However conc

B
c ′(T) does not have the same semantics in other

colours, for all it is valid; hence [〈T〉]type

c ′ cannot be replaced by 〈conc
B
c ′(T)〉.

The semantics of the expression [〈T〉]type

c ′ is novel: it cannot be expressed by previously seen
means. It is not clear whether such an expression should be accepted at all. We shall evaluate the
pros and cons of allowing such expressions. But first, we need to characterise them precisely, which
we do by assigning kinds to types.

IV.5.3.2 Kinds

We would like to recognise types that fully specify values. Obvious such types are singletons: all
pure expressions having a given singleton types are essentially equivalent. Following a very strict
interpretation, one might say that the only fully specified types are singletons. However, under
extensional equivalence, a type can be a singleton semantically without being one syntactically; for
example the type S(3)∗S(4) does not contain any more values than S((3, 4)). Some types may even
contain a single value up to observational equivalence for reasons having to do with the language
as a whole, such as parametricity [Wad89] results in ML that ensure that the only function of type
∀α, α→ α (which we would write Πt : type. Typ t→ Typ t) is the identity function.

In fact, we are trying to characterise the signatures that fully specify the type fields that they
contain. For example, although the type bool contains two observationally distinguishable values,
we are content with bool as a specification of a boolean value: we do not treat bool as an abstract

16The colour has a bearing on embedded expressions. For instance S((λx : Typπ1a. x) 3) is only well-formed in a
colour that reveals a.
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type. We aim to describe a programming language, not a proof language; as a consequence we limit
abstraction to types, and allow the revelation of [true ]bool

c ′ as true .

The paradigm of an incomplete signature is type, which designates an unspecified type field.
More generally, any type containing type in a covariant position, such as int ∗ type or int→
type, is incompletely specified. The presence of type in a contravariant position does not indicate
incompleteness, as shown for example in the constant function type Πt : type. S(V).

In order to formalise this notion, we equip system C with two kinds. The kind ≀ contains fully
specified types such as S(E), int or Πt : type. T with T of kind ≀. A type of kind ≀ is said to
be fully specified or completely specified. The kind ∗ contains all types irregardless of their
level of specification; a type that does not have the kind ≀ is said to be partially specified or
incompletely specified. Kinds, written K, are equipped with an order relation ≀ 6 ∗; the least
upper bound of two kinds is written K1 ∨ K2 ( ≀ ∨∗ = ∗) and the greatest lower bound is written
K1 ∧ K2 ( ≀ ∧∗ = ≀). Type kinding comes with a very simple subkinding relation ship: if T has the
kind K1 and K1 6 K2 then T has the kind K2.

It is tempting to call a fully specified type monomorphic (as opposed to polymorphic for
a partially specified type). Another tempting designation is concrete (vs. abstract). These termi-
nologies is slightly misleading out of context (as attested by their multiplicity). In a way the type
type is a type variable (under which interpretation ≀ is the kind of closed types), and the meaning
of its presence depends on how type variables are quantified. If they are quantified universally,
types of kind ∗ are polymorphic; if they are quantified existentially, types of kind ∗ are abstract.
For aesthetic reasons, we will usually use the words “monomorphic” and “polymorphic” (the latter
usually meaning non-monomorphic rather than just having the kind ∗). We do however warn the
reader to take this terminology with a grain of salt.

Type kinding rules are fairly simple: type is polymorphic, any other constructor is monomorphic
if and only if its components are. In particular, all base types (bool, int, etc.) other than type are
monomorphic, as are singletons. A product type is monomorphic if its components are. A function
type is monomorphic if its result type is.

The remaining case is that of the projection of a type field from an expression: when is Typ E

monomorphic? Since the types Typ 〈T〉 and T are equivalent, Typ 〈T〉 must be monomorphic if and
only if T is. Given the presence in our language of the dependent type TypE, we need to reflect type
kinding at the expression typing level. We annotate the type type with a kind annotation, writing
type≀ or type∗: the type typeK characterises type fields whose contents is a type of kind K. For
example 〈int〉 and 〈type∗→int〉 have the type type≀, and so does 〈int∗Typ x〉 when x has the type
type≀; whereas 〈typeK〉 and 〈int→type≀〉 only have the type type∗. One must be careful not to
confuse the type assigned to the expression with the type contained in the field: for example 〈type∗〉
is an expression containing a type field, which happens to be the type of arbitrary type fields (in
ML, this would be a signature field in a module, e.g., struct module type S : sig end end in
Objective Caml). The expression 〈type∗〉 has the momonorphic type S(〈type∗〉), but not the type
of monomorphic fields type≀ — nor does 〈type≀〉 since type≀ does not have the kind ≀.

IV.5.3.3 Brackets and function application; polymorphic functions

Reducing a sealing introduces a coloured bracket during evaluation. The type on this bracket is
produced by the selfification operation, which creates a monomorphic type. This is the central point
of selfification: the type on a sealing is usually incompletely specified, and selfification completes the
selfification, by replacing the unspecified parts by projections of the new name. When a coloured
bracket is pushed inside a data structure, the monomorphic nature of the type annotations is pre-
served — all the terms being manipulated have monomorphic brackets (as opposed to polymorphic
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brackets whose type annotation is partially specified). One aspect of bracket pushing in system C

remains to be described however, namely pushing brackets inside a function.

Consider the expression [λx : T2. E]Πx:T0.
PT1

c ′
in some ambient colour c. In order for it to be

well-typed, T2 must be a subtype of T0 and E must have the type T1 in the colour c ′. When
this expression is applied to an argument V of type T0, the result must be that of beta-reduction
{x←V}E, with any necessary coloured brackets thrown in. Let us study how to manage brackets
during evaluation.

We announced in section IV.5.2.3 that beta-reduction would remain unadorned, which forces us
to rule on the the fate of brackets as soon as they are pushed under the lambda. This does not
constrain our latitude regarding the choice of semantics: we are effectively giving a symbolic name
x to the effective argument (as well as the outer colour c, which is the colour of the argument). The

question is therefore how to reduce [λx : T2. E]Πx:T0.
PT1

c ′
.

The most obvious target uses coloured brackets both around the body of the function (to mark
the border on exit from the function) and around each occurrence of the parameter (to mark the
border when entering the function). The argument must also be protected in the return type.

[λz : T2. E]
Πy:T0.

PT1

c ′
−→c λx : T0. [{z←{x}[x]T0

c∪{x}
}E]

{y←{x}[x]
T0

c∪{x}
}T1

c ′
(ered.col.fun.P-POLY)

The bracket around the parameter x in the function body and in the return type must allow x

to be used inside, hence the colour annotating the bracket must contain x (adding c as well is
technically useless since x automatically brings in the colour of the binding c). The choice of what
type annotation to put on this bracket is not so obvious. We know that E and T1 are well-typed as
soon as their variable has the type T0 (note that T2 is a subtype of T0); T0 is valid in c given the
annotation on the bracket in the redex, therefore T0 is a possible choice.

Nothing however requires T0 to be monomorphic, even if Πy : T0.
PT1 is. Therefore this rule

introduces brackets carrying polymorphic type annotations. In fact, for T0 to be partially specified
means that the function λz : T0. E is a polymorphic function17. This terminology follows that
of ML: in ML, a polymorphic function has a type scheme ∀α, T0 → T1, which corresponds in our
dependently typed system to Πt : type≀. T0→ T1 (with Typ t corresponding to α).

If we want to adopt bracket pushing into functions as stated above, we must accept polymorphic
brackets. Let us now study these further, in the light of how they can appear. We will then look
for a way of avoiding them.

IV.5.3.4 Polymorphic types and values

We still assume that bracket pushing into functions happens according to the rule (ered.col.fun.P-POLY)

from section IV.5.3.3. Polymorphic brackets result from applying a polymorphic function inside a

colour other than its colour of definition: a bracket [E]
type≀

c ′
appears when applying a function

[f]
Πt:type≀. T1

c ′
. Let us first look at a very simple example: the identity function on the type type≀,

published from c ′ under the type Πt : type≀. S(t).

(

[λt : type
≀. t]

Πt:type≀. S(t)

c ′

)

〈int〉 −→c

(

λt : type
≀. [[t]

type≀

c∪{t}
]
S([t]

type≀

c∪{t}
)

c ′

)

〈int〉

−→c [[〈int〉]
type≀

c ]
S([〈int〉]

type≀

c )

c ′

17This is a case of the strong connection between partial specification and polymorphism when the variable is
universally quantified that we mentioned in section IV.5.3.2.
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In this case, the final value is [〈int〉]
type≀

c — the identity function returns its argument protected
by a spurious bracket annotated by the ambient colour.

Let us now examine the polymorphic identity function λt : type≀. λx : Typ t. x published from
c ′ under the type Πt : type≀. Typ t→ Typ t.

(

[λt : type
≀. λx : Typ t. x]

Πt:type≀. Typ t→Typ t

c ′

)

〈int〉 3

−→c

(

λt : type
≀. [λx : Typ [t]

type≀

c∪{t}
. x]

Typ [t]
type≀

c∪{t}
→Typ [t]

type≀

c∪{t}

c ′

)

〈int〉 3

−→c [λx : Typ [〈int〉]
type≀

c . x]
Typ [〈int〉]

type≀

c →Typ [〈int〉]
type≀

c

c ′
3

−→c

(

λx : Typ [〈int〉]
type≀

c . [[x]
Typ [〈int〉]

type≀

c

c∪{x}
]
Typ [〈int〉]

type≀

c

c ′

)

3

−→c [[3]
Typ [〈int〉]

type≀

c
c ]

Typ [〈int〉]
type≀

c

c ′

The argument 3 is now surrounder by two brackets. The inner bracket places the value into the
colour c ′ with a polymorphic value; the outer bracket, in spite of its similar appearance, has a

differnet rôle as the seemingly polymorphic type Typ [〈int〉]
type≀

c is in fact monomorphic in the
outside colour c.

In order to generalise upon these examples, a few concepts are worth noting. A bracket [〈T〉]
type≀

c

is a polymorphic type parameter for a function. A bracket [V]
Typ [〈T〉]

type≀

c
c is a polymorphic

value. A polymorphic value has no apparent structure, since it is protected by a bracket (which
cannot be reduced away since its type annotation itself has no apparent structure). The body of
the function is unable to manipulate polymorphic values in a way other than polymorphic. This
approach should work to model parametrically polymorphic languages such as ML. However it is
problematic in a non-parametric language with generics or dynamic type-checking (which we will
introduce in system D).

We shall not go any further along the lines of studying polymorphic values. It remains to be
seen how to reduce polymorphic brackets. In particular, how can the polymorphic identity function
return its argument with no superfluous bracket? (Note that the argument passes through the
colour c ′; how can we make sure that this passage is harmless?)

IV.5.3.5 Colour fusion

We present a solution to the problem of managing brackets around polymorphic function calls. This
solution lacks expressivity and finesse, but remains attractive in a certain light — not least because
of its simplicity. The idea is to merge the colour of the argument with the colour of the function
body.

[λx : T2. E]Πx:T0.
PT1

c ′
−→c λx : T0. [E]T1

c ′∪{x}
(C/ered.col.fun.P)

We abandon any thought of protecting the argument: all type equations required to type the
argument are allowed when executing the function. This rule is very simple, technically speaking:
one bracket turns into one bracket, with a smaller type annotation and smaller contents.

This rule enjoys a certain symmetry: applying [λx : T2. E]Πx:T0.
PT1

c ′
to an argument V yields

[{x←cV}E]
{x←cV}T1

c∪c ′

50



IV.5. COLOURS AND BRACKETS [C]

so that the computations are simply performed in the union of the colours of the expressions that
come into contact (V and E)

Let us check the result of an application of the polymorphic identity function using this rule.

