
Abstrat types in distributed systemsA partial translation of my Ph.D. dissertationGilles Peskine12 June 2008

AbstratConsider a network of nodes running ML programs that exhange data. How an data whih hasan abstrat type on one node be aepted on another node? A safe approah is to treat abstrattypes as distint whenever they are de�ned on di�erent nodes. However this is too restritive inpratie, for example in the ommon ase where an abstrat type enfores a semanti invariant.The main ontributions of this thesis are threefold: I de�ne a notion of hash of an abstrattype, whereby abstrat types that have the same hash are deemed ompatible; I give an operationalsemantis for a module system that preserves types, inluding abstrat types; I also propose a new,more general module system that is well-suited to distributed appliations.The hash of an abstrat type must reet its intended semantis, whih is often not apparentfrom the program's ode. In pratie, two modules have the same hash if they have the same ode.Compound modules are ompatible when they are built from ompatible omponents.Existing operational semantis for ML modules lose information as they erase abstration bound-aries. I use oloured brakets to trak the visibility of abstrat types. I study two aluli equippedwith brakets, a simply-typed lambda-alulus and a rih ML module alulus.I use singleton signatures to keep trak of not only type but also ode sharing, so that moduleequivalene is de�ned at arbitrary signatures. A simple e�et system limits type onstraint to astatially hekable fragment, while permitting both appliative and generative funtors. I disussstati and dynami forms of module sealing.

Contents
Introdution 7IVTophat: a module alulus suited to distributed environments 11IV.1 Introdution . 11IV.2 A module alulus [B℄ . 12IV.2.1 Fundamental onstruts . 12IV.2.2 About the base language . 12IV.2.3 Formal desription of the ore language . 12IV.2.3.1 Syntax . 12IV.2.3.2 Variables . 13IV.2.3.3 Environments . 13IV.2.4 Typing . 14IV.2.4.1 Introdution . 14IV.2.4.2 �` ok Environment orretions 14IV.2.4.3 �`Tok Type orretness 14IV.2.4.4 �`E :T Expression typing 15IV.2.4.5 hTi, TypE Type �elds 15IV.2.5 Run-time . 15IV.2.5.1 E�!E 0 Expression redution 16IV.3 Singletons [S℄ . 17IV.3.1 Motivation . 17IV.3.1.1 Abstrat types, onrete types . 17IV.3.1.2 Type sharing . 17IV.3.1.3 Value singletons . 17IV.3.1.4 Higher-order singletons . 18IV.3.1.5 A pratial example . 18IV.3.2 Properties . 20IV.3.3 Typing rules . 20IV.3.3.1 �`T<:T0 ; ... Subtyping . 21IV.3.3.2 S(E) Singletons . 21IV.3.3.3 �`E :T ; �`T1<:T2 Expression typing 21IV.3.3.4 �`T�T0 ; �`E�E 0 Convertibility equivalenes 22IV.3.3.5 �`T�!T 0 Type onversion 22IV.3.3.6 �`E�!E 0 Expression onversion 23IV.3.3.7 Extensionality . 24IV.4 Sealing [E℄ . 24IV.4.1 Sealing . 24IV.4.2 An e�et system . 24IV.4.2.1 Introdution . 24IV.4.2.2 Purity . 25IV.4.2.3 Projetibility, separability and omparability 25IV.4.3 Formal presentation . 263

IV.4.3.1 Syntax . 26IV.4.3.2 E�!E 0 Run-time . 27IV.4.3.3 �` . . . Typing: orretion, equivalenes, subtyping . 27IV.4.3.4 �`E :T Expression typing 28IV.4.4 Appliativity . 30IV.4.4.1 Appliative funtors . 30IV.4.4.2 Stati sealing: formalisation [W℄ 31IV.4.4.3 Equivalenes in the presene of stati sealing 32IV.4.4.4 Other forms of sealing . 33IV.4.4.5 Mutual enodings of stati and dynami sealing 35IV.4.4.6 On appliativity through funtor sealing 36IV.5 Colours and brakets [C℄ . 36IV.5.1 Module identities . 37IV.5.1.1 None generation . 37IV.5.1.2 Lexes . 38IV.5.1.3 From sealing to brakets . 38IV.5.1.4 Abstrat types . 39IV.5.1.5 Sel��ation . 40IV.5.2 Colors . 41IV.5.2.1 Colouring . 41IV.5.2.2 Semantis of a type and dependenies of a none 43IV.5.2.3 Variables in olours . 45IV.5.2.4 Absolute brakets, additive brakets 46IV.5.3 Polymorphism . 47IV.5.3.1 Coloration of a type . 47IV.5.3.2 Kinds . 47IV.5.3.3 Brakets and funtion appliation; polymorphi funtions 48IV.5.3.4 Polymorphi types and values . 49IV.5.3.5 Colour fusion . 50IV.5.3.6 Generative funtors . 51IV.5.4 Evaluation . 52IV.5.4.1 Syntax . 52IV.5.4.2 Values and abstrat omponents . 53IV.5.4.3 B`E�!B 0`E 0 Redution . 54IV.5.5 Typing . 56IV.5.5.1 B;�` ok Environment formation 57IV.5.5.2 B;�`T :K Type kinding 57IV.5.5.3 B;�` 0 transparent Colour transpareny 58IV.5.5.4 B;�`A.E :T ; ... Module omponents 58IV.5.5.5 B;�`E :T Coloration of expressions 59IV.5.5.6 B;�`E�!E 0 Conversion and oloured brakets 60IV.6 Dynami typing and distributed programs [D℄ . 60IV.6.1 Dynami typing . 60IV.6.2 Formalisation . 61IV.6.2.1 Syntax . 61IV.6.2.2 Redution . 61IV.6.2.3 Typing . 62IV.6.3 Communiation inter-mahines . 62IV.6.3.1 Introdution . 62IV.6.3.2 Communiation and olours . 63IV.6.3.3 Universals . 63IV.6.3.4 None sharing . 63IV.6.3.5 Stati sealing and hashes . 64IV.7 Conlusion . 65

V Conlusion 67V.1 Summary . 67V.2 Related work . 67V.2.1 Theoreti onsiderations . 67V.2.2 Programming languages . 67V.2.3 Aute and HashCaml . 67V.2.4 Alie ML . 67V.3 Future work . 68V.3.1 Improvements to the theory . 68V.3.1.1 Strati�ation . 68V.3.1.2 One or two language levels? . 68V.3.1.3 E�et analysis . 68V.3.1.4 Colours and brakets . 68V.3.1.5 Deidability of type-heking . 68V.3.1.6 Parametriity . 68V.3.2 Supplementary features . 68V.3.2.1 Field names and width subsignaturing 68V.3.2.2 Towards a programming language 68V.3.2.3 Generi programming . 68V.3.2.4 Seurity . 69V.3.3 Implementation . 69V.3.3.1 Hash omputation . 69V.3.3.2 Typing tophat . 69V.3.3.3 Integration into Objetive Caml: the module system 69V.3.4 Appliations of dynami typing . 69V.3.4.1 The JoCaml name server . 69A Formal de�nition of tophat 71Bibliography 81Index 85

IntrodutionObjetiveThe objetive of the present dissertaion is to extend an ML-like language to adapt it to distributedsystems. Spei�ally, we are interested in the requirements that the distributed nature of theenvironment imposes on the type system | we will not onern ourselves with other aspets suhas onurrent exeution and fault tolerane.Consider two mahines A and B , eah exeuting a program. At some point in time, A and Bstart exhanging data. The entral question of this dissertation is, how an we make sure that Aand B agree on the semantis of the exhanged data?A network link arries sequenes of bits (usually arranged in bytes). When A sends data toB , the data is enoded as a sequene of bits. This operation is known as marshaling (the wordspikling and serialisation are synonyms). Upon reeption of the bit sequene, B must performthe opposite operation (known as unmarshaling, unpikling or deserialisation). Many languagesprovide a standard representation of data as strings: s-expressions in Lisp, Marshal library in Ob-jetive Caml [L+℄, Pikle library in Standard ML [PSL℄, Serializable interfae in Java [Sun℄. . .Several standards (ASN.1, XML) speify language-independent string enodings of data for om-muniation. While the exat set of supported data shapes varies greatly, serialisation libraries anddata representation standards usually speify at least how to enodes numbers (n-bit integers, little-or big-endian, deimal notation. . .), strings (harater sets and enodings: ASCII, Uniode, . . .),sequenes of suh. . .Marshaling data entails transforming it to an unambiguous sequene of bits. Unmarshalingonsists of two parts: the bit sequene must be transformed bak into a workable representation ofthe data, and one must verify that the resulting data has the expeted type or shape. For example,if the program running on B expets a number, and the program on mahine A sends the string"foo", the error must be deteted. The usual approah in ML-like languages is to detet suh errorsas soon as possible, whih is as soon as the program has been written (during the type-hekingphase of ompilation). It seems natural in an ML-like language to express the unmarshal-time hekas a type onstraint; but how an this onstraint be imposed?Aording to the ML approah, the error must be deteted when ompiling the program on A orB . Thus the program on A would delare a ommuniation hannel of type string (on whih onemay send "foo"), and the program on B would delare a hannel of type int (on whih only numbersmay be reeived). But this only delays the problem, sine the fat that A and B disagree on thetype of their shared ommuniation hannel annot be deteted until A and B start ommuniating.This observation leads us to desire a run-time type-hek, spei�ally a type-hek when es-tablishing a ommuniation hannel between programs that have not yet ommuniated. (One theprograms have ommuniated, suh a hek is no longer neessary, sine the programs may nowhave agreed on the types of future ommuniations. For example JoCaml [MM01℄ has a stati typesystem [FLMR97℄; however two independently started JoCaml programs that wish to ommuniate7

INTRODUCTIONmust get a shared hannel via a \name server", whih is urrently not well-typed.)Although ML is designed to be statially typed, and most ompilers erase types to save memoryduring exeution, there are ways of heking whether a value has a ertain type at run-time. Howeverexisting systems do not manage abstrat types orretly, allowing only types with a prede�nedstruture to be shared between separate programs.One solution is to forbid values of abstrat types to be marshaled. Another is to require theauthor of the abstrat type to provide marshaling and unmarshaling funtions. This howeverdoes not solve our problem: a serialisation format an usually be dedued automatially from therepresentation of the type, but this does not fully solve the problem of heking whether the typeof the sent data is the type that is expeted at the point of reeption. Herein lies the gist of thematter: when are two abstrat types the same?There are two main intuitions to the nature of an abstrat type. One point of view states that anabstrat type in hidden. It has an implementation, whih is a \onrete" type (the implementationmay make use of other abstrat types, but these an be traed through in turn all the way to built-intypes). Hene an abstrat type is a onrete type | but we do not know whih. Another view isthat an abstrat type is a new, fresh type, distint form any other type (in partiular it is distintfrom any onrete type, and it is distint from its implementation type, in that one may not onvertfreely between the two).When are two hidden types the same? One prerequisite that omes to mind immediately is thatthe implementation types must be the same. But this ondition is neither neessary nor suÆient.One may wish to onsider two hidden types as the same when their implementations have identialbehaviour, even if their ode di�ers. Conversely, just beause the implementations math exatlydoes not mean that the types an be mathed freely | for example a Euro type and a Dollar typemay have the same implementation, yet should de�nitely not be ompatible. Type abstration anplay multiple rôles, and usages may di�er in terms of ideal degree of ompatibility.When are two fresh types the same? The simplest answer is \when they were reated in thesame operation". This approah has often been re�ned by proposing language onstruts that mayor may not reate fresh types. In ML, ontrol of type freshness is given to the module language,whih we shall therefore study.General outline of the dissertationChapter I presents the basi onepts upon whih the dissertaion is based. We �rst study thenotion of abstration, its uses and how to express it. In ML-like languages, abstration arises viathe module language, and we highlight some points of its rih history. We also study how to adddynami type-heking to a statially typed language.Chapter II develops a notion of imprint. The imprint of a software omponent identi�es theabstration that it provides. We examine many sample programs in order to deide how muhompatibility is desired in various onditions, and we disuss how to ompute imprints so that twoomponents have the same imprint if and only if they are supposed to be ompatible.Chapter III presents a simple �rst language equipped with imprints, the hat language. Thislanguage extends the simply-typed lambda-alulus with simple modules. We keep trak of abstra-tion domains throughout program exeution using oloured brakets. The language also inludesdynamially typed ommuniation primitives that use imprints to test the equality of abstrat types.Chapter IV desribes a new module system for ML whih is suitable for distributed programs,the tophat language. This language inludes entral onepts in module aluli, suh as funtorsand sealing. Singleton types with no signature restrition allow for the expression of ode equalitiesas well as type equalities, generalising the usual notion of type sharing. We show how to express8

INTRODUCTIONdi�erent kinds of sealing, depending on the expeted level of generativity. Like hat, tophat usesimprints to perform run-time type equality tests involving abstrat types, and oloured brakets topreserve abstration barriers during program exeution.We onlude with a survey of related work and future work perspetives.Appendix A summarises the formal de�nition of the tophat language introdued in hapterIV. Appendix B ontains a proof of the soundness of tophat.A note about ode snippetsWe usually present ode snippets in Objetive Caml syntax. We do not expet the reader toknow the �ne points of the language, and will in partiular explain any subtlety onerning thesemantis of modules. When features that Objetive Caml does not have are illustrated, we useObjetive Caml-like syntax augmented as desired and desribe the intended semantis in the text.Readers used to Standard ML may wish to onsult a orrespondane table between the two dialets[Ros℄.

9

INTRODUCTION

10

Chapter IVTophat: a module alulus suited todistributed environmentsIV.1 IntrodutionObjetivesThe purpose of this hapter is to present a module system that ombines the usual features foundin ML-like languages with a exible management of abstrat types that, as in hat, is suited todistributed programs.This module system is desribed as a typed lambda-alulus, for whih we provide typing rulesand a type-preserving small-step operational semantis. The system desribed herein purports tobe a theoreti model, not a full-blown programming language, although our design hoies will bemotivated by pratial onerns. As suh, it laks some pratial features that might be thought ofas syntati sugar. We will also for the most part delay implementation onsiderations until setionV.3.3.Existing module systems already span a wide range of features and style With respet to ex-pressivity, our aim is to over the features that we think are fundamental to our spei� objetive ofoping well with abstrat types in a distributed environment. Style-wise, we have tried to providea ompositional approah, where eah aspet of the language is embodied in a separate languageonstrut that an be easily understood on its own.Voabulary and notationsWe will endeavour to distinguish between the words \expression", meaning a spei� languageategory (expressions typially have types, and an be evaluated), and \term", whih denotes anelement of any syntati ategory (expression, type, module, environment, et.). We will usuallydenote by � or i a term of unknown syntati ategory.Let � be any term, x a variable and E an expression. We will write the substitution of E for xin � as fx Eg�. Similarly, we will write fX Mg� for the substitution of module expression M formodule variable X in �.OutlineWe will present the tophat language inrementally. Eah of the following �ve steps re�nes orextends the previous language. 11

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .B We will start with a basi module system, inluding only module-building onstruts that wouldbe suÆient for our purpose in the absene of types. This system is simple but laks expres-sivity as far as types are onerned.S We will add singleton types (whih generalise singleton kinds) to the basi system, in order tokeep trak of equalities between types. The resulting system will adequately model moduleswith no type abstration.E We will then add a sealing onstrut to the language in order to permit making types abstrat.We will see that sealing makes the langage impure, and will equip our type system with asuitable e�et system.C The previous system an express type abstration at the soure level, but abstration is lostwhen the program is evaluated. We will therefore provide a way of keeping trak of abstrationboundaries during program evaluation, in the form of module identities and oloured brakets.D We will �nally be able to equip our language with dynami typing onstruts that behave rea-sonably in a distributed setting.System D onstitutes the full tophat language1.At eah stage, we will motivate the features to be introdued with examples, and we will examinehow these features an be used in programs. We will disuss the hoies we made when designingthe theory presented here. We will then state preise the semantis of the language we de�ne, in theform of typing rules (the stati semantis) and small-step redution rules (the dynami semantis).IV.2 A module alulus BThe present setion presents the ore of a module desription language. This ore, whih we all B,builds on two essential features: aggregates of values and types, alled strutures; and parametrimodules, alled funtors.IV.2.1 Fundamental onstruts[Sorry, this fragment has not been translated yet.℄IV.2.2 About the base language[Sorry, this fragment has not been translated yet.℄IV.2.3 Formal desription of the ore languageIV.2.3.1 SyntaxWe an now formally state the syntax and semantis of our ore language. We limit ourselves tothe features mentioned so far, and delay singletons until setion IV.3.Sine we have deided to unify the module and expression languages, objets formerly notedE and objets formerly noted M now belong to the same world, and shall be noted E and alled1Total Or Partial Hashed Abstrat Types, in whih the words \total" and \partial" refer to total and partialfuntors, also known as appliative and generative funtors.12

IV.2. A MODULE CALCULUS [B℄expressions. Similarly we will write T rather than S and speak of types. Nonetheless someexpressions will intuitively be seen as modules, and their types as signatures.E ::= expression or modulex �� y �� t �� . . . variables() unit valuefalse �� true boolean (generially bv)0 �� 1 �� . . . integer (generially n)hTi type �eld(E1,E2) pair�iE projetion (i 2 f1, 2g)�x : T. E lambda-abstrationE1 E2 appliationlet x = E0 inE : T loal binding
T ::= type or signatureunit unitbool booleansint integerstype abstrat type �eldTypE projetion from a type �eld�x : T1. T2 dependent sum�x : T0. T1 dependent produtWe will use the following abbreviations.T1 � T2 := �x : T1. T2 produt typeT1! T2 := �x : T1. T2 arrow (funtion) typeIn the de�nitions of T1 � T2 and T1! T2, x is a fresh variable, i.e., a variable that is not free in T2.IV.2.3.2 VariablesWe use standard de�nitions of free variables, bound ourrenes, alpha-onversion and sub-stitutions. A losed term is one with no free variable.We write fv� for the set of free variables of �. We write fx Eg� for the substitution of E forx in �.We will systematially work up to alpha-onversion, i.e., any term that we write down willformally denote its equivalene lass modulo alpha-onversion. Any typing or redution step mayrename variables. For example, if a typing or redution rule requires more than one instantiationof a metavariable, eah instantiation may use di�erent representative for bound variables. Thisfollows the tradition of the Barendregt variable onvention, whih allows for substantially learerexposition. We will generally not mention the omnipresent possibility of alpha-onversion; syntaxdesriptions will mention the binding struture in the text.IV.2.3.3 EnvironmentsAn environment is a �nite list of (variable, type) pairs. We write nil for the empty environment,x : T for an environment of length 1, and use \," for onatenation, whih we treat as assoiative.For example, an environment binding three variables will usually be written as x : T,y : T 0, z : T 00;other ways of writing the same environment are ((x : T,y : T 0), z : T 00) and (x : T,y : T 0), z : T 00 and(((nil, x : T),y : T 0), z : T 00).Environments are built from the following grammar:� ::= environnementnil empty�, x : T binding of the variable xAlternatively, environments may be seen as objets of the form x1 : T1, . . . , xk : Tk with k 2 N.The domain of an environnement � = x1 : T1, . . . , xk : Tk is the set of variables fx1, . . . , xkg. Itis written dom �. 13

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .An environment binds the variables of its domain, and they are as usual subjet to alpha-onversion. Writing (�, � 0) supposes that � and � 0 have disjoint domains; alpha-onversion must beperformed if neessary. In a onatenation (�, � 0), the variables in the domain of � bind in � 0.Note that our environments must be ordered sine we have dependent types. Thus (x : int,y :Typ x) is a well-formed environment, whereas (y : Typ x, x : int) is not (it ould have been writtenas (y : Typ x, z : int) after renaming the bound variable to z, with the remaining ourrene of xbeing free).IV.2.4 TypingIV.2.4.1 IntrodutionWe onsider a orret program (fragment) to be an expresion E assoiated with a type T suhthat E has the type T. When E ontains free variables, these must be assigned a type through anenvironment.We will manipulate several forms of typing judgements, whih will always be loal judgements,of the form � ` J (in system B | later loal judgements will bear more annotations). System Bhas three forms of right-hand side for a loal typing judgement. .J ::= typing judgement� ` J loal judgementJ ::= loal judgement right-hand sideok environment orretionT ok orretion of the TE : T expression typingWe present typing rule under the usual presentation as a dedution rules.IV.2.4.2 � ` ok Environment orretionsEnvironments are built from left to right, binding by binding. Eah type assigned to a variablemust be valid in the environment that preedes the binding under onsideration. Note that variablesbound by an environment are automatially distint as per our alpha-onversion onvention.(B/envok.nil)nil ` ok � ` T ok (B/envok.x)�, x : T ` okIV.2.4.3 � ` T ok Type orretnessThe orretness rules for types are standard: for base types, we require that the environmentbe well-formed, and for onstruted types, we require eah part to be well-formed (treating depen-denies properly).� ` ok (B/tok.base.unit)� ` unit ok � ` ok (B/tok.base.bool)� ` bool ok � ` ok (B/tok.base.int)� ` int ok� ` ok (B/tok.type)� ` type ok� ` T 0 ok �, x : T 0 ` T 00 ok (B/tok.pair)� ` �x : T 0. T 00 ok � ` T 0 ok �, x : T 0 ` T 00 ok (B/tok.fun)� `�x : T 0. T 00 ok14

IV.2. A MODULE CALCULUS [B℄IV.2.4.4 � ` E : T Expression typingConstants Basi onstants have their respetive type in a orret environment.� ` ok (B/et.base.unit)� ` () : unit � ` ok (B/et.base.bool)� ` bv : bool � ` ok (B/et.base.int)� `n : intVariables Variables have the type stated in the environment.� ` ok when x : T 2 � (B/et.x)� ` x : TPairs Although our syntax allows dependent sums, system B is too restrited to take advantageof them (this defet will be remedied in system S). We an only give pairs an ordinary pair type.� ` E1 : T1 � ` E2 : T2 (B/et.pair)� ` (E1,E2) : T1 � T2 � ` E : T1 � T2 (B/et.proj.1)� ` �1E : T1 � ` E : T1 � T2 (B/et.proj.2)� ` �2E : T2Funtions We state lassial rules for typing funtions (or funtors) and appliation, keeping inmind that we have dependent types. Note that in order to type the appliation of a funtion thathas a dependent type, the ourrenes of the formal parameter x must be replaed by the atualargument E0 inside the result type E. Thus an arbitrary expression an appear in a type where asimple variable formally was. This illustrates the diÆulty of restriting the presene of expressionsin types to ertain syntati ategories.�, x : T0 ` E : T1 (B/et.fun)� ` �x : T0. E :�x : T0.T1 � ` E1 :�x : T0.T � ` E0 : T0 (B/et.app)� ` E1 E0 : fx E0gTLoal binding In order to type the loal binding of a variable to a value, we request that theprogrammer speify the resulting type of the whole expression. Furthermore this type is not allowedto mention the loally bound variable. This last point is easily understood from the fat that whileit would make sense for the variable x to be bound in the type of the body E, this variable annotbe free in (let x = E0 inE : T). In partiular, if E0 were to reate abstrat types, there is no way toreferene them outside the binding. The neessity for the programmer to speify the type is due tothe avoidane problem mentioned in setion I.2.2.6, whih makes inferene of T undeidable.� ` E0 : T0 �, x : T0 ` E : T � ` T ok (B/et.let)� ` (let x = E0 inE : T) : TIV.2.4.5 hTi, TypE Type �eldsWe an see h i as a onstrutor for the type type and Typ as the orresponding destrutor.This approah yields suitable typing rules.� ` T ok (B/et.type)� ` hTi : type � ` E : type (B/tok.�eld)� `TypE okIV.2.5 Run-timeValues The lass of values (generially written V) is given as a subgrammar of expressions.15