(

[λt : type
≀. λx : Typ t. x]

Πt:type≀. Typ t→Typ t

c ′

)

〈int〉 3

−→c

(

λt : type
≀. [λx : Typ t. x]

Typ t→Typ t

c ′∪{t}

)

〈int〉 3

−→c [λx : Typ 〈int〉. x]
Typ 〈int〉→Typ 〈int〉
c∪c ′

3

−→c

(

λx : Typ 〈int〉. [x]
Typ 〈int〉
c∪c ′∪{x}

)

3

−→c [3]
Typ 〈int〉
c∪c ′

−→c [3]int

c∪c ′ −→c 3

In our study of system C, we will retain this fusion formulation of bracket pushing around a
function.

IV.5.3.6 Generative functors

We saw in section IV.5.1.5 that selfification does not affect generative functors. Since selfification
produces a type that is meant to annotate a coloured bracket (as it is used in (C/ered.seal)), the
resulting type must be monomorphic. Therefore a generative functor type Πx : T0.

IT1 must be
monomorphic even if T1 is polymorphic18.

We have stated a rule (C/ered.col.fun.P) to push coloured brackets bearing an applicative functor
type. The transposition to a generative functor type is not straightforward. A naive proposal would
be

[λx : T2. E]Πx:T0.
IT1

c ′
−→c λx : T0. [E]T1

c ′∪{x}

However T1 may be polymorphic, in which case the right-hand side is ill-typed. Intuitively,
the rule above cannot be suitable because the left-hand side is a generative functor, whose every
application triggers the creation of a new nonce, whereas this aspect is simply not present in the
right-hand side.

Nonces are generated by the reduction rule (C/ered.seal) for sealing expressions. Let us therefore
introduce a sealing in the right-hand side. We may attempt to place the sealing inside or outside
the coloured brackets:

[λx : T2. E]Πx:T0.
IT1

c ′
−→c λx : T0. ([E]T1

c ′∪{x}
!! T1)

[λx : T2. E]Πx:T0.
IT1

c ′
−→c λx : T0. [E !! T1]

T1

c ′∪{x}

In both cases, although the intuitive behaviour is acceptable, formal correction is lacking, as the
type annotation on the coloured bracket may still be polymorphic. However this is a benign form
of ill typing, as reduction will change the type into a monomorphic one before the coloured bracket
is reduced.

A sealing construct expresses a static border between abstraction domains, whereas a coloured
bracket is a dynamic border. We have here a border that is both static and dynamic. We will note
it by a coloured sealing, written E !!c ′ T . This sealing acts like normal sealing, except that it gives
the expression E the additional knowledge of abstract types designated by c ′. A coloured sealing

18In a way a generative functor type is amorphous: it is not yet fully specified, but will give rise to a monomorphic
type when the functor is applied.
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therefore includes the effect of an additive bracket (see section IV.5.2.4). A normal sealing is the
special case where the coloured sealing adds no extra knowledge: E !! T = E !!• T .

Pushing a coloured bracket bearing a generative functor type shall produce a coloured sealing:

[λx : T2. E]Πx:T0.
PT1

c ′
−→c λx : T0. (E !!c ′ T1) (C/ered.col.fun.I)

Note that thanks to the additivity of c ′ we do not need to include x, in contrast with (C/ered.col.fun.P).
A coloured sealing is reduced by the rule (C/ered.seal) which we can finally state in its full glory:

(C/ered.seal)

B ⊢ V !!c ′ T −→c B, a = V :c∪c ′ T ⊢ [V]
self

T (a)

c∪c ′∪{a}

IV.5.4 Evaluation

IV.5.4.1 Syntax

The syntax of system C extends system E with two new constructs that should not appear in source
programs: abstract types and coloured brackets. Furthermore the signature type now carries a
kind annotation, and sealing now carries a colour annotation (the notation E !! T is kept as an
abbreviation for E !!• T).
K ::= kind
≀ monomorphic (fully specified)
∗ polymorphic (partially specified)

T ::= type
. . .
typeK abstract type field
LAM abstract type

E ::= expression
. . .
E !!c T sealed and coloured module
[E]Tc coloured bracket

A ::= module component
a nonce
A E application
πiA projection (i ∈ {1, 2})

ξ ::= primary colour
a nonce
x variable

c ::= colour
• empty colour (also written {})
{a1, . . . ,ak, x1, . . . , xk} finite set of primary colours

Recall that kinds are equipped with an order relation, written K1 6 K2, such that ≀ 6 ∗. We
write K1 ∨ K2 for the least upper bound of K1 and K2, and K1 ∧ K2 for their greatest lower bound.

If A is a module component, its underlying nonce underl(A) is formally defined as follows:
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underl(a) = a

underl(A E) = underl(A)

underl(πiA) = underl(A)

Revelation of a module component is defined as follows:
reveal

B(a) = E where a = E :c T ∈ B

reveal
B(A E) = (reveal

B(A))E

reveal
B(πiA) = πi (reveal

B(A))

Typing judgements now carry a lexis and a colour. Additional right-hand sides to those in system
E are colour transparency, revelation of a module component and conversion and convertibility for
components.
J ::= typing judgement

B; Γ ⊢c J local judgement

J ::= local judgement right-hand side
. . .
T : K type kinding (generalising T ok)
c0 transparent colour transparency
A ⊲ E : T component revelation
A −→ A ′ component conversion
A ≡ A ′ convertibility equivalence on components

We write ξ transparent for {ξ} transparent.

Environments now contain colour annotations. We also state the syntax of lexes.
B ::= lexis

nil empty
B, a = E :c0

T nonce a with implemented by E with the signature T

Γ ::= environnement
nil empty
Γ , x :c T binding of the variable x

Following the definition for environments, the domain of a lexis B, i.e., the set of nonces that it
records, is written dom B.

Since colours may contain variables, they are affected by substitutions. A substitution specifies
both an expression and a colour to replace the variable with. The substitution of E for x under c

in ℵ is written {x←cE}ℵ.

IV.5.4.2 Values and abstract components

Brackets and values As in hat, the set of values depends on the ambient colour. We first define
a grammatical notion of quasi-value, which is a value with some possibly-eliminatable brackets. In
addition to the values of system E (which are the same as in system B), coloured brackets may
appear in quasi-values and (with restrictions) in values. In order for an expression of the form [V]Tc ′
to be a value, V must be a value (in the colour c ′), and T must have an appropriate form. If T has
apparent structure, the bracket pushing rules allow [V]Tc ′ to be reduced. The only case where [V]Tc ′

may be a value is when T is an abstract type LAM. Even then, [V]
LAM
c ′

may be reducible in some
colours.

53



CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .

Quasi-values The language of quasi-values in system C is a supergrammar of the one for B,
with brackets carrying an abstract type annotation thrown in. The abstract type annotation must
itself be in a reduced form, called component value, where functor arguments are all values.
V ::= quasi-value

. . .
[V]

LAV M
c ′

potentially abstraction-making coloured bracket

AV ::= component value
a nonce
AV V application to a quasi-value
πiA

V projection (i ∈ {1, 2})

Irreducioble coloured brackets A quasi-value of the form [V]
LAV M
c ′

is only a value if the bracket
cannot be eliminated. Intuitively a coloured bracket is indispensible only if it actually creates
abstraction, which translates as the requirement that the underlying nonce of AV must be opaque
in the ambient colour yet transparent in the inside colour c ′. We will analyse the behaviour of a
coloured bracket expression according to the transparency of the underlying nonce when presenting
bracket elimiation rules in section IV.5.4.2.

Values and abstract components The set of values depends on the ambient colour: we write
Vc for a value in the colour c. The set of values is described as a family of grammars parametrised

by a colour; it is a subset of quasi-values. In order for a quasi-value [V]
LAV M
c ′

to be a value, the bracket
must be indispensible in the sense described above, and the quasi-values in AV must themselves be
values in the appropriate colour.
Vc ::= value in c

()
∣

∣ bv
∣

∣ n constant
〈T〉 type field
(Vc

1 , Vc
2 ) pair

λx : T . E lambda-abstraction

[Vc ′ ]
LAV c∩c ′

M
c ′

coloured bracket, if AVc∩c ′

is abstract in c but concrete in c ′

AVc
::= abstract component in c

a nonce, if opaque in c

AVc
Vc application of a functor to a value

πiA
Vc

projection (i ∈ {1, 2})

Strictly speaking, since transparency of a nonce is a semantic value depending on a lexis and an
environment, the notions of values and abstract components should be indexed by a lexis and an
environment. In practice the lexis and environments will always be clear from context, so we omit
them.

IV.5.4.3 B ⊢ E −→c B ′ ⊢ E ′ Reduction

Evaluatin contexts We reduce expressions under brackets. Although brackets are initially in-
troduced around values, this property is not preserved by reduction; specifically, pushing a bracket
inside a function body results in a bracket surrounding an arbitrary expression. When the type
annotation on a bracket is the type field of a module, the module expression must also be reduced.
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C ::= evaluation context (of depth 1)
. . .

!!c1
T sealing

[ ]Tc1
coloured bracket

[Vc1 ]
Typ
c1

type field on a bracket

Formally speaking, the set of evaluation contexts, like values, depends on a lexis and an envi-
ronment. In the context [ ]Tc1

, the expression inside is reduced in the colour c1. In the context

[Vc1 ]
Typ
c1

, the expression inside is reduced in the colour c ∩ c1 (the intersection of the colours
outside and inside the border upon which the expression lies).

Computational rules System C inherits the rules that were already present in B, viz., (C/ered.app),
(C/ered.proj), (C/ered.let), (C/ered.context). These rules can be used in any colour and any lexis; the
colour is added to substitution when required. Values are also considered in their ambient colour.
Reduction inside contexts happens in the inside colour of the context. Appending A lists all the
rules of system C, included the inherited rules.

The rule for reducing a sealing is modified to surround the value with a coloured bracket, and
to take the colour annotation on the sealing into account.

B ⊢ Vc∪c ′ !!c ′ T −→c B, a = Vc∪c ′ :c∪c ′ T ⊢ [Vc∪c ′ ]
self

T (a)

c∪c ′∪{a}
(C/ered.seal)

where a is fresh (i.e., a /∈ dom B)

Reductions in types Until system E, types contained in expressions did not influence reduction.
This is no longer the case in system C, since the reduction of a coloured bracket depends on the type
annotation carried by the bracket, specifically on the head constructor on this type. Nonetheless
our computational needs on types are small enough — we only need to reach a weak head normal
form, and only in a single context within expressions, so we do not need to introduce a reduction
on types. The only destructor in the syntax of types is Typ ; its argument can be reduced via the
context [Vc1 ]

Typ
c1

, after which the destructor can be eliminated with (C/ered.colTyp).

[Vc ′ ]
Typ 〈T〉
c ′

−→c [Vc ′ ]Tc ′ (C/ered.colTyp)

Abstract types are peculiar, as LAM is in weak head normal form if and only if the underlying
nonce is opaque, but must be revealed if it is transparent.

B ⊢ [Vc ′ ]
LAM
c ′
−→c B ⊢ [Vc ′ ]

Typ reveal
B(A)

c ′
(C/ered.colAbs)

if underl(A) ∈ c ∩ c ′

Bracket pushing When a bracket surrounds a value, and the type annotation on the bracket is
not an abstract type, the bracket is pushed inside a value. The bracket pushing rules mostly follow
the same principle as in hat (see sections III.1.2.2 and III.2.5). The selection of the bracket pushing
rule relies on the type that is apparent on the bracket (specifically its head constructor); the effect
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on the expression is to push the bracket inside the constructor for this type.

[()]unit

c ′ −→c () (C/ered.col.base.unit)

[bv]bool

c ′ −→c bv (C/ered.col.base.bool)

[n]int

c ′ −→c n (C/ered.col.base.int)

[Vc ′ ]
S(E)

c ′
−→c E (C/ered.col.sing)

[(Vc ′

1 , Vc ′

2 )]Σx:T1. T2

c ′
−→c ([Vc ′

1 ]T1

c ′
, [Vc ′

2 ]
{x←c[Vc ′

1
]
T1

c ′
}T2

c ′
) (C/ered.col.pair)

In the case of functions, we adopt the colour fusion rule explained in section IV.5.3.5. In the
case of a generative functor, new types must be created whenever the functor is applied, so we add a
sealing to the body of the functor; the colour annotation on the sealing plays the role of a coloured
bracket.