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .V ::= value() �� bv �� n onstanthTi type �eld(V1,V2) pair�x : T. E lambda-abstrationIV.2.5.1 E �! E 0 Expression redutionWe de�ne the dynami behaviour of expressions via small-step redution rules.Head redution rules In the language that we have de�ned so far, head redution onfronts eahdestrutor with a mathing onstrutor, and performs loal bindings. We impose a all-by-valuestrategy in the rules (B/ered.app) and (B/ered.let). For the time being, we ould allow �-redution inits full generality, and obtain a onuent system; however we will ultimately introdue side e�ets,whih suggests stiking to all-by-value.(�x : T. E)V �! fx VgE (B/ered.app)�i (V1,V2) �!Vi (B/ered.proj)let x = V inE : T �! fx VgE (B/ered.let)No redution in types We do not de�ne any redution relation on types. Aordingly there isno restrition on T in order for hTi to be a value; in partiular, if hTi ontains embedded expressions(as in e.g., hTyp ((�x : type. x) hinti)i) these need not be values. The reason is that omputationsin types traditionally belong in the ompile-time world, hene to typing rules (and where relevanttyping algorithms), rather than in the run-time world now under srutiny. We will later (in systemD) add a onstrut for run-time type-heking, thus type omputations will need to our duringprogram exeution; run-time manipulation of types is also useful for generi programming (seesetion V.3.2.3).Evaluation ontexts We generially write C for an evaluation ontext of depth 1. Theseevaluation ontexts are de�ned by the following grammar.C ::= evaluation ontext (of depth 1)E1 funtion argumentV2 applied funtion(,E2) �rst omponent of a pair(V1,) seond omponent of a pair�i projetion (i 2 f1, 2g)let x = inE : T loal boundWe have arbitrarily �xed the evaluation order for funtion appliation (argument �rst, thenfuntion) and pairing (left to right). This somewhat simpli�es the metatheory by not introduingspurious loal nondeterminism. We ould relax these onstraints by authorising the redutionontexts E2 et (E1,); it is folklore that the resulting redution relation would be onuent.The following redution rule allows expressions to be redued under ontexts. The notation C �Emeans the expression resulting from plaing E inside the ontext C.E �! E 0 (B/ered.ontext)C � E �!C � E 016

IV.3. SINGLETONS [S℄IV.3 Singletons SIV.3.1 MotivationIV.3.1.1 Abstrat types, onrete types[Sorry, this fragment has not been translated yet.℄IV.3.1.2 Type sharing[Sorry, this fragment has not been translated yet.℄IV.3.1.3 Value singletonsSo far, we have used singleton types to express type equalities: our singletons were of the form S(hTi)for some type T. The purpose of these singletons was to enable making x have the type T 0 when x hasthe type T and hTi and T 0 are equivalent: in other words, the judgement t : S(hTi), x : T ` x : Typ tshould be derivable (one ould then substitute hT 0i for t).Let us now onsider a funtor f whih reates an abstrat type from a type and a value, with asignature of the form �x : (�t : type.T0). (�t : type.T1). As we saw in setions I.2.1.3 and II.5.1.1,Typ�1 (f x) and Typ�1 (f y) are the same types only when x and y have the same behaviour: it isnot enough for them to provide the same types.Let us onsider an example potential argument for f, with T0 = Typ t � (Typ t! unit)).module A = strut type t = int let x = (... : t * (t->unit)) endThe prinipal signature of the module A in Objetive Caml ismodule type S = sig type t = int val x : t * (t->unit) endIf we want to express that some module B is ompatible with A, the best we an do (whether inObjetive Caml or in some other ML dialet, or in the language de�ned so far) is to speify thatB has the signature S. Unfortunately this spei�ation is inomplete sine it does not distinguishbetween modules that have x �elds with the same type but di�erent values.One way to illustrate this limitation is to onsider an identity funtor Id1 apable of taking Aas an argument. The prinipal signature of suh a funtor (whih is based on Leroy's manifest typetheory with appliative funtors [Ler95℄) is the following:funtor (A : sig type t val x : t * (t->unit) end) ->sig type t = A.t val x : t * (t->unit) endNotie that the signature of Id1(A) is the signature S de�ned above: while it does indiatethat Id1(A).t is equal to A.t, nothing onnets Id1(A).x with A.x beyond them having the sametype. The higher-order module theory of Dreyer, Crary and Harper [DCH03℄ does not performany better on this example. With our notations, the signature of the funtor Id1 is �x : (�t :type. Typ t � (Typ t! unit)). (�t 0 : S(�1x). Typ t 0 � (Typ t 0! unit)).In the ase of an identity funtor EId0 ating solely on a type, i.e., whose argument has thesignature type, we get a more preise signature: �x : type. S(x), learly indiating that the resultof applying the identity funtor is equivalent to the argument | TypEId0 (EA0) has the signatureS(EId0 (EA0)). We shall extend our language so that this property also holds for value �elds.17

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .We add singleton types of the form S(E), where E is any value. For example the prinipaltype of the expression 3 is now S(3), the type of values that are equal to 3. We an now giveId1 a more preise signature, by also giving the seond omponent a singleton type: �x : (�t :type. Typ t � (Typ t! unit)). (�t 0 : S(t). S(�1x) � S(�2x)), i.e., in an Objetive Caml-like notationfuntor (A : sig type t val x : t * (t->unit) end) ->sig type t = A.t val x = A.x endThanks to this signature, Id1(A) an have the signature sig type t = A.t val x = A.x end,whih makes it interhangeable with A.IV.3.1.4 Higher-order singletons[Sorry, this fragment has not been translated yet.℄IV.3.1.5 A pratial exampleLet us illustrate higher-order singletons on an example from the author's programming experiene.The standard library of Objetive Caml provides an implementation of �nite sets via a funtorSet.Make. This funtor takes an argument with the following signature:module type Set.OrderedType = sigtype tval ompare : t -> t -> intendA module of signature Set.OrderedType provides a type as well as a funtion whih mustimplement a total order; a set is represented as a searh tree. An example of a module with thissignature is String: Set.Make(String).t is therefore a type for sets of strings. The result returnedby Set.Make has a signature alled Set.S from whih we quote a relevant exerpt:module type Set.S = sigtype elt (*type of elements*)type t (*type of sets*)val add : elt -> t -> t (*addition funtion*)...endAn annotation in the de�nition of Set.Make spei�ed that Set.Make(M).elt = M.t.The program under onsideration manipulates symbols, whih are internally implemented asstrings. However only suitable approved strings may be symbols, therefore the type of symbols isan abstrat type provided by a module whih we all Syntax.module Syntax : sigtype symbolval name : symbol -> String.t...end 18

IV.3. SINGLETONS [S℄Sine several other modules in the program manipulate sets of symbols, we wish to provide thistype alongside symbol. How do we mention the type of symbol sets in the signature of Syntax? Wemust speify a module of signature Set.S, indiating that the element type is that of symbols. Forthat purpose we need to de�ne a symbol module.module Syntax : sigmodule Symbol : Set.OrderedTypemodule SymSet : Set.S with type elt = Symbol.tand type t = Set.Make(Symbol).t...endWe ould also write as follows:module Syntax : sigmodule Symbol : Set.OrderedTypemodule SymSet : Set.S...end with module SymSet = Set.Make(Symbol)The signatures above are equivalent in Objetive Caml.The diÆulty arises when writing the implementation of the Syntax module. We may writemodule Syntax = strutmodule Symbol = strut type t = String.t let ompare = String.ompare endmodule SymSet = Set.Make(Symbol)...endor evenmodule Syntax = strutmodule Symbol = Stringmodule SymSet = Set.Make(Symbol)...endUnfortunately the resulting SymSet module is not ompatible with Set.Make(String). SineObjetive Caml only ever ompares type �elds of modules, its type analysis remembers the equalitybetween Symbol.t and String.t but not that between Symbol and String, therefore the typesSet.Make(String).t and Set.Make(Symbol).t annot safely be delared ompatible.Sine our Syntax module alls other, lower-level modules that manipulate sets of strings, the in-ompatibility of Set.Make(String).t with Set.Make(Symbol).t is a major problem. The solutionwe hose was to only expose the symbol type, and not its omparison funtion:module Syntax = struttype symbol = String.tmodule SymSet = Set.Make(String)... 19

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .end : sigtype symbolmodule SymSet : Set.S with type t = symbol...endThe disadvantage of this signature is that is hides the hoie of a set implementation: that fatthat SymSet is the result of an appliation of the Set.Make funtor does not appear. This is aproblem beause some users of the Syntax modules manipulate data with more omplex strutures(e.g., sets of sets of symbols) built from funtors that take an argument produed by Set.Make. Wehad to provide these data strutures alongside SymSet in the Syntax module, even though theseextra data strutures had nothing to do in Syntax from a ode organisation point of view.In this ase, simply being able to write module Symbol = String in the implementation of theSyntaxmodule in suh a way as to make the types Set.Make(String).t and Set.Make(Symbole).tinterhangeable would have permitted the ode to be organised properly, in partiular with respetto abstration. In system S, this is possible, sine the Symbol module will have the signature S(xalled "String") whih result in Set.Make(String) and Set.Make(Symbol) being ompatiblewithin the implementation of the Syntax module.IV.3.2 Properties[Sorry, this fragment has not been translated yet.℄IV.3.3 Typing rulesWe state typing rules for system S. The operational semantis (onsisting of the redution rules(S/ered.app), (S/ered.proj), (S/ered.let), (S/ered.ontext), as well as the de�nitions of values and redutionontexts) is unhanged from system B.System S ontains new typing judgements for subtyping, onversion and onvertibility.J ::= loal judgement right-hand side. . .T �! T 0 typing onversionT � T 0 onvertibility equivalene on typesE �! E 0 expression onversionE � E 0 onvertibility equivalene on expressionsT1 <: T2 subtypingMost typing rules of B are inluded in S. The following rules are taken as is from B (and willnot be repeated here):� environment orretion: all rules | (S/envok.nil), (S/envok.x);� type orretion: all rules | (S/tok.base.unit), (S/tok.base.bool), (S/tok.base.int), (S/tok.type),(S/tok.pair), (S/tok.fun), (S/tok.�eld);� expression typing: all rules exept projetions and loal binding | (S/et.base.unit),(S/et.base.bool), (S/et.base.int), (S/et.x), (S/et.pair), (S/et.fun), (S/et.app), (S/et.type).We omit loal binding in system S beause it is superuous (see setion IV.2.1.4), thus avoiding theneed to take them into aount in singleton typing rules.20

IV.3. SINGLETONS [S℄IV.3.3.1 � ` T <: T 0 ; ... SubtypingThe subtyping relation explains how an expression may have more than one type, some of whihare more preise than others. Intuitively, the type T is a subtype of T 0 whenever any expression thathas the type T also has the type T 0. We engrave the forward impliation with an impliit subtypingrule. � ` E : T � ` T <: T 0 (S/et.sub)� ` E : T 0Our subtyping relation is de�ned syntatially (by dedution rules) rather than semantially, in that nothingmandates the reverse appliation: it is possible for � ` E : T 0 to be derivable whenever � ` E : T is without thejudgement � ` T <: T 0 being derivable. Whether a subtyping relation should be semanti (i.e., fully apture typesubsumption for expressions) is debatable. On the one hand, a semanti subtyping relation permits a set-theoretiinterpretation of types as sets of expressions. On the other hand, the rules needed to enfore semantiity would befragile, in that they would not play well with extensions of the system. For example, if V is a value of type T, then withsemanti subtyping T <: S(V) must hold whenever T ontains the single value V, whih may happen oinidentally.Consider for instane the type �t : type. Typ t! Typ t, whih obviously ontains the polymorphi identity funtion(�t : type. �x : Typ t. x)). In a suitably weak system, suh as system S, a parametriity [Wad89℄ result ensures thatthere is no other funtion of this type. However adding either dynami type-heking (as we will do in system D) oran unrestrited �xpoint ombinator would let one write other funtions of this type.If two types are interonvertible, they are subtypes of one another. Thus subtyping inludesomputational equivalenes on types. � ` T � T 0 (S/tsub.eq)� ` T <: T 0Subtyping is a preorder. The rule (S/tsub.eq) enfores reexivity; we state transitivity.� ` T <: T 0 � ` T 0 <: T 00 (S/tsub.trans)� ` T <: T 00IV.3.3.2 S(E) SingletonsSingleton types appear through three generi rules, whih have no onstraint on the type of theexpression whose singleton is taken. The singleton S(E) is well-formed as soon as E has some typeT; any well-typed expression E thus has the type S(E), and S(E) is a subtype of any of its types.Note that in order to prove that E has the type S(E), one must �rst �nd some type T that E hasand then apply (S/et.sing).� ` E : T (S/tok.sing)� ` S(E) ok � ` E : T (S/et.sing)� ` E : S(E) � ` E : T (S/tsub.sing)� ` S(E) <: TThe rule (S/et.sing) (ombined with the subtyping rules) is a partiularly powerful instane of asel��ation rule in a module language with manifest types [HL94, Ler94℄ (see setion I.2.2.2).IV.3.3.3 � ` E : T ; � ` T1 <: T2 Expression typingAs in system B, we �rst assign non-dependent types to pairs. A dependent type an be obtainedvia the subtyping rule (S/tsub.ong.pair) (reall that T1 � T2 is an abbreviation for �x : T1. T2). In thisrule, note that the seond premise ontains the stronger hypothesis on x, namely x : T 01 , whihfollows from the fat that the hypothesis x : T 02 might not be enough to ensure that T 001 be valid. Athird premise ensures that �x : T 02 . T 002 is well-formed, whih requires that T 002 be well-formed underthe weaker hypothesis x : T 02 . 21

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .� ` T1 <: T 01 �, x : T1 ` T2 <: T 02 �, x : T 01 ` T 02 ok (S/tsub.ong.pair)� ` �x : T1. T2 <: �x : T 01 . T 02In order to type a projetion, the argument expression must be given a (dependent) pair type.Typing the �rst projetion is simple, as its type is readily available in the pair type. Typing theseond projetion is more ompliated. If the expression E has the type �x : T1. T2 then �2E onlyhas the type T2 with a suitably strong hypothesis on the variable x. For instane the expression(3, 3) has the type �x : int. S(x), and while x : S(3) ` �2 (3, 3) : S(x) holds, x : int ` �2 (3, 3) : S(x)does not.� ` E : �x : T1. T2 (S/et.proj.1)� ` �1E : T1 � ` E : �x : T1. T2 � ` E1 : S(�1E) (S/et.proj.2)� ` �2E : fx E1gT2The premises of the rule (S/et.proj.2) are usually unduely onstraining, and we will often use oneof two admissible variants that only require the �rst premise � ` E : �x : T1. T2. The most ommonrule replaes the variable x by the �rst projetion of E in T2. Another variant keeps trak of the�rst omponent via a variable x whih is onstrained to the type S(�1E).� ` E : �x : T1. T2 (et.proj.2s)� ` �2E : fx �1EgT2 � ` E : �x : T1. T2 (et.proj.2x)�, x : S(�1E) ` �2E : T2We state the usual ongruene rule for subtyping through dependent produts. This rule issimilar to (S/tsub.ong.pair), with hypotheses suitably reversed when dealing with the ontravariantargument type.� ` T 00 <: T0 �, x : T 00 ` T1 <: T 01 �, x : T0 ` T1 ok (S/tsub.ong.fun)� `�x : T0.T1 <: �x : T 00 .T 01IV.3.3.4 � ` T � T 0 ; � ` E � E 0 Convertibility equivalenesWe de�ne an equivalene relation on types and one on expressions as the smallest equivalenerelation ontaining the appropriate onversion relation. (Stritly speaking these are two families ofrelations, indexed by environments.) These relations are alled onvertibility.� ` T ok (S/teq.re)� ` T � T � ` T2 � T1 (S/teq.sym)� ` T1 � T2� ` T1 � T2 � ` T2 � T3 (S/teq.trans)� ` T1 � T3 � ` T1 �! T2 (S/teq.onv)� ` T1 � T2� ` E : T (S/eeq.re)� ` E � E � ` E2 � E1 (S/eeq.sym)� ` E1 � E2� ` E1 � E2 � ` E2 � E3 (S/eeq.trans)� ` E1 � E3 � ` E1 �! E2 (S/eeq.onv)� ` E1 � E2IV.3.3.5 � ` T �! T 0 Type onversionType onversion mostly onsists in onversion of embedded expressions. Types additionallyundergo some slight simpli�ation.Conversion is only de�ned on valid types; the rules de�ning onversion ontain orretionpremises in addition to the onversion premises in ontext rules.Contexts At the type level, onversion applies reursively to all subtypes. We state this viaontext rules whih allow onversion of both type and expression subterms of types.22

IV.3. SINGLETONS [S℄� ` T1 �! T 01 �, x : T1 ` T2 ok (S/tonv.ong.pair.1)� ` �x : T1. T2 �! �x : T 01 . T2�, x : T1 ` T2 �! T 02 � ` T1 ok (S/tonv.ong.pair.2)� ` �x : T1. T2 �! �x : T1. T 02� ` T0 �! T 00 �, x : T0 ` T1 ok (S/tonv.ong.fun.arg)� `�x : T0.T1 �! �x : T 00 .T1� ` T0 ok �, x : T0 ` T1 �! T 01 (S/tonv.ong.fun.ret)� `�x : T0.T1 �! �x : T0.T 01� ` E �! E 0 (S/tonv.ong.sing)� ` S(E) �! S(E 0) � ` E �! E 0 � ` E : type (S/tonv.ong.�eld)� `TypE �! TypE 0Simpli�ations The term Typ hTi an be seen as a destrutor applied to the mathing onstrutorapplied to T; it is equivalent to T. � ` T ok (S/tonv.�eld)� `Typ hTi �! TSemanti rules We delare that the unit type ontains a single value: this type is isomorphito a singleton, and the rule (S/tonv.unit) enshrines this equivalene into the syntati de�nition oftype equivalene. The hoie of orientation in this rule does not matter greatly.� ` ok (S/tonv.unit)� ` S(()) �! unitIV.3.3.6 � ` E �! E 0 Expression onversionIf E evaluates to E 0 and E has the type S(E), then type preservation requires that E 0 havethe type S(E). This is ensured by making E onvertible to E 0. Conversion thus inludes run-timeredution2.Conversion is only de�ned on well-typed expressions; the rules de�ning onversion ontain or-retion premises in addition to the onversion premises in ontext rules.We do not state any onversion rule for loal binding expressions (i.e., expressions of the formlet x = E0 inE : T). As indiated in setion IV.2.1.4, this onstrut is just syntati sugar when E0is pure; in E, where loal binding beomes useful, it is always judged impure and thus not subjetto onversion.Contexts Unlike for the run-time redution relation, there is no partiular advantage to keepingonversion deterministi, while onuene of onversion is a key property of our metatheoretistudy. We therefore permit arbitrary evaluation strategies, and allow redution in any ontext. Inpreparation for the addition of impure onstruts to the language, whih only ome in onversioninside funtion bodies that hide the impurity, we state the slightly peuliar rule (S/eonv.ong.fun.body)to allow the onversion of any pure subexpression of an impure subexpression of a pure expression.� ` T0 �! T 00 �, x : T0 ` E1 : T1 (S/eonv.ong.fun.arg)� ` (�x : T0. E1) �! (�x : T 00 . E1)2For pure expressions, as we shall see in system E. 23

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .�, x : T0 ` E �! E 0 �, x : T0,y : S(E) ` E1 : T1 (S/eonv.ong.fun.body)� ` (�x : T0. fy EgE1) �! (�x : T0. fy E 0gE1)� ` E �! E 0 � ` E :�x : T0.T1 � ` E0 : T0 (S/eonv.ong.app.fun)� ` EE0 �! E 0 E0� ` E �! E 0 � ` E : T0 � ` E1 :�x : T0.T1 (S/eonv.ong.app.arg)� ` E1 E �! E1 E 0� ` E �! E 0 � ` E2 : T2 (S/eonv.ong.pair.1)� ` (E,E2) �! (E 0,E2) � ` E �! E 0 � ` E1 : T1 (S/eonv.ong.pair.2)� ` (E1,E) �! (E1,E 0)� ` E �! E 0 � ` E : �x : T1. T2 (S/eonv.ong.proj)� ` �iE �! �iE 0 � ` T �! T 0 (S/eonv.ong.�eld)� ` hTi �! hT 0iHead redution The following rules desribe the usual evaluation of lambda terms with pairs.�, x : T0 ` E1 : T1 � ` E0 : T0 (S/eonv.app)� ` (�x : T0. E1)E0 �! fx E0gE1 � ` E1 : T1 � ` E2 : T2 (S/eonv.proj)� ` �i (E1,E2) �! EiIV.3.3.7 ExtensionalityWe state extensionality rules for system S. Suh rules an have many forms; we hoose to useonversion rules, oriented as eta-expansions. For example the rule (S/eonv.eta.pair) may be read as\any expression that is typable as a pair an be rewritten in suh a way as to expose the pairstruture".Given the hoie of using onversion rules (� onversions to supplement the � onversions above),there is a further hoie between expansions and ontrations. A major tehnial advantage ofexpansions is that they do not hurt the onuene of the system, unlike eta-ontrations [Klo80℄.Expansions do however have the obvious defet of breaking normalisation. In pratie, it seemspreferable to express extensionality using expansions, and when normalisation is required to restrittheir use to a �nite domain (given by the struture of the type of the onverted expression) [Gog05℄.� ` E : type (S/eonv.eta.�eld)� ` E �! hTypEi� ` E :�x : T0.T1 (S/eonv.eta.fun)� ` E �! (�x : T0. Ex) � ` E :�x : T1. T2 (S/eonv.eta.pair)� ` E �! (�1E,�2E)IV.4 Sealing EIV.4.1 Sealing[Sorry, this fragment has not been translated yet.℄IV.4.2 An e�et systemIV.4.2.1 Introdution[Sorry, this fragment has not been translated yet.℄24

IV.4. SEALING [E℄IV.4.2.2 Purity[Sorry, this fragment has not been translated yet.℄IV.4.2.3 Projetibility, separability and omparabilityIn the system we are desribing, a \well-behaved" module is a pure module. Purity is a very strongnotion: a pure module is fully known statially (it has its singleton type, and singleton types fullyharaterise an objet). There are �ner notions to determine legitimate uses of a module; in thissetion we will disuss some of these.Classial module aluli, notably Harper and Lillibridge's transluent sums [HL94, Lil97℄ andLeroy's manifest types [Ler94, Ler95℄ fous on the onept of projetibility (see setion I.2.2.2).The question is, given a module expression M, whether the term M.t may be used to form a type.If so, the moduleM is said to be projetible. In our notation, E is projetible if and only if Typ�1Eis a orret type. We approximate projetibility by purity: Typ�1E is orret if and only if E ispure (and has an appropriate signature). This is indeed an approximation sine purity is a strongernotion; for example, in the following ode fragment, the modules A and B are both projetible, butonly A is pure, while B is impure.module A = strut type t = int let x = 3 endmodule B = strut type t = int let x = ref 3 endA losely related notion is that of omparability: a module is said to be omparable whenits equivalene with another module an be tested. In the alulus of Dreyer, Crary and Harper[DCH03℄, the notions de omparability and projetability oinide, sine testing the equivaleneof two modules amounts to omparing their type omponents. In our alulus, purity stands foromparability as well as projetability (we treat type and value omponents identially).In setion I.3.1.1, we mentioned the issue of phase separation, i.e., learly di�erentiating betweenthe stati phase of the program, whih inludes a type-hek that rejets programs that would gowrong, and the dynami phase, during whih omputation proeeds without errors. In the oreof ML, eah phase is losely assoiated with one part of the language: type-heking is mostlyonerned with types, and omputation is mostly onerned with expressions. This is no longer truewhen modules are onsidered, as they mix types and expressions at the syntati level. Neverthelessone usually tries to separate types and expressions in the metatheory of modules, in order todistinguish between the stati and dynami aspets.In his analysis of ML modules [Dre05℄, Dreyer distinguishes between two levels of purity inmodules. A module is said to be totally pure3 if it is pure in our sense, i.e., that its evaluationdoes not trigger an e�et of any kind. A module is said to be partially pure if its type omponentsan be fully determined without triggering an e�et. For example the module B above is partiallypure but not totally pure. A projetible module must be partially pure.One diÆulty with partial purity is in deiding whether the e�ets of an expression have aninuene on its type parts. Total purity is of ourse a suÆient ondition. A weaker suÆientondition is separability. This notion was introdued by Harper, Mithell and Moggi [HMM90℄and is expounded in the ontext of a module alulus with funtors by Dreyer [Dre05℄. A module isseparable if its type omponents do not depend at all on any omputation that may have e�ets,in partiular any ore-expression-level omputation. A separable module is always partially pure,3Atually Dreyer uses the wording \dynamially pure" and \statially pure" where we use \totally pure" and\partially pure". We hanged the terminology beause we will use \dynamially pure" and \statially pure" in adi�erent sense, following other work by Dreyer [DCH03℄.25

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .hene projetible, but may be impure, like B above. Conversely, in a language with �rst-lassmodules, one an easily write pure inseparable modules, suh as the module C in the followingprogram fragment.let n = read_int ()module A = strut type t = int let x = 3 endmodule B = strut type t = int let x = ref 3 endmodule A' = strut type t = bool let x = true endmodule B' = strut type t = bool let x = ref true endmodule C = if n >= 0 then A else A'module D = if n >= 0 then B else B'The module D is partially pure but neither totally pure nor separable.An important onlusion of the disussion of type singletons and module equivalene in IV.3.1was that in the presene of funtors, separability is hard to analyse | and this is why we did nottry to analyse it, and instead integrated expressions with types when testing module equivalene.Separability looks all the less entiing to us as we eventually want to be able to ompare typesdynamially, whih means that our notion of equivalene must work well even in inseparable ases.In the present work, we do no try to go further than (total) purity. If re�nements are desired, ratherthan introdue separability, we suggest instead to make the e�et system more sophistiated, and inpartiular to make it possible to detet partial purity by \delassifying" e�ets that do not impatthe value of an expression.IV.4.3 Formal presentationWe give a formal desription of system E, whih onsists of adding the sealing onstrut to S and,more importantly, an e�et system.IV.4.3.1 SyntaxWe �rst give the syntax of e�ets. ::= e�etP pureI impureReall that e�ets are ordered: the relation 1 v 2 is suh that P v I (but not the onverse).We write 1t2 for the least upper bound of 1 and 2, and 1u2 for their greatest lower bound.The syntax of system E extends that of system S by adding an e�et annotation where neessary,viz.,� on funtion types, heneforth written �x : T0. T1; they are abbreviated as T0! T1 when xis not free in T1;� on expression typing judgements, heneforth written E : T.We sometimes omit the e�et annotation when it is P, thus we might write the type of a purefuntion as �x : T0. T1 or T0! T1. Furthermore the syntax of expressions now omprises sealing.T ::= type. . .�x : T0. T1 dependent produt (also written T1! T2 when x =2 fvT1)26

IV.4. SEALING [E℄E ::= expression (module). . .E !! T sealingJ ::= typing judgement right-hand side. . .E : T expression typingIV.4.3.2 E �! E 0 Run-timeThe only run-time novelty of system E is the need to redue a sealing onstrut. The usualintuition in ML-like languages is that types have no bearing on exeution, only on stati type-heking; in this light, E !! T is equivalent to E at run-time.V !! T �!V (E/ered.seal)The sealed expression is �rst redued to a value.C ::= evaluation ontext (of depth 1). . . !! T sealingThe rules (E/ered.app), (E/ered.proj), (E/ered.let) et (E/ered.ontext) are inherited from system B via S.IV.4.3.3 � ` . . . Typing: orretion, equivalenes, subtypingSystem E ontains all the typing rules of system S, and adds one for sealing. However theinherited rules must usually be modi�ed to add an e�et annotation. We will restate a�eted rulesand explain the e�et of e�ets.Inhreited rules The following rules are taken as is from system B via S:� (E/envok.nil), (E/envok.x);� (E/tok.base.unit), (E/tok.base.bool), (E/tok.base.int), (E/tok.type), (E/tok.pair);� (E/teq.re), (E/teq.sym), (E/teq.trans), (E/teq.onv);� (E/eeq.sym), (E/eeq.trans), (E/eeq.onv);� (E/tonv.ong.pair.1), (E/tonv.ong.pair.2), (E/eonv.ong.�eld), (E/tonv.ong.sing), (E/tonv.�eld),(E/tonv.unit);� (E/tsub.trans), (E/tsub.eq), (E/tsub.ong.pair).Apart from expression typing and from (E/tsub.ong.fun), the modi�ations to the rules of systemS onsist of requiring expressions embedded in types to be pure, and allow dependent produttypes to bear e�et annotations. The rules (E/eonv.ong.fun.arg) and (E/eonv.ong.fun.body) do howeverpermit the body of the funtion to be pure, as all that is required is that the funtion itself be apure expression.� ` T 0 ok �, x : T 0 ` T 00 ok (E/tok.fun)� `�x : T 0. T 00 ok � ` E :P type (E/tok.�eld)� `TypE ok � ` E :P T (E/tok.sing)� ` S(E) ok27

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .� ` E :P T (E/eeq.re)� ` E � E � ` E :P T (E/tsub.sing)� ` S(E) <: T� ` T0 �! T 00 �, x : T0 ` T1 ok (E/tonv.ong.fun.arg)� `�x : T0. T1 �! �x : T 00 . T1� ` T0 ok �, x : T0 ` T1 �! T 01 (E/tonv.ong.fun.ret)� `�x : T0. T1 �! �x : T0. T 01� ` E �! E 0 � ` E :P type (E/tonv.ong.�eld)� `TypE �! TypE 0� ` T0 �! T 00 �, x : T0 ` E1 : T1 (E/eonv.ong.fun.arg)� ` (�x : T0. E1) �! (�x : T 00 . E1)�, x : T0 ` E �! E 0 �, x : T0,y : S(E) ` E1 : T1 (E/eonv.ong.fun.body)� ` (�x : T0. fy EgE1) �! (�x : T0. fy E 0gE1)� ` E �! E 0 � ` E2 :P T2 (E/eonv.ong.pair.1)� ` (E,E2) �! (E 0,E2) � ` E �! E 0 � ` E1 :P T1 (E/eonv.ong.pair.2)� ` (E1,E) �! (E1,E 0)� ` E �! E 0 � ` E :P �x : T1. T2 (E/eonv.ong.proj)� ` �iE �! �iE 0� ` E �! E 0 � ` E :P �x : T0. PT1 � ` E0 :P T0 (E/eonv.ong.app.fun)� ` EE0 �! E 0 E0� ` E �! E 0 � ` E :P T0 � ` E1 :P �x : T0. PT1 (E/eonv.ong.app.arg)� ` E1 E �! E1 E 0� ` E1 :P T1 � ` E2 :P T2 (E/eonv.proj)� ` �i (E1,E2) �! Ei �, x : T0 ` E1 :P T1 � ` E0 :P T0 (E/eonv.app)� ` (�x : T0. E1)E0 �! fx E0gE1� ` E :P type (E/eonv.eta.�eld)� ` E �! hTypEi� ` E :P �x : T0. T1 (E/eonv.eta.fun)� ` E �! (�x : T0. Ex) � ` E :P �x : T1. T2 (E/eonv.eta.pair)� ` E �! (�1E,�2E)Subtyping for funtions The ongruene rule for subtyping aross dependent produts needsto take e�ets into aount. A funtion type is smaller than another funtion type when the domainof the �rst is smaller, the image of the �rst is larger, and the �rst allows fewer e�ets to our duringexeution.� ` T 00 <: T0 �, x : T 00 ` T1 <: T 01 �, x : T0 ` T1 ok when v 0 (E/tsub.ong.fun)� `�x : T0. T1 <: �x : T 00 . 0T 01IV.4.3.4 � ` E : T Expression typingExpression typing judgements now arry an e�et annotation.Constants, variables, type �elds Constantes, variables and type �elds are always pure.28

IV.4. SEALING [E℄� ` ok (E/et.base.unit)� ` () :P unit � ` ok (E/et.base.bool)� ` bv :P bool � ` ok (E/et.base.int)� `n :P int� ` ok when x : T 2 � (E/et.x)� ` x :P T � ` T ok (E/et.type)� ` hTi :P typePairs Pairs are simple data strutures: the type of a pair simply indiates the types of its om-ponents. The information as to whih omponent of the pair arries whih e�et is lost. Thereforetyping a pair requires a ommon e�et annotation to be found for its omponents (the rule (E/et.sub)used on eah side allows one to use the least upper bound). Similarly, the e�ets of a �rst proje-tion are the e�ets of the original expression. The seond projetion an only be used on a pureexpression sine the expression appears in a type4.� ` E1 : T1 � ` E2 : T2 (E/et.pair)� ` (E1,E2) : T1 � T2� ` E : �x : T1. T2 (E/et.proj.1)� ` �1E : T1 � ` E :P �x : T1. T2 � ` E1 :P S(�1E) (E/et.proj.2)� ` �2E :P fx E1gT2Funtions An immediate funtion is always pure. The abstration onstrut suspends the e�etsof the funtion, whih are reeted in the e�et annotation on the funtion type. When a funtionis applied, the e�ets of the body are released and add to the e�ets of the funtion expression. Werequire the argument of a funtion to be pure as it is substituted into the result type.�, x : T0 ` E : T1 (E/et.fun)� ` �x : T0. E :P �x : T0. T1 � ` E1 :1 �x : T0. 2T � ` E0 :P T0 (E/et.app)� ` E1 E0 :1t2 fx E0gTLoal binding In the rule (E/et.app), the argument E0 must be pure. In order to lift this restrition,one may use a loal binding onstrut instead, as disussed in setion IV.2.1.4. One may then nolonger substitute E0 in the result type, thus a premise of (E/et.let) imposes that the result type doesnot mention the loally bound variable x | T is the type of the whole expression as well as thetype of the body E. The e�ets of the expression are the union of that of E0 and E. Sine weonly distinguish between two e�ets, and the ase where both E0 and E is not useful as funtionappliation an be used instead, we diretly state the rule assuming the impure e�et I throughout.With a riher e�et system, we would use the least upper bound of the e�ets of E0 and E as theresult e�et, although we would impose that this bound not be P in order to keep the pure fragmentof the language as small as possible.� ` E0 :I T0 �, x : T0 ` E :I T � ` T ok (E/et.let)� ` (let x = E0 inE : T) :I TIf E is an impure expression of type T1 � T2, the seond projetion of E an be enoded aslet x = E in�2x : T2. If E0 is an impure expression and E has the type T1, then the appliation of Eto E0 an be enoded as let x = E0 inEx : T2. Note that in both ases T2 is not allowed to ontainx: the type of E may not be dependent.Subtyping The rule (E/et.sub) ombines impliit subtyping with impliit sube�etuation: anyexpression whose e�ets are onstrained by has its e�ets onstrained by any 0 suh that v 0.4Atually it would suÆe to require E1 to be pure, with e�ets allowed in E, however we will not have a use forthis generalisation. 29

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .� ` E : T � ` T <: T 0 when v 0 (E/et.sub)� ` E : 0 T 0Singletons We qualify the rule (E/et.sing) to restrit singletons to pure expressions.� ` E :P T (E/et.sing)� ` E :P S(E)Sealing A new rule desribes how to type a sealing. In general, in the expression E !! T, the\natural" type for E is a subtype of T, and the subtyping rule must be applied. The e�ets of E !! Tare those of E, plus the e�et of the sealing; sine we do not distinguish between e�ets, the e�etannotation on E !! T is always I. � ` E : T (E/et.seal)� ` (E !! T) :I TIV.4.4 AppliativityIV.4.4.1 Appliative funtorsConsider a funtor whose body is sealed, i.e., �x : T0. (E !! T). Aording to our desription ofsealing, eah appliation of this funtor auses the expression E !! T to be evaluated, produing afresh bath of abstrat types. Therefore the types Typ�1x1 and Typ�1x2 in the following programare inompatible: let f = �x : unit. ((hT 0i,E) !! �x : type. T1) inlet x1 = f () in let x2 = f () in . . .This means that f is a generative funtor (see setion I.2.2.3). A funtor whose body is sealedis always generative; this is reeted by its type, whih has the form �x : T0. IT indiating that theappliation of the funtor has a side e�et (namely type reation). On the other hand, a funtorwhose body is pure (thus in partiular not sealed) has a type of the form �x : T0. PT, and does notpartiipate in reating abstration: it is a transparent funtor.Sometimes we would like for a funtor to reate abstration, but for repeated appliations of thefuntor to the same arguments to produe ompatible abstrat types. A typial example is a funtorreating a data struture, where the arguments desribe the elements of the data struture. Suhfuntors are alled appliative funtors [Ler95℄. We shall see two ways of supporting appliativefuntors.One method is to add a new notion of sealing to the language, suh that sealing the same moduletwie yields ompatible results (in the sense that their abstrat types are equivalent). This notion ofsealing is alled weak sealing, and we will write a weak sealing as E :: T. The form of sealing whihalways reates fresh abstrat types, whih we already know as E !! T, is alled strong sealing. Wewill see how to formalise weak sealing in setion IV.4.4.2. Using it, the types Typ�1x1 and Typ�1x2in the following program are ompatible:letg = �x : unit. ((hT 0i,E) :: �x : type. T1) inlet x1 = f () in let x2 = f () in . . .There is atually another way to build appliative funtors without extending the language. Onemay seal the funtor itself, rather than its body. Then all abstration happens when the funtor30

IV.4. SEALING [E℄is de�ned, and none when it is applied. For example, in the following program, g is an appliativefuntor, and the types Typ�1y1 and Typ�1y2 are ompatible (we assume that E is pure).letg = (�x : unit. (hT 0i,E)) !! (�x : unit. P�x : type. T1) inlety1 = g () in lety2 = g () in . . .In either ase, an appliative funtor has a pure funtor type �x : T0. PT1, as opposed to theimpure funtor type �x : T0.IT1 of a generative funtor. This does not prevent an appliative funtorfrom reating abstrat types, if the result signature T1 ontains type �elds. The method for de�ningan appliative funtor using strong sealing onveys an interesting idea about how abstrat types arereated: the side e�et of reating the abstrat types happens when the funtor is de�ned, or morepreisely when the funtor is sealed, making an appliative funtor from a transparent funtor. Ifthe funtor is de�ned and sealed at the top level of the program, the side e�et happens duringprogram initialisation.An appliative funtor an be transformed into a generative funtor at any time by sealing it tothe appropriate generative funtor signature (just like a transparent funtor an be made applia-tive): �x : T0.PT1 is a subtype of �x : T0.IT1 (this is ontained in the subtyping rule (E/tsub.ong.fun)).The onverse transformation, of an abstration-reating funtor to a less-abstrating funtor (gen-erative to appliative, or appliative to transparent), is undesirable, sine there would be a loss ofabstration. Our e�et system prevents suh loss: applying a generative funtor triggers an e�et,and the only way to hide this e�et is to wrap it in a lambda-abstration whose type reords thee�et.IV.4.4.2 Stati sealing: formalisation WIntrodution We shall de�ne a new, \weak" notion of sealing suh that sealing the same moduletwie produes ompatible results. The purpose of this notion is to de�ne appliative funtors, andthese provide a good way to understand weak sealing. We have seen how to seal a transparentfuntor to make it appliative: there is then an e�et when the appliative funtor is de�ned. Thefamily of abstrat types reated by an appliative funtor (whih is indexed by the arguments ofthe funtor) is �xed one and for all. We mentioned earlier that when enoding appliative funtorsusing strong sealing, the e�et happens during program initialisation. In fat the e�et of weaksealing an be onsidered to happen at ompile-time (more preisely during type-heking). Suh aweak sealing is alled stati sealing, as opposed to the dynami sealing E !! T. (We will disussother weak forms of sealing in setion IV.4.4.4). Let us now formally de�ne stati sealing.Syntax We de�ne system W whih extends system E. The expression language has the newstati sealing onstrut E :: T. Loal binding now arries an e�et annotation, whose meaning wewill explain when ommenting on the typing rule (W/et.let); we will often omit this extra annotationin examples where it does not matter. The type language remains unhanged.E ::= expression (module). . .let x = E0 inE : T loal bindingE :: T stati sealingThe main novation is that the e�et system is now larger.31

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . . ::= e�etP pureI dynami e�etS stati e�etIS both a stati and a dynami e�etThe order relation on e�ets is given by P v I v IS and P v S v IS. Only P and I may appearin funtion types, i.e., as the in �x : T0. T1.The type system of W is mostly idential with E: the di�erenes are on�ned to a few rulesthat feature impure expressions. Rules that are parametri over an e�et instantiation may havethe e�et instantiated by S or IS, with (for (W/et.sub)) the extended order relation.Typing a stati sealing is similar to typing a dynami sealing. In either ase, the e�et of thesealing is added to the e�ets of the funtion body. The e�et of the sealing is either I for dynamisealing or S for stati sealing.� ` E : T (W/et.seal.dyn)� ` (E !! T) :tI T � ` E : T (W/et.seal.stat)� ` (E :: T) :tS TLambda-abstration hides dynami e�ets (although the type of the abstration remembers thee�et), but stati e�ets always remain apparent. The funtor result e�et uS an be seen as \thestati part of ", while the e�et of the whole funtor t I is the dynamia part of . We reallthe rule for appliation, whih is unhanged, but do note that 2 v I always holds.�, x : T0 ` E : T1 (W/et.fun)� ` �x : T0. E :uS �x : T0. uIT1 � ` E1 :1 �x : T0. 2T � ` E0 :P T0 (W/et.app)� ` E1 E0 :1t2 fx E0gTIn system E, we fored loal binding expressions let x = E0 inE : T to be impure, in order to keepthe set of pure, hene omparable expressions small (as soon as E0 is pure the expression an bewritten (�x :T0. E)E0). We will keep doing this here; however we annot simply fore the expressionto have the e�et I sine there are now other e�ets: if the expression should have the e�et S, wedo not want to fore it to IS (nor \forget" the stati e�et and only keep I). We now require thatthe programmer speify the overall e�et along with the type (beause of the avoidane problem);sine we do not want the expression to be pure we simply forbid this e�et annotation from beingP. � ` E0 : T0 �, x : T0 ` E :I T � ` T ok when 6= P (W/et.let)� ` (let x = E0 inE : T) : TExeution The dynami semantis of systemW is the same as that of E, with the rule (W/ered.seal)indi�erently aepting a dynami or stati sealing. Sine this redution simply erases the abstra-tion, the degree of generativity does not matter.IV.4.4.3 Equivalenes in the presene of stati sealingWe saw in setion IV.4.4.1 that dynami sealing does not ommute with funtor abstration: �x :T0. (E !! T) and (�x : T0. E) !! (�x : T0. T) are not equivalent | if = I, they have the same type(they are both generative funtors), but the �rst expression is pure while the seond is impure. Inontrast, stati sealing ommutes with funtor abstration: the expressions E1 = �x : T0. (E :: T)and E2 = (�x : T0. E) :: (�x : T0. T) an be used interhangeably. ML (or at least Objetive Caml)programmers often take this equivalene for granted. We will say that E1 and E2 are equitypable,meaning that for any �, 0 and T 0, the typing judgement � ` E1 : 0 T 0 is derivable if and only if� ` E1 : 0 T 0 is. Equitypability will be the notion of interest in the present setion, as we will look32

IV.4. SEALING [E℄at program fragments that have the same run-time behaviour apart from the usage of sealing, butare distinguishable at the typing level as they reate abstration in di�erent amounts.To prove that E1 and E2 are equitypable, �rst note that both E1 and E2 require �, x : T0 ` E : Tto hold in order for eah of them to be well-typed (by ase analysis on their potential typingderivations). Then E1 is typable by the rule (W/et.seal.stat) followed by (W/et.fun), while E2 is typableby the rule (W/et.fun) followed by (W/et.seal.stat) (extra appliations of (W/et.sub) may be inserted, butthey do not have signi�ant impat as all operations involved are ovariant in the result type). BothE1 and E2 have the prinipal type �x : T0. uIT and the prinipal e�et S.Stati sealing also ommutes with other onstruts. For example, (E1,E2) :: (T1 � T2) is equity-pable with (E1 :: T1,E2 :: T2), as well as with (E1 :: T1,E2) and (E1,E2 :: T2), assuming that eah Eihas the type Ti. The key reason is that the presene of stati sealing in any position makes the wholepair statially impure. Similarly the expressions �i (E :: T1 � T2) and (�iE) :: Ti are equitypable whenE has the type T1 � T2.Let us now onsider a loal binding E 0 = let x = E0 inE : T. Sealing only E is manifestly notequivalent to sealing E 0, sine the set of signatures that E or E 0 may be sealed to is di�erent: only Emay be sealed by a type mentioning x. However the di�erene is but of little importane, the reasonbeing that the inuene of sealing on e�ets is the same in both ases, viz., introduing S if sealingstatially, or introduing I if sealing dynamially. As for the type of the expression, it remains T ifE is sealed (assuming the whole expression remains well-typed), and it beomes some subtype of Tis E 0 is sealed. In partiular, let x = E0 in (E :: T1) : T is equitypable with (let x = E0 inE : T) :: T aslong as E has the type T1 in the appropriate environment.A sealing (whether dynami or stati) annot appear in a funtion argument. These onsider-ations show us that we do not lose expressivity if we limit the presene of stati sealing inside aprogram to just two kinds of plaes: on a loally bound module let x = (E0 :: T0) inE : T and onan applied funtor (E1 :: T2)E0. In the �rst ase, removing the sealing ould allow E to make useof a more preise type for x (any type of E0, not limited by E0) | in other words the abstrationprovided by the sealing would vanish with it. The usefulness of sealing an applied funtor is ofthe same order: in order for (E1 :: T2)E0 to be well-typed, T2 must be a funtion5 �x : T0. T1. IfT1 is smaller than neessary, the abstration ould migrate above the appliation (one ould write(E1 E0) :: fx E0gT1 instead). If T0 is larger than neessary, the hoie of possible types of E0 islimited, so E0 beomes more abstrat than as seen by the funtion. In fat, (E1 :: �x : T0. T1) isequitypable with let x = (E0 :: T0) inE1 x : T1. Hene, in summary, stati sealing is only useful on aloally bound module.IV.4.4.4 Other forms of sealingWe have so far formalised two forms of sealing: stati sealing, whih reates a new family of abstrattypes for eah syntati ourrene of the sealing operator, and dynami sealing, whih reates a newfamily of abstrat types eah time the sealing operator is evaluated. These two forms orrespond tothe weak sealing E :: T and strong sealing E :> T proposed by Dreyer, Crary and Harper [DCH03℄,and our e�et system follows theirs6 (with one minor di�erene: they delare strong sealing ashaving a stati e�et as well as a dynami e�et, whih uselessly strit but of little inidene).Dreyer [Dre05℄ distinguishes between three forms of sealing:5T2 ould atually also be a singleton, but then the sealing would not be reating any abstration.6We use di�erent notations however: we see e�et annotations as indiating e�ets, whereas they see these annoa-tions as purity annotations; thus we write S for a stati e�et where they write D for dynami purity, and we write Ifor a dynami e�et where they write S for stati purity. 33