[λx : T2. E]Πx:T0.
PT1

c ′
−→c λx : T0. [E]T1

c ′∪{x}
(C/ered.col.fun.P)

[λx : T2. E]Πx:T0.
IT1

c ′
−→c λx : T0. (E !!c ′∪{x} T1) (C/ered.col.fun.I)

When a bracket immediately surrounds another bracket and neither bracket can be reduced

by one of the already mentioned pushing rules, i.e., given an expression of the form [[Vc2 ]
LA2M
c2

]
LA1M
c1

where [Vc2 ]
LA2M
c2

is a value, there are three possible behaviours.

• If the annotation on the outer bracket makes it simplfiable, the outer bracket disappears.
In hat, this is performed by (H/ered.col.le). Here the rule (C/ered.colAbs) is used, followed by
computations on the revealed expression in the type annotation and possibly later bracket
pushing.

• If the annotation on the outer bracket is abstract outside but concrete inside, the expression
is a value.

• The remaining case is when the annotation on the outer bracket is abstract outside as well as
inside. In hat, typing ensures that A1 and A2 are equal, and the outer bracket is erased by
the rule (H/ered.col.col).

In our present systems, which includes functors and colours with non-trivial intersections, the
situation is more complex. A new possibility arises that A1 = a1 V1 and A2 = a2 V2; then typing
ensures that (as in hat) a1 = a2, but the arguments are only known to be equivalent in the
intermediate colour c1. The arguments may not be equivalent in c, so c1 is (sometimes) an obligatory
intermediate. We state a weaker rule, which (as in function application) merges the colours in play.

[[Vc2 ]
LA2M
c2

]
LA1M
c1
−→c [Vc2 ]

LA1M
c1∪c2

(C/ered.col.merge)

if A1 et A2 are both opaque in c1 but A2 is concrete in c2

IV.5.5 Typing

The type system of system C inherits from that of E, but all rules must be modified to add lexes and
colours. For most rules, this modification is done mechanically by permitting an arbitrary lexis and
colour. Each judgement Γ ⊢ J becomes B; Γ ⊢c J. When a variable is bound by the environment,
it must be added to the colour: Γ , x : T ⊢ J becomes B; Γ , x :c T ⊢c∪{x} J. Substitutions must also
be decorated with the appropriate colours. Typical examples are given by the rules (C/et.fun) et
(C/et.app) given below:
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B; Γ , x :c T0 ⊢c∪{x} E :γ T1

(C/et.fun)
B; Γ ⊢c λx : T0. E :P Πx : T0.

γT1

B; Γ ⊢c E1 :γ1 Πx : T0.
γ2T B; Γ ⊢c E0 :P T0

(C/et.app)
B; Γ ⊢c E1 E0 :γ1⊔γ2 {x←cE0}T

In addition to the addition of colours, type correction judgements T ok now become type kinding
judgements T : ∗. Contexts that required an expression of type type now require type∗. The
complete list of adapted rules is the following:

• all conversion, convertibility and subtyping rules: (C/econv.cong.fun.arg), (C/econv.cong.fun.body),
(C/econv.cong.app.fun), (C/econv.cong.app.arg), (C/econv.cong.pair.1), (C/econv.cong.pair.2),
(C/econv.cong.field), (C/econv.cong.proj), (C/econv.app), (C/econv.proj), (C/econv.eta.field), (C/econv.eta.fun),
(C/econv.eta.pair), (C/tconv.cong.pair.1), (C/tconv.cong.pair.2), (C/tconv.cong.fun.arg), (C/tconv.cong.fun.ret),
(C/tconv.cong.sing), (C/tconv.cong.field), (C/tconv.field), (C/tconv.unit), (C/eeq.refl), (C/eeq.sym),
(C/eeq.trans), (C/eeq.conv), (C/teq.refl), (C/teq.sym), (C/teq.trans), (C/teq.conv), (C/tsub.trans), (C/tsub.eq),
(C/tsub.cong.fun), (C/tsub.cong.pair), (C/tsub.sing);

• most expression typing rules: (C/et.base.unit), (C/et.base.bool), (C/et.base.int), (C/et.fun), (C/et.app),
(C/et.pair), (C/et.proj.1), (C/et.proj.2), (C/et.let), (C/et.sub), (C/et.sing).

Appendix A contains a complete list of the rules of system C in their final form, including inherited
rules.

IV.5.5.1 B; Γ ⊢c ok Environment formation

We describe how to build lexes, environments and colours. These components are built from
left to right, both inside lexes and environments (which are built binding by binding from left to
right) and in that the lexis is built first, then the environment, then the colour.

Lexis and environment validity follow a similar principle: all entered information must be checked
for validity, and a fresh name must be used to label each binding. Note that the colour of a lexis
binding may include previous nonces, while that of an environment binding may use any nonce in
the lexis as well as previous variables.

(C/envok.nil)
nil; nil ⊢• ok

B; nil ⊢c0
E :P T when a /∈ dom B

(C/envok.a)
B, a = E :c0

T ; nil ⊢• ok

B; Γ ⊢c T : ∗ when x /∈ dom Γ
(C/envok.x)

B; Γ , x :c T ⊢• ok

A colour may contain nonces and variables taken respectively from the lexis and the environment.
As a colour is an unordered set, there is no constraint on the order in which a colour is built (other
than the validity of intermediate colours when adding a nonce). Nonces may only be added to the
colour if their dependencies are already present (or otherwise transparent), while variables may be
added at any time — see section IV.5.2.3 and the transparency rules below).

B; Γ ⊢c ′ ok when a = E :c0
T ∈ B ∧ c0 ⊆ c ′

(C/envok.c.a)
B; Γ ⊢c ′∪{a} ok

B; Γ ⊢c ′ ok when x :c0
T ∈ Γ

(C/envok.c.x)
B; Γ ⊢c ′∪{x} ok

IV.5.5.2 B; Γ ⊢c T : K Type kinding

Type kinding rules refine the type correction rules of system E. Adding colours is straightforward.
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As discussed in section IV.5.3.6, a generative functor is always monomorphic (whereas an applicative
functor has the same kind as its result type); the rule (E/tok.fun) is split to treat each case correctly.

B; Γ ⊢c ok
(C/tok.base.bool)

B; Γ ⊢c bool : ≀

B; Γ ⊢c ok
(C/tok.base.int)

B; Γ ⊢c int : ≀

B; Γ ⊢c ok
(C/tok.base.unit)

B; Γ ⊢c unit : ≀

B; Γ ⊢c E :P type
K

(C/tok.field)
B; Γ ⊢c TypE : K

B; Γ ⊢c T ′ : K ′ B; Γ , x :c T ′ ⊢c∪{x} T ′′ : K ′′

(C/tok.fun.P)
B; Γ ⊢c Πx : T ′. PT ′′ : K ′′

B; Γ ⊢c T ′ : K ′ B; Γ , x :c T ′ ⊢c∪{x} T ′′ : K ′′

(C/tok.fun.I)
B; Γ ⊢c Πx : T ′. IT ′′ : ≀

B; Γ ⊢c T ′ : K ′ B; Γ , x :c T ′ ⊢c∪{x} T ′′ : K ′′

(C/tok.pair)
B; Γ ⊢c Σx : T ′. T ′′ : K ′ ∨ K ′′

B; Γ ⊢c ok
(C/tok.type)

B; Γ ⊢c type
K : ∗

B; Γ ⊢c E :P T
(C/tok.sing)

B; Γ ⊢c S(E) : ≀

An extra rule indicates that any monomorphic type is also polymorphic. Similarly a type field
containing a monomorphic type can be seen as a type field containing a polymorphic type, so the
type of the formed is a subtype of the type of the latter.

B; Γ ⊢c T : K ′ when K ′ 6 K
(C/tok.sub)

B; Γ ⊢c T : K

B; Γ ⊢c ok when K1 6 K2

(C/tsub.cong.type)
B; Γ ⊢c type

K1 <: type
K2

Let us also state the rule for forming a type field, which is also modified to account for kinding.
B; Γ ⊢c T : K

(C/et.type)
B; Γ ⊢c 〈T〉 :

P
type

K

IV.5.5.3 B; Γ ⊢c c0 transparent Colour transparency

A primary colour (nonce or variable) can be transparent if it is directly present in the ambient
colour. It can also be transparent if it is indirectly made so, via a variable that is present in
the ambient colour and whose colour of definition makes the primary colour under consideration
transparent.

B; Γ ⊢c ok when ξ ∈ c
(C/vis.in)

B; Γ ⊢c ξ transparent

B; Γ ⊢c ok B; Γ0 ⊢c0
ξ transparent when Γ = (Γ0, x :c0

T , Γ1) ∧ x ∈ c
(C/vis.env)

B; Γ ⊢c ξ transparent

A colour is transparent if and only if all of its elements are transparent.
B; Γ ⊢c ok

(C/vis.o)
B; Γ ⊢c • transparent

B; Γ ⊢c c1 transparent B; Γ ⊢c c2 transparent
(C/vis.union)

B; Γ ⊢c c1 ∪ c2 transparent

Nonce transparency is used in (C/tconv.abs) to justify revealing it. Colour transparency is used in
several rules ((C/ac.a), (C/et.x)) to express the transparency of the dependencies of a primary colour.

IV.5.5.4 B; Γ ⊢c A ⊲ E : T ; ... Module components

Revelation judgements B; Γ ⊢c A ⊲ E : T assign two pieces of information to a component A: the
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expression E to which it is revealed, and the apparent signature T mechanically derived from the
signature of the underlying nonce in the lexis. The structure of the revelation derivation follows
that of this signature.
B; Γ ⊢c c0 transparent when a = E :c0

T ∈ B
(C/ac.a)

B; Γ ⊢c a ⊲ E : T

B; Γ ⊢c A ⊲ E : Σx : T1. T2

(C/ac.proj.1)
B; Γ ⊢c π1A ⊲ π1E : T1

B; Γ ⊢c E1 :P S(π1E) B; Γ ⊢c A ⊲ E : Σx : T1. T2

(C/ac.proj.2)
B; Γ ⊢c π2A ⊲ π2E : {x←cE1}T2

B; Γ ⊢c A ⊲ E : Πx : T0.
PT1 B; Γ ⊢c E0 :P T0

(C/ac.app)
B; Γ ⊢c A E0 ⊲ EE0 : {x←cE0}T1

When a component has the apparent signature typeK, it can be used to form an abstract
type. If the underlying nonce is transparent, this abstract type can be converted to the revealed
representation.

B; Γ ⊢c A ⊲ E : type
K

(C/tok.abs)
B; Γ ⊢c LAM : K

B; Γ ⊢c A ⊲ E : type
K B; Γ ⊢c underl(A) transparent

(C/tconv.abs)
B; Γ ⊢c LAM −→ TypE

A component is almost inert: the only conversion that might significantly affect it is its revela-
tion. Context rules are however needed to enable conversion of embedded expressions.

B; Γ ⊢c E0 −→ E ′0 B; Γ ⊢c E0 :P T0 B; Γ ⊢c A ⊲ E : Πx : T0.
PT1

(C/aconv.cong.app.arg)
B; Γ ⊢c A E0 −→ A E ′0

B; Γ ⊢c A −→ A ′ B; Γ ⊢c A ⊲ E : Πx : T0.
PT1 B; Γ ⊢c E0 :P T0

(C/aconv.cong.app.fun)
B; Γ ⊢c A E0 −→ A ′ E0

B; Γ ⊢c A −→ A ′ B; Γ ⊢c A ⊲ E : Σx : T1. T2

(C/aconv.cong.proj)
B; Γ ⊢c πiA −→ πiA

B; Γ ⊢c A −→ A ′ B; Γ ⊢c A ⊲ E : type
K

(C/tconv.cong.abs)
B; Γ ⊢c LAM −→ LA ′M

Convertibility equivalence for components follows the same model as for types and expressions,
with four rules (C/aeq.refl), (C/aeq.sym), (C/aeq.trans) and (C/aeq.conv) following the model of (teq.*) and
(eeq.*).