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .� impure sealing impure(E :> T) is the strong sealing of Dreyer, Crary and Harper [DCH03℄mentioned in the previous paragraph;� separable sealing E :> T and inseparable sealing pure(E :> T) both orrespond to our statisealing, being only distinguished by their separability, whih we do not take into aount (seesetion IV.4.2.3).Many other variants an be oneived, with varying strengths. Asription onsists in onstrain-ing an expression to a type without restriting the view to it, i.e., without introduing abstration:if E has the type T, the asription E :a T has any type that E has; in partiular, if E is pure, thenE :a T is also pure and has the type S(E). Asription an be seen as a degenerate form of sealing.Minimal sealing reates a omparable abstrat type: E :s T has the type T and the purity of E.Thus minimal sealing is a new way to onstrut pure expressions; two minimally sealed expressionsare omparable. Minimal sealing heerfully generates oinidental type equivalenes, whenever thesame expression happens to be sealed to the same type. A vairant of minimal sealing onsists indelaring E :s T to be equivalent to E :s T 0 whenever both are valid. Yet another variant onsists inhaving a whole family of minimal sealings indexed by a name, onsidering two minimal sealings ofthe same expression to be equivalent if and only if they arry the same name.Note that minimal sealing an be emulated using stati sealing. All we need is a standard libraryfuntion providing an appliative funtorfminseal = �t : type. �x : string.((t, ((�x : Typ t. x), (�x : Typ t. x))) ::�t 0 : type. (Typ t! Typ t 0) � (Typ t 0! Typ t))or in Objetive Caml syntaxlet MinSeal = funtor (A : sig type t end) ->strut type t = A.t let a x = x let x = x end :sig type t val a : t->A.t val : A.t->t endendFor any type T and any name x, fminseal hTi x provides an abstrat type and onversion funtionsbetween that type and T. (In Objetive Caml, we should de�ne one module MnameT = strut typet = T end for every type T and name name sine strutures are generative.) This de�nes thenamed variant of minimal sealing; getting rid of x yields the basi variant. As we remarked insetion IV.4.4.1, fminseal ould equally well be de�ned using dynami sealing.We have limited our exposition to two forms of sealing beause, together with the easily de�nableminimal sealing, they seem to be suÆient for all pratial purposes. We an roughly partition usesof sealing into three ategories:� abstrat datatypes, in whih abstration enfores algebrai properties that go beyond theexpressive power of the type system: stati sealing is the perfet math;� named variants of isomorphi types (e.g., dollar and euro): minimal sealing is suitable;� abstrat types used to limit aess to some resoure, whih require dynami sealing.34

IV.4. SEALING [E℄IV.4.4.5 Mutual enodings of stati and dynami sealingCan we go even further and be ontent with a single form of sealing? The answer is \sort of": whilestati and dynami sealing an be enoded in terms of one another, a global program transformationis required either way.Let us �rst express stati sealing in terms of dynami sealing. We start with two observations.Firstly, the two forms of sealing are equivalent if the sealing is exeuted exatly one. Seondly,we saw in setion IV.4.4.3 that it suÆes to study stati sealing on loally bound expressionslet x = E0 :: T0 inE : T.We an see any program as a sequene of loal bindings let x1 = E1 :: T1 in . . . let xk = Ek :: Tk inE(we omit the return type on lets as they are not important here). We all E the body of the program,and the exposed loal bindings are said to be toplevel. A program is said to be in prenex sealingsform if none of the expressions E1, . . . , Ek ontain any stati sealing. Finally a lean program isone in prenex sealings form where E ontains no stati sealing either, i.e., all stati sealings aretoplevel. In a lean program, stati sealings an be replaed by dynami sealings without a�etingthe typing of the program. We will show how to transform any program into an equitypable leanprogram.Le E0 :: T0 be a subexpression of the program, so that the body of the program is E0 :: T0 in someontext C, whih we write E = C �(E0 :: T0). We an replae E0 :: T0 by E 00 = (�y1 :T1. . . . �yj :Tj. E0 ::T0 . . .)y1 . . . yj where y1, . . . , yj are the variables bound by C from outermost to innermost,omitting toplevel bindings. If j = 0 we instead take j = 1, T1 = unit and E 00 = (�y :unit. E0 :: T0) ().In every ase, E 00 is the appliation of a lambda-abstration to one or more parameters. All freevariables in this lambda-abstration are bound at the toplevel. We an therefore extrat it out ofthe ontext C in order to bind it above, going by beta-expansion and let lifting from E = C �(E0 :: T0)to E 0 = (let f = E 00 inC � (f y1 . . . yj)) where f is a fresh variable. Now, as we saw earlier, statisealing an be lifted out of a lambda-abstration, so E 00 is equitypable with some expression E 000 :: T 000 .Let E 00 = (let f = E 000 :: T 000 inC � (f y1 . . . yj)). Provided E0 itself ontains no stati sealing, E 00 is inprenex sealings form, and the number of toplevel bindings has inreased by 1.Iterating the transformation we have just desribed over all of the stati sealings in the initialprogram (from inside out), we an put any program in prenex sealings form. By replaing eahtoplevel stati sealing with a dynami one, we obtain an equitypable program that does not usestati sealing. One intuitive view of this transformation is that eah stati sealing reates a singlefamily of abstrat types, and we lift the reation of this family to be performed exatly one duringprogram initialisation.We now turn to the dual problem of enoding dynami sealing into stati sealing. The di�erenebetween stati sealing and dynami sealing is the e�et of the onstrution. One way to fore adynami e�et is to apply a generative funtor, and a generative funtor an be reated by anysealing, inluding stati sealing, of a transparent funtor. This leads Dreyer, Crary and Harper[DCH03℄ to propose the following enoding of strong sealing (whih is almost our dynami sealing)into weak sealing (idential to our stati sealing):E :> T = ((�x : unit. E) :: (�x : unit. IT)) ()Unlike dynami sealing E !! T, strong sealing E :> T has a stati e�et in addition to its dynamie�et: E :> T is equitypable with E !! T :: T. This e�et annot be disharged by a lambda-abstration, so that generative funtors annot be pure in Dreyer, Crary and Harper's system.Nonetheless we an move the extra stati sealings to the toplevel by applying the transformationabove. 35

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .In summary, stati and dynami sealing an be enoded in terms of one another, albeit inurringthe ost of a global transformation. In the remainder of this doument, we will study a languagewith only dynami sealing (whih we prefer due to its more ompositional semantis). We propose totreat stati sealing as an additional onstrut whih should be provided in a programming languagealongside dynami sealing, and then elaborated away inside the ompiler.IV.4.4.6 On appliativity through funtor sealingThe observation that the position of the sealing determines whether a funtor is appliative orgenerative does not seem to be universally known in the ML ommunity. It requires being able to seala funtor, whereas early module systems for ML only had sealing of strutures. In Objetive Caml,where funtors are systematially appliative, it is ustomary to seal the body of a funtor, andsealing the funtor is onsidered equivalent (and needlessly omplex as the type of the argumentis then repeated) [Ler℄. Note that if sealing is interpreted as an e�et, the fat that it does notommute with lambda-abstration is unsurprising.Early module systems for ML only de�ned sealing on strutures, and the possibilities of funtorsealing seeped in slowly and with a low pro�le. Russo [Rus98℄ distinguishes appliative funtorsfrom generative funtors by their de�nition rather than by their signature, with the defet that agenerative funtor an be diretly seen as an appliative funtor [Dre02℄ as seen in setion I.2.2.4.Shao [Sha99℄ remarks in passing that sealing a transparent funtor is a way of building an appliativefuntor. This possibility is also mentioned by Dreyer, Crary and Harper [DCH03, Dre05℄ but theyreommend using weak sealing to build appliative funtors.One argument in favor of weak sealing ([DCH03℄, x2, p. 7) is that it an be applied to asingle member of a struture in the body of the funtor, whih makes some types abstrat alreadyin following members, whereas sealing the funtor only makes types abstrat one the funtor isapplied. In our notation, the funtors under disussion are of the form �x:T0. lety = E1 :: T1 inE2 : T2.We saw in setion IV.4.4.5 that this is preisely the ase when the transformation of stati sealinginto dynami sealing requires a global ode reorganisation.Dreyer [Dre05℄ (x1.2.7) mentions in partiular the ase of a funtor whose body de�nes anduses a \generative" delared type (datatype in Standard ML, ordinary variant or reord type inObjetive Caml). If delared types are modelled by an abstrat type obtained through dynamisealing, suh a funtor is automatially generative. However we do not see any reason to insist ondynami sealing: minimal sealing would do just �ne, as the generative nature of delared types onlyserves to di�erentiate between the onstrutor and destrutor names of di�erent delared types.Sine minimal sealing an easily be modelled by dynami sealing, the lak of sealing other thandynami is not a problem on this ount.IV.5 Colours and brakets CIn system E, the sealing onstrut a�ets typing but not evaluation, as witnessed by the redutionrule for sealing whih just forgets the sealing:E !! T �! E (E/ered.seal)This rule is type-preserving in the sense that if the left-hand side is well-typed then the right-hand is also well-typed and has the same type. However information is learly lost: this rule isnot abstration-preserving. This lak is no onern when evaluating a single program, as typepreservation ensures that nothing an \go wrong" and the whole program text is available for any36

IV.5. COLOURS AND BRACKETS [C℄If T is of the form . . . then E !! T redues to an expression of type. . .�t : type. (int! Typ t) S(�1a) � (int! Typ�1a)�t : type. �t 0 : type. (Typ t � Typ t 0 � int) S(�1a) � S(�1�2a) � Typ t � Typ t 0 � int�x : T0. �t : type. (Typ t � int) �x : T0. S(�1 (ax)) � Typ t � intIn eah ase, a is the none (fresh module identity) reated by the sealing operation.Figure IV.1: Examples of none generationanalysis that might rely on the typing of the program. However we aim to rid ourselves of the stritphase separation between type-heking and evaluation, by introduing a faility for type-heking.This faility requires additional information to remember the distintion between an abstrat typeand its representation type as long as it matters, whih is as long as dynami type-heking mightbe performed, i.e., throughout program evaluation. We will now study system C, whih is based onE but where the redution of a sealing preserves the abstration.IV.5.1 Module identitiesIV.5.1.1 None generationThe rule (E/ered.seal) does not properly reet our intention regarding the semantis of sealing. Wedesribed sealing as reating a new type. Consider the example sealing expression (hinti, 3) !!�t : type. Typ t. It redues by (E/ered.seal) to (hinti, 3), whih has the type �t : S(hinti). Typ t =S(hinti) � int, whereas we would like a type of the form �t : S(hT 0i). Typ t = S(hT 0i) � T 0 where T 0is distint from any previously existing type (espeially int).More preisely, we do not need to reate a type but a module identity, as an be seen by lookingat the sealing of modules with a more omplex struture. For example, if the same sealed modulede�nes several abstrat types, these types share a ommon unique identity. If the sealed moduleis a funtor, a new identity must be reated but one when the sealing onstrut is evaluated, andthis identity will be used eah time the funtor is applied. Eah module identity haraterises oneinstantiation of the abstration, whih may produe any number of fresh types: as many as thereare abstrat type �elds for a struture, an unbounded number for a funtor (sine the argumentmust be taken into aount). . .Figure IV.1 shows a few examples of uses of module identities. A fresh module identity is alleda none (or (h)apax), and written a. These nones have the same universal uniqueness propertyas those used in models of seurity. They generalise the stamps of MaQueen [AM91℄. Unlikethe stamps of many module systems, our nones an designate modules of arbitrary signatures(in partiular funtors). Also the reation of a none is performed when the sealing onstrut isevaluated, and not whenever a module is built. Nones orrespond to the singularised identitiesdesribed in setion II.6.1.2.At the syntati level, we will for the time being onsider nones an extra onstrut in the syntaxof modules, whih should not appear in soure programs7. However the purpose of nones is todesignate abstrat types, and we will eventually restrit their presene to \type omponents" (seesetion IV.5.1.4). We assume an in�nite supply of distint nones (similar to the in�nite supply ofvariable names).7Note that (as we shall see) none-free programs have none-free types, so types of soure programs are expressiblein the soure language. 37

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .IV.5.1.2 LexesEvaluating a sealing onstrut E !! T requires a fresh none, i.e., one that is not present in the originalterm. We manage this freshness requirement by using a store of nones, alled a lexis (or stampbook), and written B. A lexis keeps trak of nones in use as well as the module implementationand signature from the sealing onstrut from whih the none originated. The syntax of a lexis isthus B = (a1 = E1 : T1, . . . ,ak = Ek : Tk)As with environments, we treat lexis onatenation as assoiative, and the empty lexis (written nil)is a neutral element for this operation.Lexes adorn evaluation judgements as well as typing judgement. A none a is well-typed andhas type T when the ambient lexis ontains the binding a = E : T for some E (just as a variablex has the type T when the environment ontains the binding x : T). The redution relation forsystem C is formally de�ned on pairs onsisting of a lexis and a type; a redution will be writtenB ` E �! B 0 ` E 0. However in most instanes the lexis does not a�et the redution and does nothange, and we will then ontinue to write E �! E 0. Reduing a sealing augments the lexis:B ` E !! T �!B,a = E : T ` E 0The none a is hosen fresh, i.e., outside the domain of B. Sine the language does not inludebinders for nones, any none appearing in E or T must be reorded in B.An alternative to this global store would be to introdue a \new" binder for nones, lassiallywriting (�a = E0 : T0)E. We prefer the use of a global store not only beause we have no need fora none binder, but also beause managing the migration of � binders aross other syntax nodesand above environments8 would be problemati.IV.5.1.3 From sealing to braketsWe have seen that reduing a sealing E !! T reates a fresh none a, and the result is an expressionE 0 of a type T 0, where T 0 uses the none a as the identity of the newly reated module in order topreisely speify the abstrat parts of T.This type T 0 is alled a strengthening of T, or more preisely it is what we will all thesel��ation of the type T for the module identity a (see setion I.2.2.2). We will write thissel��ation as self T(a). The general idea behind sel��ation is to mirror the original struture ofthe type, but replae the parts originally left abstrat by a referene to the newly reated none.Figure IV.1 shows a few examples of sel��ation; we will defer the task of formulating a preisede�nition until setion IV.5.1.5.Sealing must transform the expression E of type T into an expression E 0 with essentially thesame behaviour as E but a di�erent type self T(a). This new type is more preise than T: it is asubtype of T. Although T is usually not the most preise type of E, E annot have the type self T(a)in general: if the same expression is sealed twie, the resulting expressions E 01 and E 02 should havethe respetive inompatible types self T(a1) et self T(a2). Thus E 0 must ontain a referene to thespei� hoie of none a.The most obvious way to onstrut E 0 is to start with E and apply a type oerion to it:E 0 = oere E to self T(a). However how this oerion should interat with the rest of the languageis not obvious. What does an expression of the form oere E toT 0 redue to? With suh littleinformation in a readily extratible form, when is oereE toT 0 well-typed?8A none may appear in the type of a bound variable.38

IV.5. COLOURS AND BRACKETS [C℄We were already onfronted with this problem in the simpler setting of the hat language, asdisussed in III.1.1. We will use the same solution as then, to wit, oloured brakets [ZGM99℄.The expression [E℄self T(a)a denotes the oerion of E to the type self T(a), but reords the justi�ationa for equating the implementation E with the abstration. (Reall that E is reorded in the entryfor a in the ambient lexis.) More generally, if E1 is any expression, and if T2 is equivalent to thetype of E1 modulo the equivalene between a and its implementation, the expression [E1℄T2a has typeT2. This expression is alled the oloured braket (or brakets) surrounding E1 and annotated withthe olour a and the type T2.The expression E1 should be seen as inside the braket, while the annotations a and T2 arearried by the braket. Nones (or fresh module identities) a have the same rôle as the hashes(or strutual module identities) h in hat. The olour a indiates the possibility of using the extratyping equality between a and its implementation E inside the braket. We say that a is transparentinside the braket. We will disuss the syntax and semantis of olours in system C more fully insetion IV.5.2.The redution rule for sealing is thus as follows:B ` E !! T �!B,a = E : T ` [E℄self T(a)aAs in hat, the next redution steps are devoted to pushing the oloured brakets towards the insideof E.IV.5.1.4 Abstrat typesIn the expression [E℄self T(a)a , the none a an only appear in two positions: as the olour annotationon the braket, and in building the type annotation on said braket. It seems therefore possible torestrit the plaes where nones may appear in the syntax. But do we have to?Treating a none a as a full-edged expression de�nitely simpli�es the overall language struture.Under a lexis ontaining the binding a = E : T, the expression a has the type T, and the transparenyof a an be simply expressed by the onversion a �! E.Suh uninhibited use of nones nonetheless auses two problems, one theoreti, one pratial.Both problems arise from reduing ertain expressions ontaining nones.Consider for instane the sealing E !! T where E = (hinti, (2, 3)) and T = �t : type.Typ t�Typ t,resulting in the lexis binding a = E :�t : S(�1a). Typ t � Typ t. While it may be reasonable to treatsuh expressions as a, maybe even �1a, as values | although �1a has a destrutor at the head,whih is odd in a value | the same does not go for �2a. Typing exepted, the expeted behaviour ofthis expression is the same as (2, 3). Evaluating �2 (E !! T) yields the expression [(2, 3)℄Typ �1a�Typ�1aa .We might redue a to [E℄�t:S(�1a).Typ t�Typ ta and then let braket pushing do the rest; however,for type preservation, this expression must still have the original type S(a).9. Experiene with apreliminary version of this system shows that obtaining suh a typing requires a substantially moreomplex metatheory as analysing the types that are equivalent to Typ�1a beomes intratable.On the pratial side, suh a redution requires the implementation of a to be available at anytime, whereas a none is intuitively an opaque piee of data on whih only an equality prediateis de�ned. In partiular, the implementation of a none might be ryptographially hidden, as wewill see in setion IV.5.2.1.We saw that the priniple of sel��ation is to mirror the original struture of the type whilesubstituting the appropriate projetion of the none for abstrat type �elds (type) in the signature.9Note that a must be pure, sine it is meant for use in types.39

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .Therefore the none a only appears in self T(a) as a projetion of a �eld for whih the signatureindiates type. Suh a projetion has the form TypA where A may be a none, a pair projetion�iA, or the appliation of a funtor to an argument AE0. A term A of the grammar we just desribeshall be alled a module omponent.From now on, we will not allow a to be an expression, prefering to add a new entry to the syntaxof types. A omponent type LAM is a type, denoting what we would have written TypA. Wherethe expression A was desired, we an now write hLAMi (provided that the projetion goes all theway to a single �eld of type type).Expressing the transpareny of a none takes on a more ompliated form sine the equivalenea � E (where E is the implementation of a) is no longer grammatial. Transpareny must beexpressed separately for eah omponent type. Let a be the underlying none of the moduleomponent A1 (whih we shall write as a = underl(A1)). When a is transparent, LA1M is equivalentto TypE1 where E1 is the projetion of E with the same shape as A1. We will say that A1 isrevealed as E1, whih we write E1 = revealB(A1) (where B is the ambient lexis). For instane,if T = �t1 : type. �t2 : type. �t3 : S(hinti). T4, then transpareny of a entails the equivalenesL�1aM � Typ�1E and L�1�2aM � Typ�1�2E.IV.5.1.5 Sel��ationThe ore of the sealing operation onsists in replaing the abstrat omponents of a type by theorresponding projetions of a ertain none. Generally speaking, let us study the sel��ation of atype T for a module omponent A, written self T(A).Base ases There are three kinds of elementary signatures: manifest type �elds S(hT1i) (sigtype t = T1 end), abstrat type �elds type (sig type t end), and term �elds (sig val x :T2 end). The purpose of sel��ation is to transform abstrat type �elds into manifest type �elds:the sel��aiton of type by A is S(hLAMi). Type �elds that were already manifest (i.e., S(hT1i)) areleft unhanged, as are term �elds sine no extra information is required. Type �elds thus alwaysgain singleton types, while term �elds are unhanged.Strutures Sel�fying a struture onserves its deomposition into �elds, with eah �eld sel��edseparately. For example, in ML notation, sigtype t1type t2type u = int * t1val f : int -> t1 -> uend sel��ed by the name
M is sigtype t1 = M.t1type t2 = M.t2type u = int * t1val f : int -> t1 -> uendNote that the name of the module appears more than one: the same name M is used as part ofthe global designation of all the abstrat types in the signature.Sel�fying a pair T1 �T2 by a omponent A naturally yields the pair self T1(�1A)�self T2(�2A). Anatural generalisation to dependent pairs is ahieved by independently sel�fying eah omponent,thus self �x:T1.T2(A) = �x : self T1(�1A). self T2(�2A).40