IV.5.5.5 B; Γ ⊢c E :γ T Coloration of expressions

The rule for typing variables contains a novel side condition which requires the transparency of
the variable in the ambient colour. This ensures that the dependencies of the variable keep being
present if the ambient colour is weakened.

B; Γ ⊢c x transparent when x :c ′ T ∈ Γ
(C/et.x)

B; Γ ⊢c x :P T

Coloured brackets surround an expression with a different colour from its surroundings. The
type annotation must be valid both in both the outer and inner colours, for which we use the
intersection of the two colours.

B; Γ ⊢c ′ E :γ T B; Γ ⊢c∩c ′ T : ≀ B; Γ ⊢c ok
(C/et.col)

B; Γ ⊢c [E]Tc ′ :
γ T
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The sealing typing rule takes the colour annotation into account. The colour is added when
typing the body of the module.

B; Γ ⊢c∪c ′ E :γ T B; Γ ⊢c T : ∗
(C/et.seal)

B; Γ ⊢c (E !!c ′ T) :I T

IV.5.5.6 B; Γ ⊢c E −→ E ′ Conversion and coloured brackets

New conversion rules reflect the new reduction rules concerning brackets: new reduction con-
texts, and bracket pushing rules.

B; Γ ⊢c ′ E −→ E ′ B; Γ ⊢c ′ E :P T B; Γ ⊢c∩c ′ T : ≀ B; Γ ⊢c ok
(C/econv.cong.col.e)

B; Γ ⊢c [E]Tc ′ −→ [E ′]Tc ′

B; Γ ⊢c ′ E :P T1 B; Γ ⊢c∩c ′ T1 −→ T2 B; Γ ⊢c∩c ′ T1 : ≀ B; Γ ⊢c ok
(C/econv.cong.col.t)

B; Γ ⊢c [E]T1

c ′
−→ [E]T2

c ′

B; Γ ⊢c ′ ok B; Γ ⊢c ok
(C/econv.col.base.unit)

B; Γ ⊢c [()]unit

c ′ −→ ()

B; Γ ⊢c ′ ok B; Γ ⊢c ok
(C/econv.col.base.bool)

B; Γ ⊢c [bv]bool

c ′ −→ bv

B; Γ ⊢c ′ ok B; Γ ⊢c ok
(C/econv.col.base.int)

B; Γ ⊢c [n]int

c ′ −→ n

B; Γ ⊢c ′ T0 <: T2 B; Γ , x :c ′ T2 ⊢c ′∪{x} E :P T1

B; Γ ⊢c ok B; Γ , x :c∩c ′ T0 ⊢(c∩c ′)∪{x} T1 : ≀
(C/econv.col.fun.P)

B; Γ ⊢c [λx : T2. E]Πx:T0.
PT1

c ′
−→ λx : T0. [E]T1

c ′∪{x}

B; Γ ⊢c ′ T0 <: T2 B; Γ , x :c ′ T2 ⊢c ′∪{x} E :I T1

B; Γ ⊢c ok B; Γ , x :c∩c ′ T0 ⊢(c∩c ′)∪{x} T1 : ≀
(C/econv.col.fun.I)

B; Γ ⊢c [λx : T2. E]Πx:T0.
IT1

c ′
−→ λx : T0. E !!c ′∪{x} T1

B; Γ ⊢c ′ E1 :P T1 B; Γ ⊢c∩c ′ T1 : ≀ B; Γ , x :c ′ T1 ⊢c ′∪{x} E2 :P T2

B; Γ ⊢c ok B; Γ , x :c∩c ′ T1 ⊢(c∩c ′)∪{x} T2 : ≀ B; Γ ⊢c ′ E2 :P {x←c ′ [E1]
T1

c ′
}T2

(C/econv.col.pair)

B; Γ ⊢c [(E1, E2)]
Σx:T1. T2

c ′
−→ ([E1]

T1

c ′
, [E2]

{x←c ′ [E1]
T1

c ′
}T2

c ′
)

B; Γ ⊢c2
E :P T2 B; Γ ⊢c1∩c2

T2 : ≀
B; Γ ⊢c1

T2 <: T1 B; Γ ⊢c∩c1
T1 : ≀ B; Γ ⊢c ok

(C/econv.col.merge)
B; Γ ⊢c [[E]T2

c2
]T1

c1
−→ [E]T1

c1∪c2

B; Γ ⊢c ′ E
′ :P S(E) B; Γ ⊢c∩c ′ E :P T B; Γ ⊢c ok

(C/econv.col.sing)
B; Γ ⊢c [E ′]

S(E)

c ′
−→ E

B; Γ , x :c T0 ⊢c ′ E1 :γ T1 B; Γ , x :c∩c ′ T0 ⊢(c∩c ′)∪{x} T1 −→ T ′1
B; Γ , x :c∩c ′ T0 ⊢(c∩c ′)∪{x} T1 : ≀

(C/econv.cong.fun.seal)
B; Γ ⊢c (λx : T0. E1 !!c ′ T1) −→ (λx : T0. E1 !!c ′ T

′
1)

IV.6 Dynamic typing and distributed programs D

IV.6.1 Dynamic typing

[Sorry, this fragment has not been translated yet.]
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IV.6.2 Formalisation

IV.6.2.1 Syntax

We define a new language, system D, which is a conservative extension of system C. The new
features are the type dyn and two constructors and a destructor for this type.
T ::= type

. . .
dyn dynamically typed values

E ::= expression
. . .
dyn E at T dynamic
dynnedE at T universal dynamic
undynE at T elseE ′ dynamic type verification

IV.6.2.2 Reduction

The universal dynamic of a value is a value. The new constructors and destructor are evaluation
contexts.
V ::= quasi-value

. . .
dynnedV• at T universal dynamic

Vc ::= value in c

. . .
dynnedV• at T universal dynamic

Cc
c ′ ::= evaluation context with inner colour c ′ and outer colour c

. . .
dyn at T dynamic
dynned at T universal dynamic, when c ′ = •
undyn at T elseE ′ dynamic type verification

We saw in section IV.6.1.4 how to produce a universal dynamic from a dynamic. Evaluating
a dynamic type verification can either result in accepting the underlying value if the types are
compatible, or evaluating the alternate expression otherwise. A new rule lets a bracket be pushed
into a dynamic. A coloured bracket around a universal dynamic can simply be erased, since its
contents are already protected.

dynVc at T −→c dynned [Vc]
conc

B
c (T)

c at conc
B
c (T) (D/ered.dyn)

B ⊢ undyn (dynVc at T) at T ′ else E ′ −→c B ⊢

{

Vc if B; nil ⊢c T <: T ′

E ′ otherwise
(D/ered.undyn)

[dynnedV• at T ]dyn

c ′ −→c dynnedV• at T (D/ered.col.dynned)
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IV.6.2.3 Typing

As we saw in section IV.6.1.4, ordinary dynamics dynE at T , but universal dynamics dynnedE at T

(which are only useful with E pure) are pure. We do not wish to have to manage dynamic typing
inside a compiler19, thus we declare that any expression of the form undynE at T elseE ′ is impure.

B; Γ ⊢c ok
(D/tok.base.dyn)

B; Γ ⊢c dyn : K

B; Γ ⊢c E :γ T B; Γ ⊢c T : ≀
(D/et.dyn)

B; Γ ⊢c dyn E at T :I dyn

B; Γ ⊢• E :P T B; Γ ⊢• T : ≀ B; Γ ⊢c ok
(D/et.dynned)

B; Γ ⊢c dynnedE at T :P dyn

B; Γ ⊢c E :γ dyn B; Γ ⊢c E ′ :γ T
(D/et.undyn)

B; Γ ⊢c undynE at T else E ′ :I T

Since the language has a new constructor, we need corresponding conversion rules: congruence
rules to rewrite the arguments of the constructor, and a bracket pushing rule (reflecting the reduction
rule (D/ered.col.dynned)).

B; Γ ⊢• E −→ E ′ B; Γ ⊢• T : ≀ B; Γ ⊢• E :P T B; Γ ⊢c ok
(D/econv.cong.dynned.e)

B; Γ ⊢c dynnedE at T −→ dynnedE ′ at T

B; Γ ⊢• T −→ T ′ B; Γ ⊢• T : ≀ B; Γ ⊢• E :P T B; Γ ⊢c ok
(D/econv.cong.dynned.t)

B; Γ ⊢c dynnedE at T −→ dynnedE at T ′

B; Γ ⊢• E :P T B; Γ ⊢• T : ≀ B; Γ ⊢c ′ ok B; Γ ⊢c ok
(D/econv.col.dynned)

B; Γ ⊢c [dynnedE at T ]dyn

c ′ −→ dynnedE at T

The dynamisation function Our typing rules let us write any monomorphic dynamisation func-
tion λx :T . dyn x at T , with the type T→Idyn. They also let us write the polymorphic dynamisation
function λt : type≀. λx : Typ t. dyn x at Typ t, with the type Πt : type≀. PTyp t→I dyn. Applying one

of these dynamisation function produces a value of the form dynned [V]
conc

B
c (T)

c at conc
B
c (T) where c

is the ambient colour.

IV.6.3 Communication inter-machines

IV.6.3.1 Introduction

The present dissertation was motivated by the need for dynamic type-checkin in distributed pro-
grams with abstract types. The present chapter has so far mainly dealt with abstract types, and
we have now introduced dynamic type-checking. We now add the last ingredient: inter-machine
communication.

As in chapter II, we assume the availability of some serialisation mechanism to send values
between programs running on different machines. In the present discussion, we deal with networked
programs, but many considerations also apply to time- rather than space-separated programs, i.e.,
a program writing data to persistent storage and another program later reading the data.

In order for a value sent by a machine A to be correctly received and decoded on a machine B ,
the programs running on the two machines must agree on their interpretations of the bit strings
they exchange. We assume that all programs are written in the same language and use the same
serialisation library, so that it suffices to ensure that the exchanged values do not depend on any
manner of environment that is not shared by the two machines. Our semantics does contain one

19Not only would it be useless, it would also work around a putative stratification (see section V.3.1.1).
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machine-dependent element: abstract types defined on one machine may not be available on another
machine.

As a first step, we will make the soundness-safe assumption that abstract types defined on one
machine are distinct from abstract types defined on any other machine, i.e., abstract types are
globally fresh. We spent most of chapter II studying how to lift this restriction, and we will see in
section IV.6.3.5 how to integrate these ideas into system D.

IV.6.3.2 Communication and colours

In this section, we assume the existence of two primitives send and recv for respectively sending
and receiving a value. Communication can take place on a network, via temporary storage or by
any other means. More precisely, since we are working in a typed language, we will assume two
type-indexed families of primitives sendT and recvT , the type T being that of transmitted values;
their types are sendT : T →I unit et recvT : unit→I T . In order for communications to respect
typing, the communication protocol must ensure that values sent by sendT will only ever be received
by recvT ′ when it can be guaranteed that any value of type T also has the type T ′, which we model
with the constraint T <: T ′.

One thorny issue is that T and T ′ live in different contexts: the sending locus and the reception
locus may have different knowledge of abstract types. In our framework, this means that the
ambiant colour might differ between sending and reception. As we saw in section IV.5.3.1, the
colour influences both the validity and the semantics of a type. This also applies to the transmitted
value, which may have the type T in the sending colour c without having the type T , or indeed any
type, in the reception colour c ′.

One way to ensure the safety of communication is to index the primitives by a colour as well
as a type, i.e., sendT

c and recvT ′

c ′ , and require that the communication protocol ensure colour
compatibility c ⊆ c ′ (or rather more precisely Γ ⊢c ′ c transparent) as well as type compatiblity
Γ ⊢c T <: T ′. However adapting a communication protocol to ensure colour compatibility is not
straightforward, all the less as the ambiant colour of a value may change as it is passed around
(whereas the type annotations T and T ′ are usually known statically).

One way to prevent any incompatibility from occurring is to require that the sending colour be
empty, in other words that the sending type T as well as the transmitted value be universal. We
will study how to achieve this in section IV.6.3.3.

If we wish to transmit values between arbitrary colours, they need to be protected. We encoun-
tered a similar situation in section IV.5.2.2: given a value V and a type T , we need to construct
a value that is “equivalent” to V and has a type “equivalent” to T in the empty colour •. The

solution is to use concretisation and send [V]
conc

B
c (T)

c instead of V, where conc
B
c (T) is the type T

with uses of c expanded out. The extra coloured bracket protects V by bestowing upon it any type

equation that it may need. Having obtained the universal value [V]
conc

B
c (T)

c , we can safely send it to
any receiver for the type conc

B
c (T).

IV.6.3.3 Universals

[Sorry, this fragment has not been translated yet.]

IV.6.3.4 Nonce sharing

In section IV.6.3.2, we discussed how to send values between different colours. We glossed over the
fact that a colour is only defined in a certain lexis — comparing colours defined in different lexes, or
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transmitting a colour from one lexis to another, does not a priori make sense. However in a network
of machines, each machine would have its own lexis.

We modelled the execution of a program (consisting of a single thread running on a given
machine) by a reduction relation of the form B ⊢ E −→• B ′ ⊢ E ′ (at the top level, outside of any
bracket, the ambiant colour is empty). An immediate generalisation to networked programs leads us
to consider a family of reductions Bi ⊢ Ei −→• B ′i ⊢ E ′i where the index i represents the machine on
which the reduction takes place. In this model, communication must take into account the change
of lexis from Bi to Bj as well as the colour change.

Recall that a lexis is a set of nonces (plus some information about these nonces), and each nonce
that is added to the lexis is freshly created (by the rule (C/ered.seal) and globally unique). Two lexes
B1 and B2 formed on different machines are therefore disjoint; it is clear that (B1, B2), or indeed
any lexis made by interleaving the elements of B1 with the elements of B2 is also a well-formed lexis,
with the same information stored for each nonce as in B1 or B2. In the metatheory, we can just
merge lexes and model the evolution of a networked program by a reduction relation of the form

B ⊢ E1 ‖ . . . ‖ En −→ B ′ ⊢ E ′1 ‖ . . . ‖ E ′n

(where E1‖. . .‖En notes the parallel composition of n expressions, each running on its own machine).
This model makes considerations about mixing lexes moot as far as the metatheory is con-

cerned. However, in practice, requiring each nonce to be broadcast as soon as it is created would be
prohibitively expensive (and might be impossible in networks with complex dynamic topologies).
Fortunately one can easily implement the shared lexis model by considering that each machine only
has a partial copy of the global lexis at any time, and requiring every transmission of a value to
also contain any information necessary to reconstruct the parts of the lexis that the value depends
on (that is, the nonces contained in a value as well as their dependencies). Thus the lexis is spread
around lazily. Note that although nonce creation requires the generation of a globally unique name,
this does not in practice require synchronisation: it suffices that each machine have a globally unique
name that can be included in the nonce, which is the case in most distributed systems.

IV.6.3.5 Static sealing and hashes

Nonces are singularised identities in the sense of section II.6.1.2, as a fresh nonce is generated
whenever a new family of abstract types is created by evaluating a dynamic sealing construct E !! T .
In section IV.4.4.2, we presented system W, which has another notion of sealing, namely static
sealing E :: T . Unlike dynamic sealing, static sealing creates a new family of abstract types once
and for all at program compile- or initialisation-time, and thus requires an identity to be generated
at the corresponding time.

In a distributed environment, there are several choices as to when to generate identities for
statically sealed modules. The two main possibilities, compile- and initialisation-time, give different
results.

Generating stamps at compile-time [Mac84] is one traditional way of obtaining comparable
designations of abstract types. This is not suitable when the identity of a type depends on the
run-time behaviour of the program, but this is never the case with our static sealing. Some module
systems for distributed programs [Sew01] explicitly allow for abstract type generation at compile-
time. This feature has a grave practical defect, namely the impossibility of reconstructing a program
from its source alone. If two instances of the same program are deployed, they will only have
compatible types if they stem from the same compilation, not if the program was distributed in
source form. For this reason, we choose not to support any way to generate module identities at
compile-time.

64



IV.7. CONCLUSION

Generating new identities at program-initialisation time allows for less compatibility than at
compile-time. However the behaviour is easily predictable and reproducible: any excessive gen-
erativity can be spotted in testing. Thus we propose that this is a viable semantics for static
sealing.

None of the generation semantics described so far allows sharing abstract types between inde-
pendently compiled instances of the same program (let alone independently deployed instances of a
program component). Yet most cases where static sealing is used — often to enforce data structure
invariants — correspond to cases where structural module identities, i.e., hashhashes are desired
(see section II.3). It is therefore natural to designate statically sealed modules by their hash. The
identities are defined by a purely mathematical computation and therefore reproducible at will.
As in hat (see section III.2.7.5), we can see hashes as unifying separate definitions of the “same”
module on different machines.

We shall not describe hash formation for system W formally here. This construction requires
that the statically sealed module be lifted from its local potentially-generative context as described
in section IV.4.4.5. Note that in system W, unlike in hat, the identity of a type is an arbitrarily-
sized term which may mention more than one hash. For example, if f is a statically sealed module
with the signature Πx : T0. Σt : type. T1 that is applied to a dynamically sealed module which was
given the nonce a, the identity of the type field in the resulting module is π1 (h a) where h is the
hash of the functor.

IV.7 Conclusion

Summary In the present chapter we presented a description language called tophat for a module
system for an ML-like language. The main features of this language are:

• structures and functors, whose types are respectively dependent sums and dependent products;

• a way to test the equivalence of two modules, and propagate knowledge of such an equivalence,
using singleton signatures;

• abstract types can be defined by sealing a module, and an effect system determines which
expressions remain comparable;

• an reduction abstraction-preserving, thanks to coloured brackets;

• a dynamic type-checking construct that does not depend on the program context.

Soundness The most basic requirement for a type system is that it for the proposed execution
mechanism. Appendix B contains a soundness proof for tophat, classically formulated as two
theorems: type preservation by reduction ( ?? ()) and progress of well-typed expressions ( ?? ()).

Decidability of type-checking Another expected property of a type system for a programming
language is decidability, i.e., we would like an algorithm for deciding whether a given expression has
a given type20. In particular, we would need to decide when two types are equivalent. Decision pro-
cedures exist for weaker type systems, in particular the one proposed by Dreyer, Crary and Harper
[DCH03]. However their algorithm does not easily generalise to our system, and we regretfully leave
the question open.

20Type inference would in fact be desirable. However inference is known to be undecidable in much weaker
type systems such as system F. With the type annotations that we require in the syntax, in particular on function
arguments, type reconstruction might not be substantially harder than verification.
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Chapter V

Conclusion

V.1 Summary

[Sorry, this fragment has not been translated yet.]

V.2 Related work

V.2.1 Theoretic considerations

[[CM88], [OTCP90]]

V.2.2 Programming languages

[Modula-3, Java, .NET, Objective Caml]

V.2.3 Acute and HashCaml

[Sorry, this fragment has not been translated yet.]

V.2.4 Alice ML

Rossberg’s work is to my knowledge the only other in-depth treatment of the main topic of this
dissertation. Interestingly, my and his independent study of the problem led us towards the same
tools.

Rossberg’s first step [Ros03] was to use coloured brackets [ZGM99] to keep track of abstract
types at run-time and obtain an abstraction-preserving reduction relation, in a manner similar to
our hat [LPSW03]. Our theories differ in that Rossberg’s approach is purely generative: abstract
types created on different machines are incompatible.

Rossberg also studied the generalisation from simple modules to a full-fledged ML module cal-
culus [Ros07]. His implementation builds on Alice ML [PSL]. Rossberg defines the λω

SAΨ-calculus,
which models the core of Alice ML. This calculus includes a construct that defines an abstract
type (§10.5–10.7), and he shows that this is equivalent to ML-like module sealing (specifically , see
my section IV.4.4.2). An abstract type is identified by a type variable α with an abstraction kind
(§11.3). An abstraction kind A(τ) is similar to a singleton kind S(τ) but only the singleton kind
allows implicit conversion between α and τ. Abstraction-kinded type variables play the same role
as my lexis-stored nonces. The type system of λω

SAΨ-calculus allows explicit conversions between
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an abstract type and its representation type anywhere in the program, whereas I materialise such
conversions with coloured brackets.

Rossberg proves an opacity property (§12.9): a program that does not contain any explicit
conversion between an abstract type and its representation is parametric with respect to said repre-
sentation. Rossberg also proposes a mechanism to seal functors (§13), allowing for both applicative
and generative functors. Given the complexity of both systems, I leave to future work a comparison
between the expressivity of λω

SAΨ-calculus with functors and that of tophat.

V.3 Future work

V.3.1 Improvements to the theory

V.3.1.1 Stratification

[indexing type with a universe]

V.3.1.2 One or two language levels?

[Sorry, this fragment has not been translated yet.]

V.3.1.3 Effect analysis

[Sorry, this fragment has not been translated yet.]

V.3.1.4 Colours and brackets

[Sorry, this fragment has not been translated yet.]

V.3.1.5 Decidability of type-checking

[Sorry, this fragment has not been translated yet.]

V.3.1.6 Parametricity

[Sorry, this fragment has not been translated yet.]

V.3.2 Supplementary features

V.3.2.1 Field names and width subsignaturing

[Sorry, this fragment has not been translated yet.]

V.3.2.2 Towards a programming language

[polymorphism; recursion; libraries]

V.3.2.3 Generic programming

[Sorry, this fragment has not been translated yet.]
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V.3.2.4 Security

[Sorry, this fragment has not been translated yet.]

V.3.3 Implementation

V.3.3.1 Hash computation

[Sorry, this fragment has not been translated yet.]

V.3.3.2 Typing tophat

[Sorry, this fragment has not been translated yet.]

V.3.3.3 Integration into Objective Caml: the module system

Adding named structure fields and width subtyping to tophat as described in section V.3.2.1 yields
a language that covers all the features of the module calculus of Objective Caml [L+]. But is our
language compatible, i.e., is it a conservative extension of Objective Caml?

The answer is a qualified “no”. There are programs that Objective Caml accepts and we reject,
because Objective Caml treats every functor as applicative, even if its body contains side effects.
This is unacceptable in tophat as applications of applicative functors must be able to be statically
evaluated. One way to improve compatibility would be to introduce a notion of separation (in
the sense of separability [Dre05] as discussed in section IV.4.2.3). It is however debatable whether
this is desirable: treating a functor whose application has side effects as applicative does not break
structural typing but does not fully respect abstraction. We prefer to treat any functor whose
body has side effects as generative because when applicativity is desired, the body is usually pure
([Dre05, RRS]). For example, all the functors in the standard library of Objective Caml have a
pure body (mainly consisting of type definitions and immediate functions, as well as a few data
structure values).

The existing sealing of Objective Caml should be considered a static sealing (see section IV.4.4.2.
It would be desirable to add a dynamic sealing construct. Another necessary extension is syntax to
mark a functor as generative (i.e., a purity annotation on functor types), in order for all signatures
to be expressible in the source language.