IV.5. COLOURS AND BRACKETS [C℄It is tempting to try to go further: sine x is now fully known, why not substitute it in T2? Thus in the exampleabove referenes to t1 and u ould beome M.t1 and M.u respetively. However this is not possible in our language,whih inludes signatures that annot be expressed in ML | to wit, dependenies (and in partiular equalities) onterm �elds. If the �rst omponent of a pair ontains term �elds, its signature does not beome a singleton aftersel��ation, and the e�ort to speialise the seond omponent annot proeed further. For example the sel��ationof �x : int. S(x) by a is �x : int. S(x), no more. The sel��ation of a dependent pair is therefore still dependent ingeneral.Funtors The notation type admits two radially di�erent interpretations, depending on whetherit is used in the argument or in the result of a funtor. In the argument, type denotes a type thatwill remain unknown until the funtor is applied, and will vary from appliation to appliation: afuntor with a type-quali�ed argument is polymorphi. Thus sel�fying a funtor type �x : T0. T1does not restrit the domain of the arguments of the funtor10: the sel��ation has the form�x : T0. T 01 . As for the interpretation of type in the result type of the funtor, it depends onwhether the funtor is appliative or generative. With an appliative type, the e�etive identity ofthe type �eld is fully determined by the argument passed to the funtor, and sel��ation onsistsof eta-expanding the body as �x : T0. self T1(Ax). On the other hand, if the funtor is generative,eah appliation generates a new identity; the sel��ation operation must then be delayed until theappliation is performed, and T1 must remain abstrat for the duration.De�nition Sel��ation is de�ned by strutural indution on the type as follows:self BT(A) = BT if BT is a base type (unit, bool, int)self �x:T1.T2(A) = �x : self T1(�1A). self T2(�2A)self �x:T0. PT1(A) = �x : T0. P(self T1(Ax))self �x:T0. IT1(A) = �x : T0. IT1self S(E 0)(A) = S(E)self type(A) = S(hLAMi)Evaluation of type �elds The table above does not state how to ompute self TypE(A). Thereason for this omission is that the omputation depends entirely in the value of E: the de�nitionof sel��ation annot be purely syntati. Intuition whispers that the sel��ation of two equivalenttypes at the same identity should be equivalent; this implies for instane self Typ hTi(A) = self T(A).Therefore E must be redued to a value, whih will have the form hTi for typing reasons, in orderto ompute the sel��ation of TypE.IV.5.2 ColorsIV.5.2.1 ColouringColoured braket Aording to their introdution in setion IV.5.1.3, a oloured braket [E℄Talets the expression E be given the type T using the typing equations resulting from the knowledge ofthe implementation of a. As in hat, we will have a wider view of oloured brakets as the syntatimanifestation of a boundary between the inside and the outside of the module. This boundary takesthe form of the sealing onstrut in the soure ode, and oloured brakets embody it at run time.10The sel��ation is a funtor �x : T 00. T 01 per onservation of the overall struture.41

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .Coloured syntax One way to desribe the syntax of system C from the syntax of E would be toassoiate a olour to eah node of the syntax. This olour would represent the origin of that node,i.e., from whih sealed module the node omes from. The brakets provide this information in adi�erent form: the olour of a syntax node is that arried by the innermost surrounding braket.In the absene of a surrounding braket, the olour is the ambient olour arried by thejugdement in whih the term under onsideration is plaed. The �nal form of an expression typingjudgement in system C inludes a olour annotation:B; � ` E : TSo does the �nal form of an expression redution rule:B ` E �! B 0 ` E 0Colours appear in other plaes in the syntax. The rule of thumb is that anywhere a type isattributed to an expression, a olour must also be provided. For instane a lexis binding hasthe form (a = E : T), and an environment binding has the form (x : T).Colour semantis In a typing judgement, the olour determines whih abstrat types may berevealed. Following the intuition outlined in setion IV.5.1.4, they are the omponents of transparentnones in the indiated olour. A redution rule (C/ered.olAbs) allows the revelation of transparentnones.Redution of a sealing We an �nally state the rule for sealing redution in full. Let us �rstonsider our usual example onsisting of the module strut type t = int let x = 3 end sealedto the signature sig type t val x : t end.nil ` (hinti, 3) !! (�t : type. Typ t) �!�a = (hinti, 3) :� (�t : type. Typ t) ` [(hinti, 3)℄�t:S(hL�1aMi).Typ taSubsequent redution steps push the brakets towards the inside of the value, as in hat (see setionIII.1.2.2).In general a sealing V !! T is evaluated in the ambient olour to [V℄T 0 0 , where 0 = [fag etT 0 = self T(a), with a being a fresh none. Thus the redution rule (C/ered.seal)11 is as follows:B ` V !! T �! B,a = V : T ` [V℄self T(a)[fagThe ambient olour may be neessary just to ensure that V has the type T; for V to have thetype self T(a) requires the transpareny of a in addition12. A olour an thus be a (�nite) set ofnones, whih we shall write as = fa1, . . . ,akg. The semantis of a olour is to render its elementstransparent. Until now, we had only seen singleton olours fag, abbreviated as a; we all suholours primary olours. By synedohe we will also all an element of a olour a primary olour.The empty olour, for whih we will prefer the notation �, makes no none transparent.11Speialised to an unoloured sealing | see setion IV.5.3.6.12This situation is possible beause a sealing an be embedded inside another, possibly with a funtor interposedwhih prevents from pushing the brakets indued by the outermost sealing before reahing the evaluation of thefuntor body ontaining the innermost sealing. This senario did not arise in hat where module de�nitions werealways sequential. 42

IV.5. COLOURS AND BRACKETS [C℄Transpareny A none is said to be transparent or opaque (in a olour , often obvious fromontext) depending on whether it is, or is not, an element of the olour. (This de�nition will begeneralised under a more semanti form for a larger lass of olours in setion IV.5.2.3.)Colour weakening Reduing a sealing moves the sealed expression from a olour to a largerolour. Intuitively, this should not ause any typing trouble: the larger olour provides more typingequations, so more typings are possible. We shall indeed state a olour weakening lemma: if Ehas the type T in the olour , and 0 is a well-formed olour ontaining , then E has the type Tin 0.Border olour In a oloured braket [E℄T 0 , the type annotation T lives on the border betweenthe inner olour 0 and the outer (ambient) olour . We an formalise this by requiring that T bevalid in both and 0. By the olour weakening lemma, it suÆes that T be valid in \ 0, and wewill use this requirement in typing rules.13Colours and seurity Let us briey mention the seurity interpretation of oloured brakets.Colours an be seen as apabilities handed to expressions | in our appliation these apabilitiesunlok type equations. The brakets mark and maintain the boundaries of privileged hunks of ode.Nones are the usual nones of abstrat ryptography. This interpretation was �rst formulated earlyin the history of oloured brakets [PS00℄ and has been studied, in partiular, under the name �seal[SP04℄.IV.5.2.2 Semantis of a type and dependenies of a noneSemantis of a type in a olour A olour denotes equalities between types, so that there maybe more than one way to express a type in a given olour. For instane, if the ambient lexis ontainsa1 = (hinti,E1) :� �t : type. T1, then L�1a1M is equivalent to int in the olour fa1g but not in theempty olour �. This possibility for a term to be a valid type in di�erent olours with di�erentsemantis (in terms of what expressions have that type) is the key to the expressivity of olouredbrakets, as the type annotation is onsidered in both the inner and the outer olour. Note thatthe set of terms having a given type is a monotone funtion of the ambient olour.Semantis vs. validity Sine a type may ontain embedded expressions, the very validity of atype (and not just its semantis) may depend on the olour. In the lexis above, the type S((�x :L�1a1M. x) 3) is only valid in a olour that makes a1 transparent. Our type system an apparentlyaomodate this phenomenon, simply by virtue of annotating every typing judgement with a olour,inluding type orretness B; � ` T ok.Lexis binding Consider in partiular the redution of a sealing B ` V !! T �! B 0 ` [V℄self T(a)[fag .Sine V and T are only known to be valid in the olour , must be reorded together with V andT in B 0, hene B 0 = B,a = V : T. The elements of are alled the dependenies of the none a.13Using \ 0 rather than repliating a premise in the olour and 0 has tehnial advantages, mainly in that justbeause the judgements B; � ` J and B; � `0 J are derivable does not automatially mean their derivations have thesame shape. We suspet that a ommon shape an be found, and would work equally well to derive B;� `\0 J, butproving suh a result looks very diÆult in our syntati approah. Furthermore, given the presene of variables inolours (see setion IV.5.2.3), we would have to use a semanti intersetion that operates on the transparent losuresof the olours (see setion B.1.2). 43

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .Colour well-formation If the none a is used (as part of a type LAM) in some olour, theequivalenes between projetions of a and of its implementation V must hold. Hene the olour inquestion must ontain (the only olour where V is known to be valid). Therefore a none an onlybe transparent if its dependenies are also transparent. We express this onstraint in a side onditionin the rule for olour well-formation ((C/envok..a)). Another option would be to automatially makeall dependenies transparent, so that fag and fag[would have the same semanti. We hoose therestrition on well-formation as simpler and beause it is similar to the ondition for using a nonein an expression.Use of a none in an expression If the none a is used in an expression, its type T must bevalid. Therefore the ambient olour must ontain (the only olour where T is known to be valid).Therefore a none an only be used if its dependenies are transparent, whih is expressed in a sideondition in the rule (C/a.a).Conretisation We might attempt another approah to uses of nones in an expression. Insteadof giving the none a the type T taken diretly from the sealing expression that reated a, wemight reate a type T 0 that is equivalent to T in olours ontaining but is valid in any olour. Inthe olour , we an replae any dependeny of a by its implementation. The type resulting fromperforming all suh possible replaements meets the stated requirement. This operation is alledonretisation of the type T for the olour . Conretisation is also mutually reursively de�nedon types, expressions and module omponents. Conretisation is a opy funtion, exept for thefollowing ases:onB (LA1M) = Typ revealB(A1) if underl(A1) 2 onB (LA1M) = LA1M if underl(A1) =2 onB ([E℄T 0) = [E℄onB\ 0 (T) 0(other ases by simple indution)We get B; � ` 0 T � onB (T) as soon as 0 ontains .The advantage of onretisation is to allow the none a (with dependenies) to be used inany olour 0, whether or not � 0 holds. This is ahieved by giving a the type onB (T).Unfortunately, when is not inluded in the ambient olour, onB (T) is generally not equivalentto T even if the latter is well-formed, whih is somewhat onfusing. Foring onretisation insteadof restriting none use to a suitable olour does not on balane simplify the system design, whihis why we eshew it here.Seal-time onretisation Could we onretise the type of a none when the none is reated, rather thanwhen the none is used? The redution rule for sealing would look like the following:B ` V !! T �! B,a = [V℄onB (T) : onB (T) ` [V℄self T(a)[fagThe type of the sealed expression is then universal, i.e., valid in any olour. A lexis binding is also universal, andso need not be annotated with a olour. The slight loss of expressivity triggered by the fored onretisation is thusompensated by a simpli�ation of the type system.Unfortunately we are here using oloured brakets outside their operating parameters. Usually the type T willontain some abstrat omponents (otherwise the sealing is useless). However the point of sel��ation was to replaethese abstrat omponents in the type annotation on the braket by a manifest type (using the abstrat moduleidentity a). In fat, the type annotation on oloured brakets must be monomorphi, i.e., ompletely spei�ed, freeof type �elds (setion IV.5.3 will disuss the onept further).44

IV.5. COLOURS AND BRACKETS [C℄IV.5.2.3 Variables in oloursWe saw that in hat substitution of a value of type T for a variable assumed to have the type Tdoes not always result in a well-typed term. An addditional hypothesis is required stating that thevalue have the type T in any olour at whih the variable is used. One way to ensure that thisadditional requirement is met is to assoiate a olour to eah variable, whih will be the olourof the syntax node at whih the variable is bound, and then only allow using the variable in thisolour. Then type preservation by substitution only require that the substituted-in value have theright type in the olour of the variable. Redution rules a�eting olours push brakets inside dataonstrutors; they do not a�et the olours of variables inside redued terms (the ase of pushinga braket inside a lambda-abstration will be disussed in setion IV.5.3.3). Compared with hat,we gain the advantage that beta-redution (C/ered.app) does not mention any braket. Annotatingvariable binding sites with olours is onsistent with the priniple stated above that anything thatis attributed a type is also attributed a olour. However we shall see that on�ning variables to aolour is not, in itself, sound, and requires additional mahinery to make the system sound.As usual, the olour of a variable binding is given by the innermost surrounding braket, or inthe absene of one by the surrounding olour. A variable binding in an environment reords thatolour, so that an environment binding in system C has the form (x : T).The simplest way to state the variable typing rule would be x : T ` x :P T, i.e., the variablex is (only) usable in its olour of de�nition. In order for olour weakening to hold, this onditionneeds to be relaxed to allow using x in any olour ontaining the olour of de�nition, i.e.,x : T ` 0 x :P T when � 0Unfortunately this formulation does not suÆe to ensure that olour weakening holds, as shown bythe following example: B; nil ` (�x : int. [[x℄int ℄int1) :P int! intProvided that B, and 1 are well-formed, this typing judgement is orret. There is no requirementfor the intermediate olour 1 to have any onnetion with . If is widened to some olour 0(suh that � 0), the judgement above beomesB; nil ` 0 (�x : int. [[x℄int ℄int1) :P int! intThe olour of the innermost braket remains , as there is no indiation that it should hange duringweakening. As a result, the term is no longer well-typed | the variable x is now used in a olourthat is smaller than its olour of de�nition.One way to pereive this problem is to onsider the olour of a variable ourrene as expliitlybound to the olour of the binding of the variable, as opposed to these olours merely having toalways being related. One might say that ourrene olours must be omputed by name ratherthan by value. Eah variable is then assigned a \symboli primary olour" (ontrast with nonesas onstant primary olours). This new primary olour is written identially with the variable. Aolour therefore has the form = fa1, . . . ,ak, x1, . . . , xng, i.e., a �nite set of nones and olours14.A variable an only be used if it is present in the ambient olour, whih gives us the following rule:x : T ` 0 x :P T when x 2 0A further point to note is that the olour in whih x is de�ned may itself ontain other variables| and it may of ourse ontain nones. These variables and nones will automatially be onsidered14Another, symboli, notation might be = fa1, . . . ,akg [ol(x1) [� � � [ol(xn) where the symbol ol notes theolour of de�nition of its argument and the symbol [is interpreted as set union.45

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .transparent whenever x is. In other words, if x 2 0, then any element of [fxg is transparent in 0. We note this by the typing judgement x : T ` 0 [fxg transparent. The rule for using a variablein an expression is �nally�0, x : T, �1 ` 0 x :P T when �0, x : T, �1 ` 0 x transparentSine variables now our in olours, olours are subjet to alpha-onversion and substitution.Additionally, a substitution must now inlude a target olour along with a target expression for thevariable: the substitution of x by E in the olour will be written fx Eg. The following exampleillustrates the interation of substitutions and oloured brakets, assuming that x 2 :fx 0E0g[x℄S(x) = [E0℄S(E0)(nfxg)[0IV.5.2.4 Absolute brakets, additive braketsA oloured braket [E℄T 0 lets the expression E (of olour 0) be used in any ambient olour . This isa speial ase of a relation between the inner olour 0 and the outer olour . Let R be any binaryrelation on olours. We an write [E℄TR for a oloured braket with relation R, whih is well-typedin the ambient olour if and only if there exists a olour 0 suh that E has the type T in 0 and(, 0) 2 R (we assume throughout this disussion that T is valid in the outer olour).When R an be an arbitrary relation, an important piee of information is lost, as the innerolour beomes ambiguous. We will therefore limit our analysis to the ase where the inner olouris a (partial) funtion of the outer olour: [E℄Tf is well-typed in the ambient olour if and only ifE has the type T in f(). Furthermore an important property that ensures that olour weakeningwill hold is that any widening of the inner olour mathes a widening of the outer olour, in otherwords f must be monotone inreasing (1 � 2 implies f(1) � f(2)).The oloured brakets that we have seen so far orrespond to the ase where the funtion f istotal and onstant. Suh brakets are known as absolute brakets. At this point the only wayto introdue a braket in an expression is the redution of a sealing, in whih the braket has somearbitrary outer olour 0 and an internal olour of the form 0[fag. Rather than an absolute braket,we ould use an additive braket whose relation is 7! [fag (a total, one-to-one funtion fromthe inner olour to the outer olour, thus a (partial) one-to-one funtion from the outer olour tothe inner olour15). We write suh an additive braket as [E℄T+a.Additive brakets blend in niely with the rest of the language. In partiular ourrenes ofvariables under additive brakets trigger none of the problems disussed in setion IV.5.2.3: in anexpression suh as �x :T. [[x℄T+a2 ℄T+a1 , the olour of the bound ourrene is automatially a supersetof the binding olour. Hene we ould dispense with the additional omplexity resulting from havingvariables in olour, provided additive brakets were suÆient for our purposes.Unfortunately, additive brakets are not expressive enough. They an never restrit the set oftyping equations aessible in a subexpression, and in partiular do not provide a way to enforethat an expression is independent from any surrounding olour. Although this does not impat theintrinsi validity of C, it does limit possible appliations. In the seurity interpretation of brakets,an additive braket provides additional privileges to the surrounding ode, whih prohibits anymodelling of a , and means that any ordinary ode alled by privileged ode would inherit theprivileges. In the ontext of our objetive to ope with distributed system, we will need universalbrakets, whih ensure that their ontents is usable in any ontext: these an be expressed natu-rally as absolute brakets annotated with the empty olour � (see setion IV.6.3.1). This seondappliation motivates our hoie of only inluding absolute brakets in the language (other formsof brakets being then superuous).15Sine a is fresh, 0 annot ontain a. 46

IV.5. COLOURS AND BRACKETS [C℄IV.5.3 PolymorphismIV.5.3.1 Coloration of a typeWe saw that how a oloured braket an be used to build a value of an abstrat type, thanks toa suitable type annotation on the braket. For instane, if a is a none whose implementation is(hinti, 3) et and signature �t : type. Typ t, the expression [3℄L�1aMfag is a value of the abstrat typeL�1aM, whereas [3℄intfag evaluates to 3. Now onsider a braket around a type �eld: [hinti℄S(hL�1aMi)fagis the abstrat type �eld written more simply as hL�1aMi, while [hinti℄S(hinti)fag is equivalent to thesimple hinti. Another expression that might be written is [hinti℄typefag ; but what does it mean?In an expression of the form [hTi℄type 0 , the annotation arried by the braket is not suÆient todeide between the abstrat and the onrete version of the type T. The annotation type does notprovide any abstration | any abstration would result from the use of an abstrat type (i.e., of anone) in T. Rather type is here an inompletely spei�ed type, a mere indiation of the signatureof the module expression rather than a full spei�ation of its type �eld.The expression [hTi℄type 0 denotes a type �eld, the type in question being desribed as the typeT as seen in the olour 0. As we saw in setion IV.5.2.2, the olour has a double inuene on thetype. On the one hand, it ontributes in determining whether the type is well-formed (i.e., whetherthe judgement B; � ` T ok holds). On the other hand, it ontributes in determining the semantisof the type, that is, whih expressions have this type. For instane, if a is the above none, thetype L�1aM is well-formed in any olour; in the olour a, the values 3 and [3℄Typ �1afag both have thistype, while only the latter does in the empty olour. In general, a larger olour makes more typesvalid16 makes more expressions have a given type.We have seen a way to transform a type into an equivalent universal type, i.e., a type thatis valid in any olour and, in the original olour, haraterises the same expressions: this is theonretisation operation onB 0(T). However onB 0(T) does not have the same semantis in otherolours, for all it is valid; hene [hTi℄type 0 annot be replaed by honB 0(T)i.The semantis of the expression [hTi℄type 0 is novel: it annot be expressed by previously seenmeans. It is not lear whether suh an expression should be aepted at all. We shall evaluate thepros and ons of allowing suh expressions. But �rst, we need to haraterise them preisely, whihwe do by assigning kinds to types.IV.5.3.2 KindsWe would like to reognise types that fully speify values. Obvious suh types are singletons: allpure expressions having a given singleton types are essentially equivalent. Following a very stritinterpretation, one might say that the only fully spei�ed types are singletons. However, underextensional equivalene, a type an be a singleton semantially without being one syntatially; forexample the type S(3)�S(4) does not ontain any more values than S((3, 4)). Some types may evenontain a single value up to observational equivalene for reasons having to do with the languageas a whole, suh as parametriity [Wad89℄ results in ML that ensure that the only funtion of type8�,�! � (whih we would write �t : type. Typ t! Typ t) is the identity funtion.In fat, we are trying to haraterise the signatures that fully speify the type �elds that theyontain. For example, although the type bool ontains two observationally distinguishable values,we are ontent with bool as a spei�ation of a boolean value: we do not treat bool as an abstrat16The olour has a bearing on embedded expressions. For instane S((�x : Typ�1a. x) 3) is only well-formed in aolour that reveals a. 47

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .type. We aim to desribe a programming language, not a proof language; as a onsequene we limitabstration to types, and allow the revelation of [true ℄bool 0 as true .The paradigm of an inomplete signature is type, whih designates an unspei�ed type �eld.More generally, any type ontaining type in a ovariant position, suh as int � type or int!type, is inompletely spei�ed. The presene of type in a ontravariant position does not indiateinompleteness, as shown for example in the onstant funtion type �t : type. S(V).In order to formalise this notion, we equip system C with two kinds. The kind o ontains fullyspei�ed types suh as S(E), int or �t : type. T with T of kind o. A type of kind o is said tobe fully spei�ed or ompletely spei�ed. The kind � ontains all types irregardless of theirlevel of spei�ation; a type that does not have the kind o is said to be partially spei�ed orinompletely spei�ed. Kinds, written K, are equipped with an order relation o 6 �; the leastupper bound of two kinds is written K1 _ K2 (o _� = �) and the greatest lower bound is writtenK1 ^ K2 (o ^� = o). Type kinding omes with a very simple subkinding relation ship: if T has thekind K1 and K1 6 K2 then T has the kind K2.It is tempting to all a fully spei�ed type monomorphi (as opposed to polymorphi fora partially spei�ed type). Another tempting designation is onrete (vs. abstrat). These termi-nologies is slightly misleading out of ontext (as attested by their multipliity). In a way the typetype is a type variable (under whih interpretation o is the kind of losed types), and the meaningof its presene depends on how type variables are quanti�ed. If they are quanti�ed universally,types of kind � are polymorphi; if they are quanti�ed existentially, types of kind � are abstrat.For aestheti reasons, we will usually use the words \monomorphi" and \polymorphi" (the latterusually meaning non-monomorphi rather than just having the kind �). We do however warn thereader to take this terminology with a grain of salt.Type kinding rules are fairly simple: type is polymorphi, any other onstrutor is monomorphiif and only if its omponents are. In partiular, all base types (bool, int, et.) other than type aremonomorphi, as are singletons. A produt type is monomorphi if its omponents are. A funtiontype is monomorphi if its result type is.The remaining ase is that of the projetion of a type �eld from an expression: when is TypEmonomorphi? Sine the types Typ hTi and T are equivalent, Typ hTi must be monomorphi if andonly if T is. Given the presene in our language of the dependent type TypE, we need to reet typekinding at the expression typing level. We annotate the type type with a kind annotation, writingtypeo or type�: the type typeK haraterises type �elds whose ontents is a type of kind K. Forexample hinti and htype�!inti have the type typeo, and so does hint�Typ xi when x has the typetypeo; whereas htypeKi and hint!typeoi only have the type type�. One must be areful not toonfuse the type assigned to the expression with the type ontained in the �eld: for example htype�iis an expression ontaining a type �eld, whih happens to be the type of arbitrary type �elds (inML, this would be a signature �eld in a module, e.g., strut module type S : sig end end inObjetive Caml). The expression htype�i has the momonorphi type S(htype�i), but not the typeof monomorphi �elds typeo | nor does htypeoi sine typeo does not have the kind o.IV.5.3.3 Brakets and funtion appliation; polymorphi funtionsReduing a sealing introdues a oloured braket during evaluation. The type on this braket isprodued by the sel��ation operation, whih reates a monomorphi type. This is the entral pointof sel��ation: the type on a sealing is usually inompletely spei�ed, and sel��ation ompletes thesel��ation, by replaing the unspei�ed parts by projetions of the new name. When a olouredbraket is pushed inside a data struture, the monomorphi nature of the type annotations is pre-served | all the terms being manipulated have monomorphi brakets (as opposed to polymorphi48