In addition to examining the module language, we need to check for incompatibilities with
the core language. We discussed polymorphism in section V.3.2.2. We can freely extend tophat

with impure constructs; a safe choice is to make almost all core expressions impure. The main
requirements with respect to purity are that projecting a field of a module and immediate functions
must be considered pure. In fact, Objective Caml (like any implementation of Standard ML)
already performs a suitable purity analysis, in order to check the value restriction for polymorphism
[Wri95, Gar04].

V.3.4 Applications of dynamic typing

[Sorry, this fragment has not been translated yet.]

V.3.4.1 The JoCaml name server

The JoCaml “name server” was one of the main motivations of this work. The JoCaml language
[FLFS07, MM01] is statically typed, including communications [FLMR97]. However this result only
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applies inside a single program instance: when two separate instances communicate, the fact that
the value sent by one instance has the type expected by the other instance cannot result solely
from adherence to a protocol that only allows for verification inside a single instance, which static
typechecking is.

The recommended programming methodology for JoCaml keeps unsafe interactions to a mini-
mum: one instance publishes a communication channel of an agreed-upon type, and other instances
can send values (including other channels) over this initial channel, all communications but the
initial reception of the public channel being type-safe. The JoCaml standard library provides a
Ns module to assist in equipping depolyed programs with a name server. This name server is a
particular program instance which acts as a database for communication channels (the names in
question). Participating instances can publish their entry points by uploading them to the name
server. A program instance that wants to join the network can query the name server to obtain a
channel to send data on. The only type-checking that must take place at run-time is that performed
by new participants as they check that the data returned by the name server matches their typing
expectations (the actual verification may be performed by the name server itself; in any case the
name server must retain typing information for the values that it stores).
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Appendix A

Formal definition of tophat

This appendix is a précis of the language tophat, which is identical to D of chapter IV.

E ::= expression
x
∣

∣ y
∣

∣ t
∣

∣ . . . variables
() unit value
false

∣

∣ true boolean (generically bv)
0
∣

∣ 1
∣

∣ . . . integer (generically n)
〈T〉 type field
(E1, E2) pair
πiE projection (i ∈ {1, 2})
λx : T . E lambda-abstraction
E1 E2 application
let x = E0 inE : T local binding
E !!c T sealed and coloured module
[E]Tc coloured bracket
dyn E at T dynamic
dynnedE at T universal dynamic
undynE at T elseE ′ dynamic type verification

T ::= type
unit unit
bool booleans
int integers
TypE projection from a type field
Σx : T1. T2 dependent sum (also written T1 ∗ T2 when x /∈ fv T2)
Πx : T0.

γT1 dependent product (also written T1→
γ T2 when x /∈ fv T1)

S(E) singleton
typeK abstract type field
LAM abstract type
dyn dynamically typed values

K ::= kind
≀ monomorphic (fully specified)
∗ polymorphic (partially specified)
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A ::= module component
a nonce
A E application
πiA projection (i ∈ {1, 2})

γ ::= effect
P pure
I impure

ξ ::= primary colour
a nonce
x variable

c ::= colour
• empty colour (also written {})
{a1, . . . ,ak, x1, . . . , xk} finite set of primary colours

B ::= lexis
nil empty
B, a = E :c0

T nonce a with implemented by E with the signature T

Γ ::= environnement
nil empty
Γ , x :c T binding of the variable x

J ::= local judgement right-hand side
ok environment correction
T : K type kinding (generalising T : ∗)
T −→ T ′ typing conversion
T ≡ T ′ convertibility equivalence on types
E −→ E ′ expression conversion
E ≡ E ′ convertibility equivalence on expressions
T1 <: T2 subtyping
c0 transparent colour transparency
A ⊲ E : T component revelation
A −→ A ′ component conversion
A ≡ A ′ convertibility equivalence on components
E :γ T expression typing

V ::= quasi-value
()
∣

∣ bv
∣

∣ n constant
〈T〉 type field
(V1, V2) pair
λx : T . E lambda-abstraction
[V]

LAV M
c ′

potentially abstraction-making coloured bracket
dynnedV• at T universal dynamic

72



Vc ::= value in c

()
∣

∣ bv
∣

∣ n constant
〈T〉 type field
(Vc

1 , Vc
2 ) pair

λx : T . E lambda-abstraction

[Vc ′ ]
LAV c∩c ′

M
c ′

coloured bracket, if AVc∩c ′

is abstract in c but concrete in c ′

dynnedV• at T universal dynamic

AV ::= component value
a nonce
AV V application to a quasi-value
πiA

V projection (i ∈ {1, 2})

AVc
::= abstract component in c

a nonce, if opaque in c

AVc
Vc application of a functor to a value

πiA
Vc

projection (i ∈ {1, 2})

Cc
c ′ ::= evaluation context with inner colour c ′ and outer colour c

E1 function argument
V2 applied function

( , E2) first component of a pair
(V1, ) second component of a pair
πi projection (i ∈ {1, 2})
let x = inE : T local bound

!!c1
T sealing

[ ]Tc ′ coloured bracket

[Vc1 ]
Typ
c1

type field on a bracket, when c ′ = c ∩ c1

dyn at T dynamic
dynned at T universal dynamic, when c ′ = •
undyn at T elseE ′ dynamic type verification

self
BT (A) = BT if BT is a base type (unit, bool, int, dyn)

self
Σx:T1. T2(A) = Σx : self T1(π1A). self T2(π2A)

self
Πx:T0.

PT1(A) = Πx : T0.
P(self T1(A x))

self
Πx:T0.

IT1(A) = Πx : T0.
IT1

self
S(E ′)(A) = S(E)

self
typeK

(A) = S(〈LAM〉)

conc
B
c (LA1M) = Typ reveal

B(A1) if underl(A1) ∈ c

conc
B
c (LA1M) = LA1M if underl(A1) /∈ c

conc
B
c ([E]Tc ′) = [E]

conc
B
c∩c ′

(T)

c ′

(other cases by simple induction)
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{x←c0
E0}x = E0

{x←c0
E0}y = y si y 6= x

{x←c0
E0}[E]Tc = [{x←c0

E0}E]
{x←c0

E0}T

{x←c0
E0}c

{x←c0
E0}c = (c \ {x}) ∪ c0 si x ∈ c

{x←c0
E0}c = c si x /∈ c

(other cases follow the usual notion of capture-avoiding substitution)

underl(a) = a

underl(A E) = underl(A)

underl(πiA) = underl(A)

reveal
B(a) = E where a = E :c T ∈ B

reveal
B(A E) = (reveal

B(A))E

reveal
B(πiA) = πi (reveal

B(A))

B; nil ⊢c0
E :P T

when a /∈ dom B
B, a = E :c0

T ; nil ⊢• ok
(envok.a)

B; Γ ⊢c ′ ok

when a = E :c0
T ∈ B ∧ c0 ⊆ c ′

B; Γ ⊢c ′∪{a} ok
(envok.c.a)

B; Γ ⊢c ′ ok

when x :c0
T ∈ Γ

B; Γ ⊢c ′∪{x} ok
(envok.c.x)

nil; nil ⊢• ok
(envok.nil)

B; Γ ⊢c T : ∗
when x /∈ dom Γ
B; Γ , x :c T ⊢• ok

(envok.x)

B; Γ ⊢c ok

B; Γ0 ⊢c0
ξ transparent

when Γ = (Γ0, x :c0
T , Γ1) ∧ x ∈ c

B; Γ ⊢c ξ transparent
(vis.env)

B; Γ ⊢c ok

when ξ ∈ c

B; Γ ⊢c ξ transparent
(vis.in) B; Γ ⊢c ok

B; Γ ⊢c • transparent
(vis.o)

B; Γ ⊢c c1 transparent

B; Γ ⊢c c2 transparent

B; Γ ⊢c c1 ∪ c2 transparent
(vis.union)

B; Γ ⊢c c0 transparent

when a = E :c0
T ∈ B

B; Γ ⊢c a ⊲ E : T
(ac.a)

B; Γ ⊢c A ⊲ E : Πx : T0.
PT1

B; Γ ⊢c E0 :P T0

B; Γ ⊢c A E0 ⊲ EE0 : {x←cE0}T1

(ac.app)

B; Γ ⊢c A ⊲ E : Σx : T1. T2

B; Γ ⊢c π1A ⊲ π1E : T1

(ac.proj.1)

B; Γ ⊢c E1 :P S(π1E)

B; Γ ⊢c A ⊲ E : Σx : T1. T2

B; Γ ⊢c π2A ⊲ π2E : {x←cE1}T2

(ac.proj.2)

B; Γ ⊢c A ⊲ E : typeK

B; Γ ⊢c LAM : K
(tok.abs) B; Γ ⊢c ok

B; Γ ⊢c bool : ≀
(tok.base.bool) B; Γ ⊢c ok

B; Γ ⊢c dyn : K
(tok.base.dyn)

B; Γ ⊢c ok

B; Γ ⊢c int : ≀
(tok.base.int) B; Γ ⊢c ok

B; Γ ⊢c unit : ≀
(tok.base.unit)

B; Γ ⊢c E :P typeK

B; Γ ⊢c TypE : K
(tok.field)
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B; Γ ⊢c T ′ : K ′

B; Γ , x :c T ′ ⊢c∪{x} T ′′ : K ′′

B; Γ ⊢c Πx : T ′. IT ′′ : ≀
(tok.fun.I)

B; Γ ⊢c T ′ : K ′

B; Γ , x :c T ′ ⊢c∪{x} T ′′ : K ′′

B; Γ ⊢c Πx : T ′. PT ′′ : K ′′
(tok.fun.P)

B; Γ ⊢c T ′ : K ′

B; Γ , x :c T ′ ⊢c∪{x} T ′′ : K ′′

B; Γ ⊢c Σx : T ′. T ′′ : K ′ ∨ K ′′
(tok.pair)

B; Γ ⊢c ok

B; Γ ⊢c typeK : ∗
(tok.type)

B; Γ ⊢c E :P T

B; Γ ⊢c S(E) : ≀
(tok.sing)

B; Γ ⊢c T : K ′

when K ′ 6 K

B; Γ ⊢c T : K
(tok.sub)

B; Γ ⊢c E0 −→ E ′0
B; Γ ⊢c E0 :P T0

B; Γ ⊢c A ⊲ E : Πx : T0.
PT1

B; Γ ⊢c A E0 −→ A E ′0
(aconv.cong.app.arg)

B; Γ ⊢c A −→ A ′

B; Γ ⊢c A ⊲ E : Πx : T0.
PT1

B; Γ ⊢c E0 :P T0

B; Γ ⊢c A E0 −→ A ′ E0

(aconv.cong.app.fun)

B; Γ ⊢c A −→ A ′

B; Γ ⊢c A ⊲ E : Σx : T1. T2

B; Γ ⊢c πiA −→ πiA
(aconv.cong.proj)

B; Γ ⊢c A1 −→ A2

B; Γ ⊢c A1 ≡ A2

(aeq.conv)
B; Γ ⊢c A ⊲ E : T

B; Γ ⊢c A ≡ A
(aeq.refl)

B; Γ ⊢c A2 ≡ A1

B; Γ ⊢c A1 ≡ A2

(aeq.sym)

B; Γ ⊢c A1 ≡ A2

B; Γ ⊢c A2 ≡ A3

B; Γ ⊢c A1 ≡ A3

(aeq.trans)

B; Γ ⊢c A −→ A ′

B; Γ ⊢c A ⊲ E : typeK

B; Γ ⊢c LAM −→ LA ′M
(tconv.cong.abs)

B; Γ ⊢c E −→ E ′

B; Γ ⊢c E :P type∗

B; Γ ⊢c Typ E −→ TypE ′
(tconv.cong.field)

B; Γ ⊢c T0 −→ T ′0
B; Γ , x :c T0 ⊢c∪{x} T1 : ∗

B; Γ ⊢c Πx : T0.
γT1 −→ Πx : T ′0 .

γT1

(tconv.cong.fun.arg)

B; Γ ⊢c T0 : ∗
B; Γ , x :c T0 ⊢c∪{x} T1 −→ T ′1

B; Γ ⊢c Πx : T0.
γT1 −→ Πx : T0.

γT ′1
(tconv.cong.fun.ret)

B; Γ ⊢c T1 −→ T ′1
B; Γ , x :c T1 ⊢c∪{x} T2 : ∗

B; Γ ⊢c Σx : T1. T2 −→ Σx : T ′1 . T2

(tconv.cong.pair.1)

B; Γ , x :c T1 ⊢c∪{x} T2 −→ T ′2
B; Γ ⊢c T1 : ∗

B; Γ ⊢c Σx : T1. T2 −→ Σx : T1. T ′2
(tconv.cong.pair.2)

B; Γ ⊢c E −→ E ′

B; Γ ⊢c S(E) −→ S(E ′)
(tconv.cong.sing)

B; Γ ⊢c A ⊲ E : typeK

B; Γ ⊢c underl(A) transparent

B; Γ ⊢c LAM −→ TypE
(tconv.abs)

B; Γ ⊢c T : ∗

B; Γ ⊢c Typ 〈T〉 −→ T
(tconv.field)

B; Γ ⊢c ok

B; Γ ⊢c S(()) −→ unit
(tconv.unit)
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B; Γ ⊢c T1 −→ T2

B; Γ ⊢c T1 ≡ T2

(teq.conv)
B; Γ ⊢c T : ∗

B; Γ ⊢c T ≡ T
(teq.refl)

B; Γ ⊢c T2 ≡ T1

B; Γ ⊢c T1 ≡ T2

(teq.sym)

B; Γ ⊢c T1 ≡ T2

B; Γ ⊢c T2 ≡ T3

B; Γ ⊢c T1 ≡ T3

(teq.trans)

B; Γ ⊢c E −→ E ′

B; Γ ⊢c E :P T0

B; Γ ⊢c E1 :P Πx : T0.
PT1

B; Γ ⊢c E1 E −→ E1 E ′
(econv.cong.app.arg)

B; Γ ⊢c E −→ E ′

B; Γ ⊢c E :P Πx : T0.
PT1

B; Γ ⊢c E0 :P T0

B; Γ ⊢c EE0 −→ E ′ E0

(econv.cong.app.fun)

B; Γ ⊢c ′ E −→ E ′

B; Γ ⊢c ′ E :P T

B; Γ ⊢c∩c ′ T : ≀
B; Γ ⊢c ok

B; Γ ⊢c [E]Tc ′ −→ [E ′]Tc ′
(econv.cong.col.e)

B; Γ ⊢c ′ E :P T1

B; Γ ⊢c∩c ′ T1 −→ T2

B; Γ ⊢c∩c ′ T1 : ≀
B; Γ ⊢c ok

B; Γ ⊢c [E]T1

c ′
−→ [E]T2

c ′

(econv.cong.col.t)

B; Γ ⊢• E −→ E ′

B; Γ ⊢• T : ≀
B; Γ ⊢• E :P T

B; Γ ⊢c ok

B; Γ ⊢c dynnedE at T −→ dynnedE ′ at T
(econv.cong.dynned.e)

B; Γ ⊢• T −→ T ′

B; Γ ⊢• T : ≀
B; Γ ⊢• E :P T

B; Γ ⊢c ok

B; Γ ⊢c dynnedE at T −→ dynnedE at T ′
(econv.cong.dynned.t)

B; Γ ⊢c T −→ T ′

B; Γ ⊢c 〈T〉 −→ 〈T
′〉

(econv.cong.field)

B; Γ ⊢c T0 −→ T ′0
B; Γ , x :c T0 ⊢c∪{x} E1 :γ T1

B; Γ ⊢c (λx : T0. E1) −→ (λx : T ′0 . E1)
(econv.cong.fun.arg)

B; Γ , x :c T0 ⊢c∪{x} E −→ E ′

B; Γ , x :c T0, y :c∪{x} S(E) ⊢c∪{y}∪{x} E1 :γ T1

B; Γ ⊢c (λx : T0. {y←c∪{x}E}E1) −→ (λx : T0. {y←c∪{x}E
′}E1)

(econv.cong.fun.body)

B; Γ , x :c T0 ⊢c ′ E1 :γ T1

B; Γ , x :c∩c ′ T0 ⊢(c∩c ′)∪{x} T1 −→ T ′1
B; Γ , x :c∩c ′ T0 ⊢(c∩c ′)∪{x} T1 : ≀

B; Γ ⊢c (λx : T0. E1 !!c ′ T1) −→ (λx : T0. E1 !!c ′ T
′
1)

(econv.cong.fun.seal)

B; Γ ⊢c E −→ E ′

B; Γ ⊢c E2 :P T2

B; Γ ⊢c (E, E2) −→ (E ′, E2)
(econv.cong.pair.1)

B; Γ ⊢c E −→ E ′

B; Γ ⊢c E1 :P T1

B; Γ ⊢c (E1, E) −→ (E1, E
′)

(econv.cong.pair.2)

B; Γ ⊢c E −→ E ′

B; Γ ⊢c E :P Σx : T1. T2

B; Γ ⊢c πiE −→ πiE
′
(econv.cong.proj)

B; Γ , x :c T0 ⊢c∪{x} E1 :P T1

B; Γ ⊢c E0 :P T0

B; Γ ⊢c (λx : T0. E1)E0 −→ {x←cE0}E1

(econv.app)

B; Γ ⊢c ′ ok

B; Γ ⊢c ok

B; Γ ⊢c [bv]bool

c ′ −→ bv
(econv.col.base.bool)

B; Γ ⊢c ′ ok

B; Γ ⊢c ok

B; Γ ⊢c [n]int

c ′ −→ n
(econv.col.base.int)
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B; Γ ⊢c ′ ok

B; Γ ⊢c ok

B; Γ ⊢c [()]unit

c ′ −→ ()
(econv.col.base.unit)

B; Γ ⊢• E :P T

B; Γ ⊢• T : ≀
B; Γ ⊢c ′ ok

B; Γ ⊢c ok

B; Γ ⊢c [dynnedE at T ]dyn

c ′ −→ dynnedE at T
(econv.col.dynned)

B; Γ ⊢c ′ T0 <: T2

B; Γ , x :c ′ T2 ⊢c ′∪{x} E :I T1

B; Γ , x :c∩c ′ T0 ⊢(c∩c ′)∪{x} T1 : ≀
B; Γ ⊢c ok

B; Γ ⊢c [λx : T2. E]Πx:T0.
IT1

c ′
−→ λx : T0. E !!c ′∪{x} T1

(econv.col.fun.I)

B; Γ ⊢c ′ T0 <: T2

B; Γ , x :c ′ T2 ⊢c ′∪{x} E :P T1

B; Γ , x :c∩c ′ T0 ⊢(c∩c ′)∪{x} T1 : ≀
B; Γ ⊢c ok

B; Γ ⊢c [λx : T2. E]Πx:T0.
PT1

c ′
−→ λx : T0. [E]T1

c ′∪{x}

(econv.col.fun.P)

B; Γ ⊢c2
E :P T2

B; Γ ⊢c1∩c2
T2 : ≀

B; Γ ⊢c1
T2 <: T1

B; Γ ⊢c∩c1
T1 : ≀

B; Γ ⊢c ok

B; Γ ⊢c [[E]T2

c2
]T1

c1
−→ [E]T1

c1∪c2

(econv.col.merge)

B; Γ ⊢c ′ E1 :P T1

B; Γ ⊢c∩c ′ T1 : ≀
B; Γ , x :c ′ T1 ⊢c ′∪{x} E2 :P T2

B; Γ ⊢c ′ E2 :P {x←c ′ [E1]
T1

c ′
}T2

B; Γ , x :c∩c ′ T1 ⊢(c∩c ′)∪{x} T2 : ≀
B; Γ ⊢c ok

B; Γ ⊢c [(E1, E2)]
Σx:T1. T2

c ′
−→ ([E1]

T1

c ′
, [E2]

{x←c ′ [E1]
T1

c ′
}T2

c ′
)
(econv.col.pair)

B; Γ ⊢c ′ E
′ :P S(E)

B; Γ ⊢c∩c ′ E :P T

B; Γ ⊢c ok

B; Γ ⊢c [E ′]
S(E)

c ′
−→ E

(econv.col.sing)

B; Γ ⊢c E1 :P T1

B; Γ ⊢c E2 :P T2

B; Γ ⊢c πi (E1, E2) −→ Ei

(econv.proj)

B; Γ ⊢c E :P type∗

B; Γ ⊢c E −→ 〈TypE〉
(econv.eta.field)

B; Γ ⊢c E :P Πx : T0.
γT1

B; Γ ⊢c E −→ (λx : T0. Ex)
(econv.eta.fun)

B; Γ ⊢c E :P Σx : T1. T2

B; Γ ⊢c E −→ (π1E, π2E)
(econv.eta.pair)
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B; Γ ⊢c E1 −→ E2

B; Γ ⊢c E1 ≡ E2

(eeq.conv)
B; Γ ⊢c E :P T

B; Γ ⊢c E ≡ E
(eeq.refl)

B; Γ ⊢c E2 ≡ E1

B; Γ ⊢c E1 ≡ E2

(eeq.sym)

B; Γ ⊢c E1 ≡ E2

B; Γ ⊢c E2 ≡ E3

B; Γ ⊢c E1 ≡ E3

(eeq.trans)

B; Γ ⊢c T ′0 <: T0

B; Γ , x :c T ′0 ⊢c∪{x} T1 <: T ′1
B; Γ , x :c T0 ⊢c∪{x} T1 : ∗

when γ ⊑ γ ′

B; Γ ⊢c Πx : T0.
γT1 <: Πx : T ′0 .

γ ′T ′1
(tsub.cong.fun)

B; Γ ⊢c T1 <: T ′1
B; Γ , x :c T1 ⊢c∪{x} T2 <: T ′2
B; Γ , x :c T ′1 ⊢c∪{x} T ′2 : ∗

B; Γ ⊢c Σx : T1. T2 <: Σx : T ′1 . T ′2
(tsub.cong.pair)

B; Γ ⊢c ok

when K1 6 K2

B; Γ ⊢c typeK1 <: typeK2

(tsub.cong.type)
B; Γ ⊢c T ≡ T ′

B; Γ ⊢c T <: T ′
(tsub.eq)

B; Γ ⊢c T <: T ′

B; Γ ⊢c T ′ <: T ′′

B; Γ ⊢c T <: T ′′
(tsub.trans)

B; Γ ⊢c E :P T

B; Γ ⊢c S(E) <: T
(tsub.sing)

B; Γ ⊢c E1 :γ1 Πx : T0.
γ2T

B; Γ ⊢c E0 :P T0

B; Γ ⊢c E1 E0 :γ1⊔γ2 {x←cE0}T
(et.app)

B; Γ ⊢c ok

B; Γ ⊢c bv :P bool
(et.base.bool)

B; Γ ⊢c ok

B; Γ ⊢c n :P int
(et.base.int)

B; Γ ⊢c ok

B; Γ ⊢c () :P unit
(et.base.unit)

B; Γ ⊢c ′ E :γ T

B; Γ ⊢c∩c ′ T : ≀
B; Γ ⊢c ok

B; Γ ⊢c [E]Tc ′ :
γ T

(et.col)

B; Γ ⊢c E :γ T

B; Γ ⊢c T : ≀

B; Γ ⊢c dynE at T :I dyn
(et.dyn)

B; Γ ⊢• E :P T

B; Γ ⊢• T : ≀
B; Γ ⊢c ok

B; Γ ⊢c dynnedE at T :P dyn
(et.dynned)

B; Γ , x :c T0 ⊢c∪{x} E :γ T1

B; Γ ⊢c λx : T0. E :P Πx : T0.
γT1

(et.fun)