IV.5. COLOURS AND BRACKETS [C℄brakets whose type annotation is partially spei�ed). One aspet of braket pushing in system Cremains to be desribed however, namely pushing brakets inside a funtion.Consider the expression [�x : T2. E℄�x:T0. PT1 0 in some ambient olour . In order for it to bewell-typed, T2 must be a subtype of T0 and E must have the type T1 in the olour 0. Whenthis expression is applied to an argument V of type T0, the result must be that of beta-redutionfx VgE, with any neessary oloured brakets thrown in. Let us study how to manage braketsduring evaluation.We announed in setion IV.5.2.3 that beta-redution would remain unadorned, whih fores usto rule on the the fate of brakets as soon as they are pushed under the lambda. This does notonstrain our latitude regarding the hoie of semantis: we are e�etively giving a symboli namex to the e�etive argument (as well as the outer olour , whih is the olour of the argument). Thequestion is therefore how to redue [�x : T2. E℄�x:T0. PT1 0 .The most obvious target uses oloured brakets both around the body of the funtion (to markthe border on exit from the funtion) and around eah ourrene of the parameter (to mark theborder when entering the funtion). The argument must also be proteted in the return type.[�z : T2. E℄�y:T0. PT1 0 �! �x : T0. [fz fxg[x℄T0[fxggE℄fy fxg[x℄T0[fxggT1 0 (ered.ol.fun.P-POLY)The braket around the parameter x in the funtion body and in the return type must allow xto be used inside, hene the olour annotating the braket must ontain x (adding as well istehnially useless sine x automatially brings in the olour of the binding). The hoie of whattype annotation to put on this braket is not so obvious. We know that E and T1 are well-typed assoon as their variable has the type T0 (note that T2 is a subtype of T0); T0 is valid in given theannotation on the braket in the redex, therefore T0 is a possible hoie.Nothing however requires T0 to be monomorphi, even if �y : T0. PT1 is. Therefore this ruleintrodues brakets arrying polymorphi type annotations. In fat, for T0 to be partially spei�edmeans that the funtion �z : T0. E is a polymorphi funtion17. This terminology follows thatof ML: in ML, a polymorphi funtion has a type sheme 8�,T0 ! T1, whih orresponds in ourdependently typed system to �t : typeo. T0! T1 (with Typ t orresponding to �).If we want to adopt braket pushing into funtions as stated above, we must aept polymorphibrakets. Let us now study these further, in the light of how they an appear. We will then lookfor a way of avoiding them.IV.5.3.4 Polymorphi types and valuesWe still assume that braket pushing into funtions happens aording to the rule (ered.ol.fun.P-POLY)from setion IV.5.3.3. Polymorphi brakets result from applying a polymorphi funtion inside aolour other than its olour of de�nition: a braket [E℄typeo 0 appears when applying a funtion[f℄�t:typeo.T1 0 . Let us �rst look at a very simple example: the identity funtion on the type typeo,published from 0 under the type �t : typeo. S(t).�[�t : typeo. t℄�t:typeo. S(t) 0 � hinti �! �t : typeo. [[t℄typeo[ftg℄S([t℄typeo[ftg) 0 ! hinti�! [[hinti℄typeo ℄S([hinti℄typeo) 017This is a ase of the strong onnetion between partial spei�ation and polymorphism when the variable isuniversally quanti�ed that we mentioned in setion IV.5.3.2.49

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .In this ase, the �nal value is [hinti℄typeo | the identity funtion returns its argument protetedby a spurious braket annotated by the ambient olour.Let us now examine the polymorphi identity funtion �t : typeo. �x : Typ t. x published from 0 under the type �t : typeo. Typ t! Typ t.�[�t : typeo. �x : Typ t. x℄�t:typeo.Typ t!Typ t 0 � hinti 3�! �t : typeo. [�x : Typ [t℄typeo[ftg. x℄Typ [t℄typeo[ftg!Typ [t℄typeo[ftg 0 ! hinti 3�! [�x : Typ [hinti℄typeo . x℄Typ [hinti℄typeo !Typ [hinti℄typeo 0 3�! ��x : Typ [hinti℄typeo . [[x℄Typ [hinti℄typeo[fxg ℄Typ [hinti℄typeo 0 � 3�! [[3℄Typ [hinti℄typeo ℄Typ [hinti℄typeo 0The argument 3 is now surrounder by two brakets. The inner braket plaes the value into theolour 0 with a polymorphi value; the outer braket, in spite of its similar appearane, has adi�ernet rôle as the seemingly polymorphi type Typ [hinti℄typeo is in fat monomorphi in theoutside olour .In order to generalise upon these examples, a few onepts are worth noting. A braket [hTi℄typeois a polymorphi type parameter for a funtion. A braket [V℄Typ [hTi℄typeo is a polymorphivalue. A polymorphi value has no apparent struture, sine it is proteted by a braket (whihannot be redued away sine its type annotation itself has no apparent struture). The body ofthe funtion is unable to manipulate polymorphi values in a way other than polymorphi. Thisapproah should work to model parametrially polymorphi languages suh as ML. However it isproblemati in a non-parametri language with generis or dynami type-heking (whih we willintrodue in system D).We shall not go any further along the lines of studying polymorphi values. It remains to beseen how to redue polymorphi brakets. In partiular, how an the polymorphi identity funtionreturn its argument with no superuous braket? (Note that the argument passes through theolour 0; how an we make sure that this passage is harmless?)IV.5.3.5 Colour fusionWe present a solution to the problem of managing brakets around polymorphi funtion alls. Thissolution laks expressivity and �nesse, but remains attrative in a ertain light | not least beauseof its simpliity. The idea is to merge the olour of the argument with the olour of the funtionbody. [�x : T2. E℄�x:T0. PT1 0 �! �x : T0. [E℄T1 0[fxg (C/ered.ol.fun.P)We abandon any thought of proteting the argument: all type equations required to type theargument are allowed when exeuting the funtion. This rule is very simple, tehnially speaking:one braket turns into one braket, with a smaller type annotation and smaller ontents.This rule enjoys a ertain symmetry: applying [�x : T2. E℄�x:T0. PT1 0 to an argument V yields[fx VgE℄fx VgT1[050

IV.5. COLOURS AND BRACKETS [C℄so that the omputations are simply performed in the union of the olours of the expressions thatome into ontat (V and E)Let us hek the result of an appliation of the polymorphi identity funtion using this rule.�[�t : typeo. �x : Typ t. x℄�t:typeo.Typ t!Typ t 0 � hinti 3�! ��t : typeo. [�x : Typ t. x℄Typ t!Typ t 0[ftg � hinti 3�! [�x : Typ hinti. x℄Typ hinti!Typ hinti[0 3�! ��x : Typ hinti. [x℄Typ hinti[0[fxg� 3�! [3℄Typ hinti[0 �! [3℄int[0 �! 3In our study of system C, we will retain this fusion formulation of braket pushing around afuntion.IV.5.3.6 Generative funtorsWe saw in setion IV.5.1.5 that sel��ation does not a�et generative funtors. Sine sel��ationprodues a type that is meant to annotate a oloured braket (as it is used in (C/ered.seal)), theresulting type must be monomorphi. Therefore a generative funtor type �x : T0. IT1 must bemonomorphi even if T1 is polymorphi18.We have stated a rule (C/ered.ol.fun.P) to push oloured brakets bearing an appliative funtortype. The transposition to a generative funtor type is not straightforward. A naive proposal wouldbe [�x : T2. E℄�x:T0. IT1 0 �! �x : T0. [E℄T1 0[fxgHowever T1 may be polymorphi, in whih ase the right-hand side is ill-typed. Intuitively,the rule above annot be suitable beause the left-hand side is a generative funtor, whose everyappliation triggers the reation of a new none, whereas this aspet is simply not present in theright-hand side.Nones are generated by the redution rule (C/ered.seal) for sealing expressions. Let us thereforeintrodue a sealing in the right-hand side. We may attempt to plae the sealing inside or outsidethe oloured brakets: [�x : T2. E℄�x:T0. IT1 0 �! �x : T0. ([E℄T1 0[fxg !! T1)[�x : T2. E℄�x:T0. IT1 0 �! �x : T0. [E !! T1℄T1 0[fxgIn both ases, although the intuitive behaviour is aeptable, formal orretion is laking, as thetype annotation on the oloured braket may still be polymorphi. However this is a benign formof ill typing, as redution will hange the type into a monomorphi one before the oloured braketis redued.A sealing onstrut expresses a stati border between abstration domains, whereas a olouredbraket is a dynami border. We have here a border that is both stati and dynami. We will noteit by a oloured sealing, written E !! 0 T. This sealing ats like normal sealing, exept that it givesthe expression E the additional knowledge of abstrat types designated by 0. A oloured sealing18In a way a generative funtor type is amorphous: it is not yet fully spei�ed, but will give rise to a monomorphitype when the funtor is applied. 51

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .therefore inludes the e�et of an additive braket (see setion IV.5.2.4). A normal sealing is thespeial ase where the oloured sealing adds no extra knowledge: E !! T = E !!� T.Pushing a oloured braket bearing a generative funtor type shall produe a oloured sealing:[�x : T2. E℄�x:T0. PT1 0 �! �x : T0. (E !! 0 T1) (C/ered.ol.fun.I)Note that thanks to the additivity of 0 we do not need to inlude x, in ontrast with (C/ered.ol.fun.P).A oloured sealing is redued by the rule (C/ered.seal) whih we an �nally state in its full glory:(C/ered.seal)B ` V !! 0 T �! B,a = V :[0 T ` [V℄self T(a)[0[fagIV.5.4 EvaluationIV.5.4.1 SyntaxThe syntax of system C extends system E with two new onstruts that should not appear in soureprograms: abstrat types and oloured brakets. Furthermore the signature type now arries akind annotation, and sealing now arries a olour annotation (the notation E !! T is kept as anabbreviation for E !!� T).K ::= kindo monomorphi (fully spei�ed)� polymorphi (partially spei�ed)T ::= type. . .typeK abstrat type �eldLAM abstrat typeE ::= expression. . .E !! T sealed and oloured module[E℄T oloured braketA ::= module omponenta noneAE appliation�iA projetion (i 2 f1, 2g)� ::= primary oloura nonex variable ::= olour� empty olour (also written fg)fa1, . . . ,ak, x1, . . . , xkg �nite set of primary oloursReall that kinds are equipped with an order relation, written K1 6 K2, suh that o 6 �. Wewrite K1 _ K2 for the least upper bound of K1 and K2, and K1 ^ K2 for their greatest lower bound.If A is a module omponent, its underlying none underl(A) is formally de�ned as follows:52

IV.5. COLOURS AND BRACKETS [C℄underl(a) = aunderl(AE) = underl(A)underl(�iA) = underl(A)Revelation of a module omponent is de�ned as follows:revealB(a) = E where a = E : T 2 BrevealB(AE) = (revealB(A))ErevealB(�iA) = �i (revealB(A))Typing judgements now arry a lexis and a olour. Additional right-hand sides to those in systemE are olour transpareny, revelation of a module omponent and onversion and onvertibility foromponents.J ::= typing judgementB; � ` J loal judgementJ ::= loal judgement right-hand side. . .T : K type kinding (generalising T ok)0 transparent olour transparenyA . E : T omponent revelationA �! A 0 omponent onversionA � A 0 onvertibility equivalene on omponentsWe write � transparent for f�g transparent.Environments now ontain olour annotations. We also state the syntax of lexes.B ::= lexisnil emptyB,a = E :0 T none a with implemented by E with the signature T� ::= environnementnil empty�, x : T binding of the variable xFollowing the de�nition for environments, the domain of a lexis B, i.e., the set of nones that itreords, is written domB.Sine olours may ontain variables, they are a�eted by substitutions. A substitution spei�esboth an expression and a olour to replae the variable with. The substitution of E for x under in � is written fx Eg�.IV.5.4.2 Values and abstrat omponentsBrakets and values As in hat, the set of values depends on the ambient olour. We �rst de�nea grammatial notion of quasi-value, whih is a value with some possibly-eliminatable brakets. Inaddition to the values of system E (whih are the same as in system B), oloured brakets mayappear in quasi-values and (with restritions) in values. In order for an expression of the form [V℄T 0to be a value, V must be a value (in the olour 0), and T must have an appropriate form. If T hasapparent struture, the braket pushing rules allow [V℄T 0 to be redued. The only ase where [V℄T 0may be a value is when T is an abstrat type LAM. Even then, [V℄LAM 0 may be reduible in someolours. 53

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .Quasi-values The language of quasi-values in system C is a supergrammar of the one for B,with brakets arrying an abstrat type annotation thrown in. The abstrat type annotation mustitself be in a redued form, alled omponent value, where funtor arguments are all values.V ::= quasi-value. . .[V℄LAVM 0 potentially abstration-making oloured braketAV ::= omponent valuea noneAVV appliation to a quasi-value�iAV projetion (i 2 f1, 2g)Irreduioble oloured brakets A quasi-value of the form [V℄LAVM 0 is only a value if the braketannot be eliminated. Intuitively a oloured braket is indispensible only if it atually reatesabstration, whih translates as the requirement that the underlying none of AV must be opaquein the ambient olour yet transparent in the inside olour 0. We will analyse the behaviour of aoloured braket expression aording to the transpareny of the underlying none when presentingbraket elimiation rules in setion IV.5.4.2.Values and abstrat omponents The set of values depends on the ambient olour: we writeV for a value in the olour . The set of values is desribed as a family of grammars parametrisedby a olour; it is a subset of quasi-values. In order for a quasi-value [V℄LAVM 0 to be a value, the braketmust be indispensible in the sense desribed above, and the quasi-values in AV must themselves bevalues in the appropriate olour.V ::= value in () �� bv �� n onstanthTi type �eld(V1 ,V2) pair�x : T. E lambda-abstration[V 0℄LAV\ 0 M 0 oloured braket, if AV\ 0 is abstrat in but onrete in 0AV ::= abstrat omponent in a none, if opaque in AVV appliation of a funtor to a value�iAV projetion (i 2 f1, 2g)Stritly speaking, sine transpareny of a none is a semanti value depending on a lexis and anenvironment, the notions of values and abstrat omponents should be indexed by a lexis and anenvironment. In pratie the lexis and environments will always be lear from ontext, so we omitthem.IV.5.4.3 B ` E �! B 0 ` E 0 RedutionEvaluatin ontexts We redue expressions under brakets. Although brakets are initially in-trodued around values, this property is not preserved by redution; spei�ally, pushing a braketinside a funtion body results in a braket surrounding an arbitrary expression. When the typeannotation on a braket is the type �eld of a module, the module expression must also be redued.54

IV.5. COLOURS AND BRACKETS [C℄C ::= evaluation ontext (of depth 1). . . !!1 T sealing[℄T1 oloured braket[V1 ℄Typ1 type �eld on a braketFormally speaking, the set of evaluation ontexts, like values, depends on a lexis and an envi-ronment. In the ontext [℄T1 , the expression inside is redued in the olour 1. In the ontext[V1℄Typ1 , the expression inside is redued in the olour \ 1 (the intersetion of the oloursoutside and inside the border upon whih the expression lies).Computational rules System C inherits the rules that were already present inB, viz., (C/ered.app),(C/ered.proj), (C/ered.let), (C/ered.ontext). These rules an be used in any olour and any lexis; theolour is added to substitution when required. Values are also onsidered in their ambient olour.Redution inside ontexts happens in the inside olour of the ontext. Appending A lists all therules of system C, inluded the inherited rules.The rule for reduing a sealing is modi�ed to surround the value with a oloured braket, andto take the olour annotation on the sealing into aount.B ` V[0 !! 0 T �! B,a = V[0 :[0 T ` [V[0℄self T(a)[0[fag(C/ered.seal)where a is fresh (i.e., a =2 domB)Redutions in types Until system E, types ontained in expressions did not inuene redution.This is no longer the ase in system C, sine the redution of a oloured braket depends on the typeannotation arried by the braket, spei�ally on the head onstrutor on this type. Nonethelessour omputational needs on types are small enough | we only need to reah a weak head normalform, and only in a single ontext within expressions, so we do not need to introdue a redutionon types. The only destrutor in the syntax of types is Typ ; its argument an be redued via theontext [V1 ℄Typ1 , after whih the destrutor an be eliminated with (C/ered.olTyp).[V 0℄Typ hTi 0 �! [V 0 ℄T 0 (C/ered.olTyp)Abstrat types are peuliar, as LAM is in weak head normal form if and only if the underlyingnone is opaque, but must be revealed if it is transparent.B ` [V 0 ℄LAM 0 �! B ` [V 0℄Typ revealB(A) 0 (C/ered.olAbs)if underl(A) 2 \ 0Braket pushing When a braket surrounds a value, and the type annotation on the braket isnot an abstrat type, the braket is pushed inside a value. The braket pushing rules mostly followthe same priniple as in hat (see setions III.1.2.2 and III.2.5). The seletion of the braket pushingrule relies on the type that is apparent on the braket (spei�ally its head onstrutor); the e�et55

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .on the expression is to push the braket inside the onstrutor for this type.[()℄unit 0 �! () (C/ered.ol.base.unit)[bv℄bool 0 �! bv (C/ered.ol.base.bool)[n℄int 0 �! n (C/ered.ol.base.int)[V 0℄S(E) 0 �! E (C/ered.ol.sing)[(V 01 ,V 02)℄�x:T1. T2 0 �! ([V 01 ℄T1 0 , [V 02 ℄fx [V 01 ℄T1 0 gT2 0) (C/ered.ol.pair)In the ase of funtions, we adopt the olour fusion rule explained in setion IV.5.3.5. In thease of a generative funtor, new types must be reated whenever the funtor is applied, so we add asealing to the body of the funtor; the olour annotation on the sealing plays the role of a olouredbraket. [�x : T2. E℄�x:T0. PT1 0 �! �x : T0. [E℄T1 0[fxg (C/ered.ol.fun.P)[�x : T2. E℄�x:T0. IT1 0 �! �x : T0. (E !! 0[fxg T1) (C/ered.ol.fun.I)When a braket immediately surrounds another braket and neither braket an be reduedby one of the already mentioned pushing rules, i.e., given an expression of the form [[V2 ℄LA2M2 ℄LA1M1where [V2 ℄LA2M2 is a value, there are three possible behaviours.� If the annotation on the outer braket makes it simpl�able, the outer braket disappears.In hat, this is performed by (H/ered.ol.le). Here the rule (C/ered.olAbs) is used, followed byomputations on the revealed expression in the type annotation and possibly later braketpushing.� If the annotation on the outer braket is abstrat outside but onrete inside, the expressionis a value.� The remaining ase is when the annotation on the outer braket is abstrat outside as well asinside. In hat, typing ensures that A1 and A2 are equal, and the outer braket is erased bythe rule (H/ered.ol.ol).In our present systems, whih inludes funtors and olours with non-trivial intersetions, thesituation is more omplex. A new possibility arises that A1 = a1 V1 and A2 = a2 V2; then typingensures that (as in hat) a1 = a2, but the arguments are only known to be equivalent in theintermediate olour 1. The arguments may not be equivalent in , so 1 is (sometimes) an obligatoryintermediate. We state a weaker rule, whih (as in funtion appliation) merges the olours in play.[[V2 ℄LA2M2 ℄LA1M1 �! [V2 ℄LA1M1[2 (C/ered.ol.merge)if A1 et A2 are both opaque in 1 but A2 is onrete in 2IV.5.5 TypingThe type system of system C inherits from that of E, but all rules must be modi�ed to add lexes andolours. For most rules, this modi�ation is done mehanially by permitting an arbitrary lexis andolour. Eah judgement � ` J beomes B; � ` J. When a variable is bound by the environment,it must be added to the olour: �, x : T ` J beomes B; �, x : T `[fxg J. Substitutions must alsobe deorated with the appropriate olours. Typial examples are given by the rules (C/et.fun) et(C/et.app) given below: 56

IV.5. COLOURS AND BRACKETS [C℄B; �, x : T0 `[fxg E : T1 (C/et.fun)B; � ` �x : T0. E :P �x : T0. T1 B; � ` E1 :1 �x : T0. 2T B; � ` E0 :P T0 (C/et.app)B; � ` E1 E0 :1t2 fx E0gTIn addition to the addition of olours, type orretion judgements T ok now beome type kindingjudgements T : �. Contexts that required an expression of type type now require type�. Theomplete list of adapted rules is the following:� all onversion, onvertibility and subtyping rules: (C/eonv.ong.fun.arg), (C/eonv.ong.fun.body),(C/eonv.ong.app.fun), (C/eonv.ong.app.arg), (C/eonv.ong.pair.1), (C/eonv.ong.pair.2),(C/eonv.ong.�eld), (C/eonv.ong.proj), (C/eonv.app), (C/eonv.proj), (C/eonv.eta.�eld), (C/eonv.eta.fun),(C/eonv.eta.pair), (C/tonv.ong.pair.1), (C/tonv.ong.pair.2), (C/tonv.ong.fun.arg), (C/tonv.ong.fun.ret),(C/tonv.ong.sing), (C/tonv.ong.�eld), (C/tonv.�eld), (C/tonv.unit), (C/eeq.re), (C/eeq.sym),(C/eeq.trans), (C/eeq.onv), (C/teq.re), (C/teq.sym), (C/teq.trans), (C/teq.onv), (C/tsub.trans), (C/tsub.eq),(C/tsub.ong.fun), (C/tsub.ong.pair), (C/tsub.sing);� most expression typing rules: (C/et.base.unit), (C/et.base.bool), (C/et.base.int), (C/et.fun), (C/et.app),(C/et.pair), (C/et.proj.1), (C/et.proj.2), (C/et.let), (C/et.sub), (C/et.sing).Appendix A ontains a omplete list of the rules of system C in their �nal form, inluding inheritedrules.IV.5.5.1 B; � ` ok Environment formationWe desribe how to build lexes, environments and olours. These omponents are built fromleft to right, both inside lexes and environments (whih are built binding by binding from left toright) and in that the lexis is built �rst, then the environment, then the olour.Lexis and environment validity follow a similar priniple: all entered information must be hekedfor validity, and a fresh name must be used to label eah binding. Note that the olour of a lexisbinding may inlude previous nones, while that of an environment binding may use any none inthe lexis as well as previous variables.(C/envok.nil)nil; nil `� ok B; nil `0 E :P T when a =2 domB (C/envok.a)B,a = E :0 T; nil `� okB; � ` T : � when x =2 dom � (C/envok.x)B; �, x : T `� okA olour may ontain nones and variables taken respetively from the lexis and the environment.As a olour is an unordered set, there is no onstraint on the order in whih a olour is built (otherthan the validity of intermediate olours when adding a none). Nones may only be added to theolour if their dependenies are already present (or otherwise transparent), while variables may beadded at any time | see setion IV.5.2.3 and the transpareny rules below).B; � ` 0 ok when a = E :0 T 2 B^ 0 � 0 (C/envok..a)B; � ` 0[fag okB; � ` 0 ok when x :0 T 2 � (C/envok..x)B; � ` 0[fxg okIV.5.5.2 B; � ` T : K Type kindingType kinding rules re�ne the type orretion rules of system E. Adding olours is straightforward.57