B; Γ ⊢c E0 :I T0

B; Γ , x :c T0 ⊢c∪{x} E :I T

B; Γ ⊢c T : ∗

B; Γ ⊢c (let x = E0 inE : T) :I T
(et.let)

B; Γ ⊢c E1 :γ T1

B; Γ ⊢c E2 :γ T2

B; Γ ⊢c (E1, E2) :γ T1 ∗ T2

(et.pair)

B; Γ ⊢c E :γ Σx : T1. T2

B; Γ ⊢c π1E :γ T1

(et.proj.1)

B; Γ ⊢c E :P Σx : T1. T2

B; Γ ⊢c E1 :P S(π1E)

B; Γ ⊢c π2E :P {x←cE1}T2

(et.proj.2)

B; Γ ⊢c∪c ′ E :γ T

B; Γ ⊢c T : ∗

B; Γ ⊢c (E !!c ′ T) :I T
(et.seal)

B; Γ ⊢c T : K

B; Γ ⊢c 〈T〉 :
P typeK

(et.type)

B; Γ ⊢c E :γ dyn

B; Γ ⊢c E ′ :γ T

B; Γ ⊢c undynE at T else E ′ :I T
(et.undyn)

B; Γ ⊢c x transparent

when x :c ′ T ∈ Γ

B; Γ ⊢c x :P T
(et.x)

B; Γ ⊢c E :P T

B; Γ ⊢c E :P S(E)
(et.sing)

B; Γ ⊢c E :γ T

B; Γ ⊢c T <: T ′

when γ ⊑ γ ′

B; Γ ⊢c E :γ
′
T ′

(et.sub)
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(λx : T . E)Vc −→c {x←cVc}E (ered.app)

[bv]bool

c ′ −→c bv (ered.col.base.bool)

[n]int

c ′ −→c n (ered.col.base.int)

[()]unit

c ′ −→c () (ered.col.base.unit)

[dynnedV• at T ]dyn

c ′ −→c dynnedV• at T (ered.col.dynned)

[λx : T2. E]Πx:T0.
IT1

c ′
−→c λx : T0. (E !!c ′∪{x} T1) (ered.col.fun.I)

[λx : T2. E]Πx:T0.
PT1

c ′
−→c λx : T0. [E]T1

c ′∪{x}
(ered.col.fun.P)

[[Vc2 ]
LA2M
c2

]
LA1M
c1
−→c [Vc2 ]

LA1M
c1∪c2

(ered.col.merge)

if A1 et A2 are both opaque in c1 but A2 is concrete in c2

[(Vc ′

1 , Vc ′

2 )]Σx:T1. T2

c ′
−→c ([Vc ′

1 ]T1

c ′
, [Vc ′

2 ]
{x←c[Vc ′

1
]
T1

c ′
}T2

c ′
) (ered.col.pair)

[Vc ′ ]
S(E)

c ′
−→c E (ered.col.sing)

B ⊢ [Vc ′ ]
LAM
c ′
−→c B ⊢ [Vc ′ ]

Typ reveal
B(A)

c ′
(ered.colAbs)

if underl(A) ∈ c ∩ c ′

[Vc ′ ]
Typ 〈T〉
c ′

−→c [Vc ′ ]Tc ′ (ered.colTyp)

E −→c ′ E
′

Cc
c ′ · E −→c Cc

c ′ · E
′
(ered.context)

dynVc at T −→c dynned [Vc]
conc

B
c (T)

c at conc
B
c (T) (ered.dyn)

let x = Vc inE : T −→c {x←cVc}E (ered.let)

πi (V
c
1 , Vc

2 ) −→c Vi (ered.proj)

B ⊢ Vc∪c ′ !!c ′ T −→c B, a = Vc∪c ′ :c∪c ′ T ⊢ [Vc∪c ′ ]
self

T (a)

c∪c ′∪{a}
(ered.seal)

where a is fresh (i.e., a /∈ dom B)

B ⊢ undyn (dynVc at T) at T ′ else E ′ −→c B ⊢

{

Vc if B; nil ⊢c T <: T ′

E ′ otherwise
(ered.undyn)
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ml for the join-calculus. In CONCUR ’97: Proceedings of the 1997 8th International
Conference on Concurrency Theory, pages 196–212. Springer-Verlag, July 1997.

[Gar04] Jacques Garrigue. Relaxing the value restriction. In FLOPS ’04: Proceedings of the 7th
International Symposium on Functional and Logic Programming, volume 2998 of Lecture
Notes in Computer Science, pages 196–213. Springer-Verlag, April 2004.

[Gog05] Healfdene Goguen. A syntactic approach to eta equality in type theory. In POPL
’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 75–84, 2005.

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules
with sharing. In POPL ’94: Proceedings of the 21st ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 123–137, New York, NY, USA,
1994. ACM Press.

81



BIBLIOGRAPHY

[HMM90] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the
phase distinction. In POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 341–354, New York, NY,
USA, 1990. ACM Press.

[Klo80] Jan Willem Klop. Combinatory reduction systems. PhD thesis, Mathematisch Centrum,
Amsterdam, 1980.

[L+] Xavier Leroy et al. The Objective Caml system.

[Ler] Xavier Leroy. Private communication.

[Ler94] Xavier Leroy. Manifest types, modules, and separate compilation. In POPL ’94: Pro-
ceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 109–122, New York, NY, USA, 1994. ACM Press.

[Ler95] Xavier Leroy. Applicative functors and fully transparent higher-order modules. In
POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 142–153, New York, NY, USA, 1995. ACM Press.

[Lil97] Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems.
PhD thesis, Carnegie Mellon University, May 1997.

[LPSW03] James J. Leifer, Gilles Peskine, Peter Sewell, and Keith Wansbrough. Global abstraction-
safe marshalling with hash types. In ICFP ’03: Proceedings of the eighth ACM SIGPLAN
international conference on Functional programming, pages 87–98, New York, NY, USA,
2003. ACM Press.

[Mac84] David MacQueen. Modules for Standard ML. In LFP ’84: Proceedings of the 1984 ACM
Symposium on LISP and functional programming, pages 198–207, New York, NY, USA,
1984. ACM Press.

[MM01] Louis Mandel and Luc Maranget. The JoCaml language, 2001.

[OTCP90] Atsushi Ohori, Ivan Tabkha, Richard Connor, and Paul Philbrow. Persistence and
type abstraction revisited. In Implementing Persistent Object Bases, Principles and
Practice, Proceedings of the Fourth International Workshop on Persistent Objects, 23-
27 September 1990, Martha’s Vineyard, MA, USA, pages 141–153. Morgan Kaufmann,
1990.

[Pie05] Benjamin C. Pierce, editor. Advanced Topics in Types and Programming Languages.
MIT Press, 2005.

[PS00] Benjamin C. Pierce and Eijiro Sumii. Relating cryptography and polymorphism.
Manuscript, July 2000.

[PSL] Programming System Lab, Saarland University. The Alice ML Language.

[Ros] Andreas Rossberg. SML vs. Ocaml. Online at http://www.ps.uni-sb.de/∼rossberg/

SMLvsOcaml.html.

82



BIBLIOGRAPHY

[Ros03] Andreas Rossberg. Generativity and dynamic opacity for abstract types. In PPDP
’03: Proceedings of the 5th ACM SIGPLAN international conference on Principles and
practice of declaritive programming, pages 241–252, New York, NY, USA, 2003. ACM
Press.

[Ros07] Andreas Rossberg. Typed Open Programming — A higher-order, typed approach to
dynamic modularity and distribution. PhD thesis, Universität des Saarlandes, January
2007.

[RRS] Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML Language Overview.

[Rus98] Claudio Russo. Types For Modules. PhD thesis, University of Edinburgh, 1998.

[Sew01] Peter Sewell. Modules, abstract types, and distributed versioning. In POPL ’01: Pro-
ceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 236–247, New York, NY, USA, 2001. ACM Press.

[Sha99] Zhong Shao. Transparent modules with fully syntatic signatures. In ICFP ’99: Proceed-
ings of the fourth ACM SIGPLAN international conference on Functional programming,
pages 220–232, New York, NY, USA, 1999. ACM Press.

[SP04] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic sealing. In POPL ’04:
Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 161–172, New York, NY, USA, 2004. ACM Press.

[Sun] Sun Microsystems, Inc. Java API Specifications.

[Wad89] Philip Wadler. Theorems for free! In FPCA ’89: Proceedings of the fourth international
conference on Functional programming languages and computer architecture, pages 347–
359, New York, NY, USA, 1989. ACM Press.

[Wri95] Andrew K. Wright. Simple imperative polymorphism. Lisp Symb. Comput., 8(4):343–
355, 1995.

[ZGM99] Steve Zdancewic, Dan Grossman, and Greg Morrisett. Principals in programming lan-
guages: a syntactic proof technique. In ICFP ’99: Proceedings of the fourth ACM
SIGPLAN international conference on Functional programming, pages 197–207, New
York, NY, USA, 1999. ACM Press.

83



BIBLIOGRAPHY

84



Index

abstract
type, 8

abstract component, 53
abstract type, see type
abstraction kind, 65
alpha-conversion, 13, 46
ambient colour, 42
apax, see nonce
applicative

functor, see functor
ascription, 34
avoidance problem, 15

closed
term, 13

colour
primary —, 42, 51
transparency, 57
variables in —, 44

coloured bracket, 39, 41, 51
absolute —, 46
additive, 46
pushing, 44, 48
universal —, 46

coloured brackets
pushing, 42, 54

comparable (module), 25
completely specified, see monomorphic
component type, 40
component value, 53
concretisation, 44, 47
conversion, 20

type —, 22
convertibility, 22

decidability, 64
dependency

of a module identity, 43
distributed

system, 7

domain, 13
dynamic

sealing, see sealing

effect, 26
empty colour, 42
environment, 13
equitypable, 32
equivalence

convertibility, see convertibility
evaluation context, 16
extensionality, 24

free variable, 13
fully specified, see monomorphic
function

polymorphic —, see polymorphic
functor

applicative, 30
generative, 30
transparent, 30

generative
functor, see functor

generics, 50

hash, 63

impure, 26
sealing, see sealing

incompletely specified, see polymorphic
inseparable

sealing, see sealing

judgement
local typing —, 14

kind, 48, 51
abstraction —, see abstraction kind

lexis, 38
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local binding, 29

marshal, 61
marshaling, 7
minimal

sealing, see sealing
module, 13
module component, 40, 51
module identity, 37, see nonce
monomorphic, 44, 48

name server, 67
nonce, 37, 63

transparency, 57

opacity, 66
opaque, 42

parametricity, 21, 66
partially specified, see polymorphic
phase separation, 25
pickling, see marshaling
polymorphic, 48

function, 49
type parameter, 50
value, 50

projectible, 25
pure, 26

module, 25

quasi-values, 53

reduction, 16
reveal, 40
revelation, 52

sandbox, 46
sealing, 27

dynamic —, 31, 63, 65
dynamic —dynamic, 33
dynamic —static, 33
dynamic —strong, 33
dynamic —weak, 33
impure —, 33
inseparable —, 33
minimal —, 34
separable —, 33
static —, 31, 63
strong —, 30
weak —, 30

selfification, 21, 38, 48
separable, 25, 67

sealing, see sealing
serialisation, see marshaling
signature, 13
singleton, 30

higher-order, 18
of an expression, 17

singularised identity, 37, 63
sound, 64
stamp, 37, 63
stamp book, see lexis
static

sealing, see sealing
strengthening, 38
strong

sealing, see sealing
substitution, 13, 46

transparent, 39, 42, 52, 57
functor, see functor
variable, 45

type
abstract—, 51
arrow —, 13
coercion, 38
function, 13
inference, 64
product —, 13

underlying nonce, 40, 52
universal, 62

— term, 44
coloured bracket, see coloured bracket

value, 15
polymorphic —, see polymorphic

value restriction, 67
variable

transparency, 57

weak
sealing, see sealing

weakening
colour, 43, 45, 46
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