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .As disussed in setion IV.5.3.6, a generative funtor is always monomorphi (whereas an appliativefuntor has the same kind as its result type); the rule (E/tok.fun) is split to treat eah ase orretly.B; � ` ok (C/tok.base.bool)B; � ` bool : o B; � ` ok (C/tok.base.int)B; � ` int : o B; � ` ok (C/tok.base.unit)B; � ` unit : oB; � ` E :P typeK (C/tok.�eld)B; � ` TypE : KB; � ` T 0 : K 0 B; �, x : T 0 `[fxg T 00 : K 00 (C/tok.fun.P)B; � ` �x : T 0. PT 00 : K 00B; � ` T 0 : K 0 B; �, x : T 0 `[fxg T 00 : K 00 (C/tok.fun.I)B; � ` �x : T 0. IT 00 : oB; � ` T 0 : K 0 B; �, x : T 0 `[fxg T 00 : K 00 (C/tok.pair)B; � ` �x : T 0. T 00 : K 0 _ K 00B; � ` ok (C/tok.type)B; � ` typeK : � B; � ` E :P T (C/tok.sing)B; � ` S(E) : oAn extra rule indiates that any monomorphi type is also polymorphi. Similarly a type �eldontaining a monomorphi type an be seen as a type �eld ontaining a polymorphi type, so thetype of the formed is a subtype of the type of the latter.B; � ` T : K 0 when K 0 6 K (C/tok.sub)B; � ` T : K B; � ` ok when K1 6 K2 (C/tsub.ong.type)B; � ` typeK1 <: typeK2Let us also state the rule for forming a type �eld, whih is also modi�ed to aount for kinding.B; � ` T : K (C/et.type)B; � ` hTi :P typeKIV.5.5.3 B; � ` 0 transparent Colour transparenyA primary olour (none or variable) an be transparent if it is diretly present in the ambientolour. It an also be transparent if it is indiretly made so, via a variable that is present inthe ambient olour and whose olour of de�nition makes the primary olour under onsiderationtransparent. B; � ` ok when � 2 (C/vis.in)B; � ` � transparentB; � ` ok B; �0 `0 � transparent when � = (�0, x :0 T, �1)^ x 2 (C/vis.env)B; � ` � transparentA olour is transparent if and only if all of its elements are transparent.B; � ` ok (C/vis.o)B; � ` � transparent B; � ` 1 transparent B; � ` 2 transparent (C/vis.union)B; � ` 1 [2 transparentNone transpareny is used in (C/tonv.abs) to justify revealing it. Colour transpareny is used inseveral rules ((C/a.a), (C/et.x)) to express the transpareny of the dependenies of a primary olour.IV.5.5.4 B; � ` A . E : T ; ... Module omponentsRevelation judgements B; � ` A .E : T assign two piees of information to a omponent A: the58

IV.5. COLOURS AND BRACKETS [C℄expression E to whih it is revealed, and the apparent signature T mehanially derived from thesignature of the underlying none in the lexis. The struture of the revelation derivation followsthat of this signature.B; � ` 0 transparent when a = E :0 T 2 B (C/a.a)B; � ` a . E : T B; � ` A . E : �x : T1. T2 (C/a.proj.1)B; � ` �1A . �1E : T1B; � ` E1 :P S(�1E) B; � ` A . E : �x : T1. T2 (C/a.proj.2)B; � ` �2A . �2E : fx E1gT2B; � ` A . E : �x : T0. PT1 B; � ` E0 :P T0 (C/a.app)B; � ` AE0 . EE0 : fx E0gT1When a omponent has the apparent signature typeK, it an be used to form an abstrattype. If the underlying none is transparent, this abstrat type an be onverted to the revealedrepresentation. B; � ` A . E : typeK (C/tok.abs)B; � ` LAM : KB; � ` A . E : typeK B; � ` underl(A) transparent (C/tonv.abs)B; � ` LAM �! TypEA omponent is almost inert: the only onversion that might signi�antly a�et it is its revela-tion. Context rules are however needed to enable onversion of embedded expressions.B; � ` E0 �! E 00 B; � ` E0 :P T0 B; � ` A . E : �x : T0. PT1 (C/aonv.ong.app.arg)B; � ` AE0 �! AE 00B; � ` A �! A 0 B; � ` A . E : �x : T0. PT1 B; � ` E0 :P T0 (C/aonv.ong.app.fun)B; � ` AE0 �! A 0 E0B; � ` A �! A 0 B; � ` A . E : �x : T1. T2 (C/aonv.ong.proj)B; � ` �iA �! �iAB; � ` A �! A 0 B; � ` A . E : typeK (C/tonv.ong.abs)B; � ` LAM �! LA 0MConvertibility equivalene for omponents follows the same model as for types and expressions,with four rules (C/aeq.re), (C/aeq.sym), (C/aeq.trans) and (C/aeq.onv) following the model of (teq.*) and(eeq.*).IV.5.5.5 B; � ` E : T Coloration of expressionsThe rule for typing variables ontains a novel side ondition whih requires the transpareny ofthe variable in the ambient olour. This ensures that the dependenies of the variable keep beingpresent if the ambient olour is weakened.B; � ` x transparent when x : 0 T 2 � (C/et.x)B; � ` x :P TColoured brakets surround an expression with a di�erent olour from its surroundings. Thetype annotation must be valid both in both the outer and inner olours, for whih we use theintersetion of the two olours.B; � ` 0 E : T B; � `\ 0 T : o B; � ` ok (C/et.ol)B; � ` [E℄T 0 : T59

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .The sealing typing rule takes the olour annotation into aount. The olour is added whentyping the body of the module.B; � `[0 E : T B; � ` T : � (C/et.seal)B; � ` (E !! 0 T) :I TIV.5.5.6 B; � ` E �! E 0 Conversion and oloured braketsNew onversion rules reet the new redution rules onerning brakets: new redution on-texts, and braket pushing rules.B; � ` 0 E �! E 0 B; � ` 0 E :P T B; � `\ 0 T : o B; � ` ok (C/eonv.ong.ol.e)B; � ` [E℄T 0 �! [E 0℄T 0B; � ` 0 E :P T1 B; � `\ 0 T1 �! T2 B; � `\ 0 T1 : o B; � ` ok (C/eonv.ong.ol.t)B; � ` [E℄T1 0 �! [E℄T2 0B; � ` 0 ok B; � ` ok (C/eonv.ol.base.unit)B; � ` [()℄unit 0 �! () B; � ` 0 ok B; � ` ok (C/eonv.ol.base.bool)B; � ` [bv℄bool 0 �! bvB; � ` 0 ok B; � ` ok (C/eonv.ol.base.int)B; � ` [n℄int 0 �! nB; � ` 0 T0 <: T2 B; �, x : 0 T2 ` 0[fxg E :P T1B; � ` ok B; �, x :\ 0 T0 `(\ 0)[fxg T1 : o (C/eonv.ol.fun.P)B; � ` [�x : T2. E℄�x:T0. PT1 0 �! �x : T0. [E℄T1 0[fxgB; � ` 0 T0 <: T2 B; �, x : 0 T2 ` 0[fxg E :I T1B; � ` ok B; �, x :\ 0 T0 `(\ 0)[fxg T1 : o (C/eonv.ol.fun.I)B; � ` [�x : T2. E℄�x:T0. IT1 0 �! �x : T0. E !! 0[fxg T1B; � ` 0 E1 :P T1 B; � `\ 0 T1 : o B; �, x : 0 T1 ` 0[fxg E2 :P T2B; � ` ok B; �, x :\ 0 T1 `(\ 0)[fxg T2 : o B; � ` 0 E2 :P fx 0[E1℄T1 0 gT2 (C/eonv.ol.pair)B; � ` [(E1,E2)℄�x:T1. T2 0 �! ([E1℄T1 0 , [E2℄fx 0 [E1℄T1 0 gT2 0)B; � `2 E :P T2 B; � `1\2 T2 : oB; � `1 T2 <: T1 B; � `\1 T1 : o B; � ` ok (C/eonv.ol.merge)B; � ` [[E℄T22 ℄T11 �! [E℄T11[2B; � ` 0 E 0 :P S(E) B; � `\ 0 E :P T B; � ` ok (C/eonv.ol.sing)B; � ` [E 0℄S(E) 0 �! EB; �, x : T0 ` 0 E1 : T1 B; �, x :\ 0 T0 `(\ 0)[fxg T1 �! T 01B; �, x :\ 0 T0 `(\ 0)[fxg T1 : o (C/eonv.ong.fun.seal)B; � ` (�x : T0. E1 !! 0 T1) �! (�x : T0. E1 !! 0 T 01)IV.6 Dynami typing and distributed programs DIV.6.1 Dynami typing[Sorry, this fragment has not been translated yet.℄60

IV.6. DYNAMIC TYPING AND DISTRIBUTED PROGRAMS [D℄IV.6.2 FormalisationIV.6.2.1 SyntaxWe de�ne a new language, system D, whih is a onservative extension of system C. The newfeatures are the type dyn and two onstrutors and a destrutor for this type.T ::= type. . .dyn dynamially typed valuesE ::= expression. . .dynE atT dynamidynnedE atT universal dynamiundynE atT elseE 0 dynami type veri�ationIV.6.2.2 RedutionThe universal dynami of a value is a value. The new onstrutors and destrutor are evaluationontexts.V ::= quasi-value. . .dynnedV� atT universal dynamiV ::= value in . . .dynnedV� atT universal dynamiC 0 ::= evaluation ontext with inner olour 0 and outer olour . . .dyn atT dynamidynned atT universal dynami, when 0 = �undyn atT elseE 0 dynami type veri�ationWe saw in setion IV.6.1.4 how to produe a universal dynami from a dynami. Evaluatinga dynami type veri�ation an either result in aepting the underlying value if the types areompatible, or evaluating the alternate expression otherwise. A new rule lets a braket be pushedinto a dynami. A oloured braket around a universal dynami an simply be erased, sine itsontents are already proteted. dynV atT �! dynned [V℄onB (T) at onB (T) (D/ered.dyn)B ` undyn (dynV atT) atT 0 elseE 0 �! B ` ÆV if B; nil ` T <: T 0E 0 otherwise (D/ered.undyn)[dynnedV� atT℄dyn 0 �! dynnedV� atT (D/ered.ol.dynned)61

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .IV.6.2.3 TypingAs we saw in setion IV.6.1.4, ordinary dynamis dynE atT, but universal dynamis dynnedE atT(whih are only useful with E pure) are pure. We do not wish to have to manage dynami typinginside a ompiler19, thus we delare that any expression of the form undynE atT elseE 0 is impure.B; � ` ok (D/tok.base.dyn)B; � ` dyn : K B; � ` E : T B; � ` T : o (D/et.dyn)B; � ` dynE atT :I dynB; � `� E :P T B; � `� T : o B; � ` ok (D/et.dynned)B; � ` dynnedE atT :P dynB; � ` E : dyn B; � ` E 0 : T (D/et.undyn)B; � ` undynE atT elseE 0 :I TSine the language has a new onstrutor, we need orresponding onversion rules: ongruenerules to rewrite the arguments of the onstrutor, and a braket pushing rule (reeting the redutionrule (D/ered.ol.dynned)).B; � `� E �! E 0 B; � `� T : o B; � `� E :P T B; � ` ok (D/eonv.ong.dynned.e)B; � ` dynnedE atT �! dynnedE 0 atTB; � `� T �! T 0 B; � `� T : o B; � `� E :P T B; � ` ok (D/eonv.ong.dynned.t)B; � ` dynnedE atT �! dynnedE atT 0B; � `� E :P T B; � `� T : o B; � ` 0 ok B; � ` ok (D/eonv.ol.dynned)B; � ` [dynnedE atT℄dyn 0 �! dynnedE atTThe dynamisation funtion Our typing rules let us write any monomorphi dynamisation fun-tion �x :T. dyn x atT, with the type T!Idyn. They also let us write the polymorphi dynamisationfuntion �t :typeo. �x :Typ t. dyn x atTyp t, with the type �t : typeo. PTyp t!I dyn. Applying oneof these dynamisation funtion produes a value of the form dynned [V℄onB (T) at onB (T) where is the ambient olour.IV.6.3 Communiation inter-mahinesIV.6.3.1 IntrodutionThe present dissertation was motivated by the need for dynami type-hekin in distributed pro-grams with abstrat types. The present hapter has so far mainly dealt with abstrat types, andwe have now introdued dynami type-heking. We now add the last ingredient: inter-mahineommuniation.As in hapter II, we assume the availability of some serialisation mehanism to send valuesbetween programs running on di�erent mahines. In the present disussion, we deal with networkedprograms, but many onsiderations also apply to time- rather than spae-separated programs, i.e.,a program writing data to persistent storage and another program later reading the data.In order for a value sent by a mahine A to be orretly reeived and deoded on a mahine B ,the programs running on the two mahines must agree on their interpretations of the bit stringsthey exhange. We assume that all programs are written in the same language and use the sameserialisation library, so that it suÆes to ensure that the exhanged values do not depend on anymanner of environment that is not shared by the two mahines. Our semantis does ontain one19Not only would it be useless, it would also work around a putative strati�ation (see setion V.3.1.1).62

IV.6. DYNAMIC TYPING AND DISTRIBUTED PROGRAMS [D℄mahine-dependent element: abstrat types de�ned on one mahine may not be available on anothermahine.As a �rst step, we will make the soundness-safe assumption that abstrat types de�ned on onemahine are distint from abstrat types de�ned on any other mahine, i.e., abstrat types areglobally fresh. We spent most of hapter II studying how to lift this restrition, and we will see insetion IV.6.3.5 how to integrate these ideas into system D.IV.6.3.2 Communiation and oloursIn this setion, we assume the existene of two primitives send and rev for respetively sendingand reeiving a value. Communiation an take plae on a network, via temporary storage or byany other means. More preisely, sine we are working in a typed language, we will assume twotype-indexed families of primitives sendT and revT, the type T being that of transmitted values;their types are sendT : T!I unit et revT : unit!I T. In order for ommuniations to respettyping, the ommuniation protool must ensure that values sent by sendT will only ever be reeivedby revT 0 when it an be guaranteed that any value of type T also has the type T 0, whih we modelwith the onstraint T <: T 0.One thorny issue is that T and T 0 live in di�erent ontexts: the sending lous and the reeptionlous may have di�erent knowledge of abstrat types. In our framework, this means that theambiant olour might di�er between sending and reeption. As we saw in setion IV.5.3.1, theolour inuenes both the validity and the semantis of a type. This also applies to the transmittedvalue, whih may have the type T in the sending olour without having the type T, or indeed anytype, in the reeption olour 0.One way to ensure the safety of ommuniation is to index the primitives by a olour as wellas a type, i.e., sendT and revT 0 0 , and require that the ommuniation protool ensure olourompatibility � 0 (or rather more preisely � ` 0 transparent) as well as type ompatiblity� ` T <: T 0. However adapting a ommuniation protool to ensure olour ompatibility is notstraightforward, all the less as the ambiant olour of a value may hange as it is passed around(whereas the type annotations T and T 0 are usually known statially).One way to prevent any inompatibility from ourring is to require that the sending olour beempty, in other words that the sending type T as well as the transmitted value be universal. Wewill study how to ahieve this in setion IV.6.3.3.If we wish to transmit values between arbitrary olours, they need to be proteted. We enoun-tered a similar situation in setion IV.5.2.2: given a value V and a type T, we need to onstruta value that is \equivalent" to V and has a type \equivalent" to T in the empty olour �. Thesolution is to use onretisation and send [V℄onB (T) instead of V, where onB (T) is the type Twith uses of expanded out. The extra oloured braket protets V by bestowing upon it any typeequation that it may need. Having obtained the universal value [V℄onB (T) , we an safely send it toany reeiver for the type onB (T).IV.6.3.3 Universals[Sorry, this fragment has not been translated yet.℄IV.6.3.4 None sharingIn setion IV.6.3.2, we disussed how to send values between di�erent olours. We glossed over thefat that a olour is only de�ned in a ertain lexis | omparing olours de�ned in di�erent lexes, or63

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .transmitting a olour from one lexis to another, does not a priori make sense. However in a networkof mahines, eah mahine would have its own lexis.We modelled the exeution of a program (onsisting of a single thread running on a givenmahine) by a redution relation of the form B ` E �!� B 0 ` E 0 (at the top level, outside of anybraket, the ambiant olour is empty). An immediate generalisation to networked programs leads usto onsider a family of redutions Bi ` Ei �!� B 0i ` E 0i where the index i represents the mahine onwhih the redution takes plae. In this model, ommuniation must take into aount the hangeof lexis from Bi to Bj as well as the olour hange.Reall that a lexis is a set of nones (plus some information about these nones), and eah nonethat is added to the lexis is freshly reated (by the rule (C/ered.seal) and globally unique). Two lexesB1 and B2 formed on di�erent mahines are therefore disjoint; it is lear that (B1,B2), or indeedany lexis made by interleaving the elements of B1 with the elements of B2 is also a well-formed lexis,with the same information stored for eah none as in B1 or B2. In the metatheory, we an justmerge lexes and model the evolution of a networked program by a redution relation of the formB ` E1 k . . . k En �! B 0 ` E 01 k . . . k E 0n(where E1k. . .kEn notes the parallel omposition of n expressions, eah running on its own mahine).This model makes onsiderations about mixing lexes moot as far as the metatheory is on-erned. However, in pratie, requiring eah none to be broadast as soon as it is reated would beprohibitively expensive (and might be impossible in networks with omplex dynami topologies).Fortunately one an easily implement the shared lexis model by onsidering that eah mahine onlyhas a partial opy of the global lexis at any time, and requiring every transmission of a value toalso ontain any information neessary to reonstrut the parts of the lexis that the value dependson (that is, the nones ontained in a value as well as their dependenies). Thus the lexis is spreadaround lazily. Note that although none reation requires the generation of a globally unique name,this does not in pratie require synhronisation: it suÆes that eah mahine have a globally uniquename that an be inluded in the none, whih is the ase in most distributed systems.IV.6.3.5 Stati sealing and hashesNones are singularised identities in the sense of setion II.6.1.2, as a fresh none is generatedwhenever a new family of abstrat types is reated by evaluating a dynami sealing onstrut E !! T.In setion IV.4.4.2, we presented system W, whih has another notion of sealing, namely statisealing E :: T. Unlike dynami sealing, stati sealing reates a new family of abstrat types oneand for all at program ompile- or initialisation-time, and thus requires an identity to be generatedat the orresponding time.In a distributed environment, there are several hoies as to when to generate identities forstatially sealed modules. The two main possibilities, ompile- and initialisation-time, give di�erentresults.Generating stamps at ompile-time [Ma84℄ is one traditional way of obtaining omparabledesignations of abstrat types. This is not suitable when the identity of a type depends on therun-time behaviour of the program, but this is never the ase with our stati sealing. Some modulesystems for distributed programs [Sew01℄ expliitly allow for abstrat type generation at ompile-time. This feature has a grave pratial defet, namely the impossibility of reonstruting a programfrom its soure alone. If two instanes of the same program are deployed, they will only haveompatible types if they stem from the same ompilation, not if the program was distributed insoure form. For this reason, we hoose not to support any way to generate module identities atompile-time. 64

IV.7. CONCLUSIONGenerating new identities at program-initialisation time allows for less ompatibility than atompile-time. However the behaviour is easily preditable and reproduible: any exessive gen-erativity an be spotted in testing. Thus we propose that this is a viable semantis for statisealing.None of the generation semantis desribed so far allows sharing abstrat types between inde-pendently ompiled instanes of the same program (let alone independently deployed instanes of aprogram omponent). Yet most ases where stati sealing is used | often to enfore data strutureinvariants | orrespond to ases where strutural module identities, i.e., hashhashes are desired(see setion II.3). It is therefore natural to designate statially sealed modules by their hash. Theidentities are de�ned by a purely mathematial omputation and therefore reproduible at will.As in hat (see setion III.2.7.5), we an see hashes as unifying separate de�nitions of the \same"module on di�erent mahines.We shall not desribe hash formation for system W formally here. This onstrution requiresthat the statially sealed module be lifted from its loal potentially-generative ontext as desribedin setion IV.4.4.5. Note that in system W, unlike in hat, the identity of a type is an arbitrarily-sized term whih may mention more than one hash. For example, if f is a statially sealed modulewith the signature �x : T0. �t : type. T1 that is applied to a dynamially sealed module whih wasgiven the none a, the identity of the type �eld in the resulting module is �1 (ha) where h is thehash of the funtor.IV.7 ConlusionSummary In the present hapter we presented a desription language alled tophat for a modulesystem for an ML-like language. The main features of this language are:� strutures and funtors, whose types are respetively dependent sums and dependent produts;� a way to test the equivalene of two modules, and propagate knowledge of suh an equivalene,using singleton signatures;� abstrat types an be de�ned by sealing a module, and an e�et system determines whihexpressions remain omparable;� an redution abstration-preserving, thanks to oloured brakets;� a dynami type-heking onstrut that does not depend on the program ontext.Soundness The most basi requirement for a type system is that it for the proposed exeutionmehanism. Appendix B ontains a soundness proof for tophat, lassially formulated as twotheorems: type preservation by redution (?? ()) and progress of well-typed expressions (?? ()).Deidability of type-heking Another expeted property of a type system for a programminglanguage is deidability, i.e., we would like an algorithm for deiding whether a given expression hasa given type20. In partiular, we would need to deide when two types are equivalent. Deision pro-edures exist for weaker type systems, in partiular the one proposed by Dreyer, Crary and Harper[DCH03℄. However their algorithm does not easily generalise to our system, and we regretfully leavethe question open.20Type inferene would in fat be desirable. However inferene is known to be undeidable in muh weakertype systems suh as system F. With the type annotations that we require in the syntax, in partiular on funtionarguments, type reonstrution might not be substantially harder than veri�ation.65

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .

66

Chapter VConlusionV.1 Summary[Sorry, this fragment has not been translated yet.℄V.2 Related workV.2.1 Theoreti onsiderations[[CM88℄, [OTCP90℄℄V.2.2 Programming languages[Modula-3, Java, .NET, Objetive Caml℄V.2.3 Aute and HashCaml[Sorry, this fragment has not been translated yet.℄V.2.4 Alie MLRossberg's work is to my knowledge the only other in-depth treatment of the main topi of thisdissertation. Interestingly, my and his independent study of the problem led us towards the sametools.Rossberg's �rst step [Ros03℄ was to use oloured brakets [ZGM99℄ to keep trak of abstrattypes at run-time and obtain an abstration-preserving redution relation, in a manner similar toour hat [LPSW03℄. Our theories di�er in that Rossberg's approah is purely generative: abstrattypes reated on di�erent mahines are inompatible.Rossberg also studied the generalisation from simple modules to a full-edged ML module al-ulus [Ros07℄. His implementation builds on Alie ML [PSL℄. Rossberg de�nes the �!SA	-alulus,whih models the ore of Alie ML. This alulus inludes a onstrut that de�nes an abstrattype (x10.5{10.7), and he shows that this is equivalent to ML-like module sealing (spei�ally , seemy setion IV.4.4.2). An abstrat type is identi�ed by a type variable � with an abstration kind(x11.3). An abstration kind A(�) is similar to a singleton kind S(�) but only the singleton kindallows impliit onversion between � and �. Abstration-kinded type variables play the same roleas my lexis-stored nones. The type system of �!SA	-alulus allows expliit onversions between67

CHAPTER V. CONCLUSIONan abstrat type and its representation type anywhere in the program, whereas I materialise suhonversions with oloured brakets.Rossberg proves an opaity property (x12.9): a program that does not ontain any expliitonversion between an abstrat type and its representation is parametri with respet to said repre-sentation. Rossberg also proposes a mehanism to seal funtors (x13), allowing for both appliativeand generative funtors. Given the omplexity of both systems, I leave to future work a omparisonbetween the expressivity of �!SA	-alulus with funtors and that of tophat.V.3 Future workV.3.1 Improvements to the theoryV.3.1.1 Strati�ation[indexing type with a universe℄V.3.1.2 One or two language levels?[Sorry, this fragment has not been translated yet.℄V.3.1.3 E�et analysis[Sorry, this fragment has not been translated yet.℄V.3.1.4 Colours and brakets[Sorry, this fragment has not been translated yet.℄V.3.1.5 Deidability of type-heking[Sorry, this fragment has not been translated yet.℄V.3.1.6 Parametriity[Sorry, this fragment has not been translated yet.℄V.3.2 Supplementary featuresV.3.2.1 Field names and width subsignaturing[Sorry, this fragment has not been translated yet.℄V.3.2.2 Towards a programming language[polymorphism; reursion; libraries℄V.3.2.3 Generi programming[Sorry, this fragment has not been translated yet.℄68

V.3. FUTURE WORKV.3.2.4 Seurity[Sorry, this fragment has not been translated yet.℄V.3.3 ImplementationV.3.3.1 Hash omputation[Sorry, this fragment has not been translated yet.℄V.3.3.2 Typing tophat[Sorry, this fragment has not been translated yet.℄V.3.3.3 Integration into Objetive Caml: the module systemAdding named struture �elds and width subtyping to tophat as desribed in setion V.3.2.1 yieldsa language that overs all the features of the module alulus of Objetive Caml [L+℄. But is ourlanguage ompatible, i.e., is it a onservative extension of Objetive Caml?The answer is a quali�ed \no". There are programs that Objetive Caml aepts and we rejet,beause Objetive Caml treats every funtor as appliative, even if its body ontains side e�ets.This is unaeptable in tophat as appliations of appliative funtors must be able to be statiallyevaluated. One way to improve ompatibility would be to introdue a notion of separation (inthe sense of separability [Dre05℄ as disussed in setion IV.4.2.3). It is however debatable whetherthis is desirable: treating a funtor whose appliation has side e�ets as appliative does not breakstrutural typing but does not fully respet abstration. We prefer to treat any funtor whosebody has side e�ets as generative beause when appliativity is desired, the body is usually pure([Dre05, RRS℄). For example, all the funtors in the standard library of Objetive Caml have apure body (mainly onsisting of type de�nitions and immediate funtions, as well as a few datastruture values).The existing sealing of Objetive Caml should be onsidered a stati sealing (see setion IV.4.4.2.It would be desirable to add a dynami sealing onstrut. Another neessary extension is syntax tomark a funtor as generative (i.e., a purity annotation on funtor types), in order for all signaturesto be expressible in the soure language.In addition to examining the module language, we need to hek for inompatibilities withthe ore language. We disussed polymorphism in setion V.3.2.2. We an freely extend tophatwith impure onstruts; a safe hoie is to make almost all ore expressions impure. The mainrequirements with respet to purity are that projeting a �eld of a module and immediate funtionsmust be onsidered pure. In fat, Objetive Caml (like any implementation of Standard ML)already performs a suitable purity analysis, in order to hek the value restrition for polymorphism[Wri95, Gar04℄.V.3.4 Appliations of dynami typing[Sorry, this fragment has not been translated yet.℄V.3.4.1 The JoCaml name serverThe JoCaml \name server" was one of the main motivations of this work. The JoCaml language[FLFS07, MM01℄ is statially typed, inluding ommuniations [FLMR97℄. However this result only69

CHAPTER V. CONCLUSIONapplies inside a single program instane: when two separate instanes ommuniate, the fat thatthe value sent by one instane has the type expeted by the other instane annot result solelyfrom adherene to a protool that only allows for veri�ation inside a single instane, whih statitypeheking is.The reommended programming methodology for JoCaml keeps unsafe interations to a mini-mum: one instane publishes a ommuniation hannel of an agreed-upon type, and other instanesan send values (inluding other hannels) over this initial hannel, all ommuniations but theinitial reeption of the publi hannel being type-safe. The JoCaml standard library provides aNs module to assist in equipping depolyed programs with a name server. This name server is apartiular program instane whih ats as a database for ommuniation hannels (the names inquestion). Partiipating instanes an publish their entry points by uploading them to the nameserver. A program instane that wants to join the network an query the name server to obtain ahannel to send data on. The only type-heking that must take plae at run-time is that performedby new partiipants as they hek that the data returned by the name server mathes their typingexpetations (the atual veri�ation may be performed by the name server itself; in any ase thename server must retain typing information for the values that it stores).

70

Appendix AFormal de�nition of tophatThis appendix is a pr�eis of the language tophat, whih is idential to D of hapter IV.E ::= expressionx �� y �� t �� . . . variables() unit valuefalse �� true boolean (generially bv)0 �� 1 �� . . . integer (generially n)hTi type �eld(E1,E2) pair�iE projetion (i 2 f1, 2g)�x : T. E lambda-abstrationE1 E2 appliationlet x = E0 inE : T loal bindingE !! T sealed and oloured module[E℄T oloured braketdynE atT dynamidynnedE atT universal dynamiundynE atT elseE 0 dynami type veri�ationT ::= typeunit unitbool booleansint integersTypE projetion from a type �eld�x : T1. T2 dependent sum (also written T1 � T2 when x =2 fvT2)�x : T0. T1 dependent produt (also written T1! T2 when x =2 fvT1)S(E) singletontypeK abstrat type �eldLAM abstrat typedyn dynamially typed valuesK ::= kindo monomorphi (fully spei�ed)� polymorphi (partially spei�ed)71

APPENDIX A. FORMAL DEFINITION OF TOPHATA ::= module omponenta noneAE appliation�iA projetion (i 2 f1, 2g) ::= e�etP pureI impure� ::= primary oloura nonex variable ::= olour� empty olour (also written fg)fa1, . . . ,ak, x1, . . . , xkg �nite set of primary oloursB ::= lexisnil emptyB,a = E :0 T none a with implemented by E with the signature T� ::= environnementnil empty�, x : T binding of the variable xJ ::= loal judgement right-hand sideok environment orretionT : K type kinding (generalising T : �)T �! T 0 typing onversionT � T 0 onvertibility equivalene on typesE �! E 0 expression onversionE � E 0 onvertibility equivalene on expressionsT1 <: T2 subtyping0 transparent olour transparenyA . E : T omponent revelationA �! A 0 omponent onversionA � A 0 onvertibility equivalene on omponentsE : T expression typingV ::= quasi-value() �� bv �� n onstanthTi type �eld(V1,V2) pair�x : T. E lambda-abstration[V℄LAVM 0 potentially abstration-making oloured braketdynnedV� atT universal dynami 72

V ::= value in () �� bv �� n onstanthTi type �eld(V1 ,V2) pair�x : T. E lambda-abstration[V 0 ℄LAV\ 0 M 0 oloured braket, if AV\ 0 is abstrat in but onrete in 0dynnedV� atT universal dynamiAV ::= omponent valuea noneAVV appliation to a quasi-value�iAV projetion (i 2 f1, 2g)AV ::= abstrat omponent in a none, if opaque in AVV appliation of a funtor to a value�iAV projetion (i 2 f1, 2g)C 0 ::= evaluation ontext with inner olour 0 and outer olour E1 funtion argumentV2 applied funtion(,E2) �rst omponent of a pair(V1,) seond omponent of a pair�i projetion (i 2 f1, 2g)let x = inE : T loal bound!!1 T sealing[℄T 0 oloured braket[V1 ℄Typ1 type �eld on a braket, when 0 = \ 1dyn atT dynamidynned atT universal dynami, when 0 = �undyn atT elseE 0 dynami type veri�ationself BT(A) = BT if BT is a base type (unit, bool, int, dyn)self �x:T1.T2(A) = �x : self T1(�1A). self T2(�2A)self �x:T0. PT1(A) = �x : T0. P(self T1(Ax))self �x:T0. IT1(A) = �x : T0. IT1self S(E 0)(A) = S(E)self typeK(A) = S(hLAMi)onB (LA1M) = Typ revealB(A1) if underl(A1) 2 onB (LA1M) = LA1M if underl(A1) =2 onB ([E℄T 0) = [E℄onB\ 0(T) 0(other ases by simple indution) 73

APPENDIX A. FORMAL DEFINITION OF TOPHATfx 0E0gx = E0fx 0E0gy = y si y 6= xfx 0E0g[E℄T = [fx 0E0gE℄fx 0E0gTfx 0E0gfx 0E0g = (n fxg) [0 si x 2 fx 0E0g = si x =2 (other ases follow the usual notion of apture-avoiding substitution)underl(a) = aunderl(AE) = underl(A)underl(�iA) = underl(A)revealB(a) = E where a = E : T 2 BrevealB(AE) = (revealB(A))ErevealB(�iA) = �i (revealB(A))
B; nil `0 E :P Twhen a =2 domBB,a = E :0 T; nil `� ok (envok.a) B; � ` 0 okwhen a = E :0 T 2 B^ 0 � 0B; � ` 0[fag ok (envok..a)B; � ` 0 okwhen x :0 T 2 �B; � ` 0[fxg ok (envok..x) nil; nil `� ok (envok.nil) B; � ` T : �when x =2 dom �B; �, x : T `� ok (envok.x)B; � ` okB; �0 `0 � transparentwhen � = (�0, x :0 T, �1)^ x 2 B; � ` � transparent (vis.env) B; � ` okwhen � 2 B; � ` � transparent (vis.in) B; � ` okB; � ` � transparent (vis.o)B; � ` 1 transparentB; � ` 2 transparentB; � ` 1 [2 transparent (vis.union)B; � ` 0 transparentwhen a = E :0 T 2 BB; � ` a . E : T (a.a) B; � ` A . E : �x : T0. PT1B; � ` E0 :P T0B; � ` AE0 . EE0 : fx E0gT1 (a.app)B; � ` A . E : �x : T1. T2B; � ` �1A . �1E : T1 (a.proj.1) B; � ` E1 :P S(�1E)B; � ` A . E : �x : T1. T2B; � ` �2A . �2E : fx E1gT2 (a.proj.2)B; � ` A . E : typeKB; � ` LAM : K (tok.abs) B; � ` okB; � ` bool : o (tok.base.bool) B; � ` okB; � ` dyn : K (tok.base.dyn)B; � ` okB; � ` int : o (tok.base.int) B; � ` okB; � ` unit : o (tok.base.unit) B; � ` E :P typeKB; � ` TypE : K (tok.�eld)74

B; � ` T 0 : K 0B; �, x : T 0 `[fxg T 00 : K 00B; � ` �x : T 0. IT 00 : o (tok.fun.I) B; � ` T 0 : K 0B; �, x : T 0 `[fxg T 00 : K 00B; � ` �x : T 0. PT 00 : K 00 (tok.fun.P)B; � ` T 0 : K 0B; �, x : T 0 `[fxg T 00 : K 00B; � ` �x : T 0. T 00 : K 0 _ K 00 (tok.pair) B; � ` okB; � ` typeK : � (tok.type) B; � ` E :P TB; � ` S(E) : o (tok.sing)B; � ` T : K 0when K 0 6 KB; � ` T : K (tok.sub)B; � ` E0 �! E 00B; � ` E0 :P T0B; � ` A . E : �x : T0. PT1B; � ` AE0 �! AE 00 (aonv.ong.app.arg) B; � ` A �! A 0B; � ` A . E : �x : T0. PT1B; � ` E0 :P T0B; � ` AE0 �! A 0 E0 (aonv.ong.app.fun)B; � ` A �! A 0B; � ` A . E : �x : T1. T2B; � ` �iA �! �iA (aonv.ong.proj)B; � ` A1 �! A2B; � ` A1 � A2 (aeq.onv) B; � ` A . E : TB; � ` A � A (aeq.re) B; � ` A2 � A1B; � ` A1 � A2 (aeq.sym) B; � ` A1 � A2B; � ` A2 � A3B; � ` A1 � A3 (aeq.trans)B; � ` A �! A 0B; � ` A . E : typeKB; � ` LAM �! LA 0M (tonv.ong.abs) B; � ` E �! E 0B; � ` E :P type�B; � ` TypE �! TypE 0 (tonv.ong.�eld)B; � ` T0 �! T 00B; �, x : T0 `[fxg T1 : �B; � ` �x : T0. T1 �! �x : T 00 . T1 (tonv.ong.fun.arg)B; � ` T0 : �B; �, x : T0 `[fxg T1 �! T 01B; � ` �x : T0. T1 �! �x : T0. T 01 (tonv.ong.fun.ret)B; � ` T1 �! T 01B; �, x : T1 `[fxg T2 : �B; � ` �x : T1. T2 �! �x : T 01 . T2 (tonv.ong.pair.1)B; �, x : T1 `[fxg T2 �! T 02B; � ` T1 : �B; � ` �x : T1. T2 �! �x : T1. T 02 (tonv.ong.pair.2) B; � ` E �! E 0B; � ` S(E) �! S(E 0) (tonv.ong.sing)B; � ` A . E : typeKB; � ` underl(A) transparentB; � ` LAM �! TypE (tonv.abs) B; � ` T : �B; � ` Typ hTi �! T (tonv.�eld)B; � ` okB; � ` S(()) �! unit (tonv.unit)75

APPENDIX A. FORMAL DEFINITION OF TOPHATB; � ` T1 �! T2B; � ` T1 � T2 (teq.onv) B; � ` T : �B; � ` T � T (teq.re) B; � ` T2 � T1B; � ` T1 � T2 (teq.sym) B; � ` T1 � T2B; � ` T2 � T3B; � ` T1 � T3 (teq.trans)
B; � ` E �! E 0B; � ` E :P T0B; � ` E1 :P �x : T0. PT1B; � ` E1 E �! E1 E 0 (eonv.ong.app.arg) B; � ` E �! E 0B; � ` E :P �x : T0. PT1B; � ` E0 :P T0B; � ` EE0 �! E 0 E0 (eonv.ong.app.fun)B; � ` 0 E �! E 0B; � ` 0 E :P TB; � `\ 0 T : oB; � ` okB; � ` [E℄T 0 �! [E 0℄T 0 (eonv.ong.ol.e) B; � ` 0 E :P T1B; � `\ 0 T1 �! T2B; � `\ 0 T1 : oB; � ` okB; � ` [E℄T1 0 �! [E℄T2 0 (eonv.ong.ol.t)B; � `� E �! E 0B; � `� T : oB; � `� E :P TB; � ` okB; � ` dynnedE atT �! dynnedE 0 atT (eonv.ong.dynned.e)B; � `� T �! T 0B; � `� T : oB; � `� E :P TB; � ` okB; � ` dynnedE atT �! dynnedE atT 0 (eonv.ong.dynned.t) B; � ` T �! T 0B; � ` hTi �! hT 0i (eonv.ong.�eld)B; � ` T0 �! T 00B; �, x : T0 `[fxg E1 : T1B; � ` (�x : T0. E1) �! (�x : T 00 . E1) (eonv.ong.fun.arg)B; �, x : T0 `[fxg E �! E 0B; �, x : T0,y :[fxg S(E) `[fyg[fxg E1 : T1B; � ` (�x : T0. fy [fxgEgE1) �! (�x : T0. fy [fxgE 0gE1) (eonv.ong.fun.body)B; �, x : T0 ` 0 E1 : T1B; �, x :\ 0 T0 `(\ 0)[fxg T1 �! T 01B; �, x :\ 0 T0 `(\ 0)[fxg T1 : oB; � ` (�x : T0. E1 !! 0 T1) �! (�x : T0. E1 !! 0 T 01) (eonv.ong.fun.seal)B; � ` E �! E 0B; � ` E2 :P T2B; � ` (E,E2) �! (E 0,E2) (eonv.ong.pair.1) B; � ` E �! E 0B; � ` E1 :P T1B; � ` (E1,E) �! (E1,E 0) (eonv.ong.pair.2)B; � ` E �! E 0B; � ` E :P �x : T1. T2B; � ` �iE �! �iE 0 (eonv.ong.proj) B; �, x : T0 `[fxg E1 :P T1B; � ` E0 :P T0B; � ` (�x : T0. E1)E0 �! fx E0gE1 (eonv.app)B; � ` 0 okB; � ` okB; � ` [bv℄bool 0 �! bv (eonv.ol.base.bool) B; � ` 0 okB; � ` okB; � ` [n℄int 0 �! n (eonv.ol.base.int)76

B; � ` 0 okB; � ` okB; � ` [()℄unit 0 �! () (eonv.ol.base.unit)B; � `� E :P TB; � `� T : oB; � ` 0 okB; � ` okB; � ` [dynnedE atT℄dyn 0 �! dynnedE atT (eonv.ol.dynned)B; � ` 0 T0 <: T2B; �, x : 0 T2 ` 0[fxg E :I T1B; �, x :\ 0 T0 `(\ 0)[fxg T1 : oB; � ` okB; � ` [�x : T2. E℄�x:T0. IT1 0 �! �x : T0. E !! 0[fxg T1 (eonv.ol.fun.I)B; � ` 0 T0 <: T2B; �, x : 0 T2 ` 0[fxg E :P T1B; �, x :\ 0 T0 `(\ 0)[fxg T1 : oB; � ` okB; � ` [�x : T2. E℄�x:T0. PT1 0 �! �x : T0. [E℄T1 0[fxg (eonv.ol.fun.P)B; � `2 E :P T2B; � `1\2 T2 : oB; � `1 T2 <: T1B; � `\1 T1 : oB; � ` okB; � ` [[E℄T22 ℄T11 �! [E℄T11[2 (eonv.ol.merge)B; � ` 0 E1 :P T1B; � `\ 0 T1 : oB; �, x : 0 T1 ` 0[fxg E2 :P T2B; � ` 0 E2 :P fx 0 [E1℄T1 0 gT2B; �, x :\ 0 T1 `(\ 0)[fxg T2 : oB; � ` okB; � ` [(E1,E2)℄�x:T1.T2 0 �! ([E1℄T1 0 , [E2℄fx 0 [E1℄T1 0 gT2 0) (eonv.ol.pair)B; � ` 0 E 0 :P S(E)B; � `\ 0 E :P TB; � ` okB; � ` [E 0℄S(E) 0 �! E (eonv.ol.sing) B; � ` E1 :P T1B; � ` E2 :P T2B; � ` �i (E1,E2) �! Ei (eonv.proj)B; � ` E :P type�B; � ` E �! hTypEi (eonv.eta.�eld) B; � ` E :P �x : T0. T1B; � ` E �! (�x : T0. Ex) (eonv.eta.fun)B; � ` E :P �x : T1. T2B; � ` E �! (�1E,�2E) (eonv.eta.pair)
77

APPENDIX A. FORMAL DEFINITION OF TOPHATB; � ` E1 �! E2B; � ` E1 � E2 (eeq.onv) B; � ` E :P TB; � ` E � E (eeq.re) B; � ` E2 � E1B; � ` E1 � E2 (eeq.sym) B; � ` E1 � E2B; � ` E2 � E3B; � ` E1 � E3 (eeq.trans)B; � ` T 00 <: T0B; �, x : T 00 `[fxg T1 <: T 01B; �, x : T0 `[fxg T1 : �when v 0B; � ` �x : T0. T1 <: �x : T 00 . 0T 01 (tsub.ong.fun) B; � ` T1 <: T 01B; �, x : T1 `[fxg T2 <: T 02B; �, x : T 01 `[fxg T 02 : �B; � ` �x : T1. T2 <: �x : T 01 . T 02 (tsub.ong.pair)B; � ` okwhen K1 6 K2B; � ` typeK1 <: typeK2 (tsub.ong.type) B; � ` T � T 0B; � ` T <: T 0 (tsub.eq) B; � ` T <: T 0B; � ` T 0 <: T 00B; � ` T <: T 00 (tsub.trans)B; � ` E :P TB; � ` S(E) <: T (tsub.sing)B; � ` E1 :1 �x : T0. 2TB; � ` E0 :P T0B; � ` E1 E0 :1t2 fx E0gT (et.app) B; � ` okB; � ` bv :P bool (et.base.bool) B; � ` okB; � ` n :P int (et.base.int)B; � ` okB; � ` () :P unit (et.base.unit) B; � ` 0 E : TB; � `\ 0 T : oB; � ` okB; � ` [E℄T 0 : T (et.ol) B; � ` E : TB; � ` T : oB; � ` dynE atT :I dyn (et.dyn)B; � `� E :P TB; � `� T : oB; � ` okB; � ` dynnedE atT :P dyn (et.dynned) B; �, x : T0 `[fxg E : T1B; � ` �x : T0. E :P �x : T0. T1 (et.fun)B; � ` E0 :I T0B; �, x : T0 `[fxg E :I TB; � ` T : �B; � ` (let x = E0 inE : T) :I T (et.let) B; � ` E1 : T1B; � ` E2 : T2B; � ` (E1,E2) : T1 � T2 (et.pair)B; � ` E : �x : T1. T2B; � ` �1E : T1 (et.proj.1) B; � ` E :P �x : T1. T2B; � ` E1 :P S(�1E)B; � ` �2E :P fx E1gT2 (et.proj.2) B; � `[0 E : TB; � ` T : �B; � ` (E !! 0 T) :I T (et.seal)B; � ` T : KB; � ` hTi :P typeK (et.type) B; � ` E : dynB; � ` E 0 : TB; � ` undynE atT elseE 0 :I T (et.undyn) B; � ` x transparentwhen x : 0 T 2 �B; � ` x :P T (et.x)B; � ` E :P TB; � ` E :P S(E) (et.sing) B; � ` E : TB; � ` T <: T 0when v 0B; � ` E : 0 T 0 (et.sub)
78

(�x : T. E)V �! fx VgE (ered.app)[bv℄bool 0 �! bv (ered.ol.base.bool)[n℄int 0 �! n (ered.ol.base.int)[()℄unit 0 �! () (ered.ol.base.unit)[dynnedV� atT℄dyn 0 �! dynnedV� atT (ered.ol.dynned)[�x : T2. E℄�x:T0. IT1 0 �! �x : T0. (E !! 0[fxg T1) (ered.ol.fun.I)[�x : T2. E℄�x:T0. PT1 0 �! �x : T0. [E℄T1 0[fxg (ered.ol.fun.P)[[V2℄LA2M2 ℄LA1M1 �! [V2 ℄LA1M1[2 (ered.ol.merge)if A1 et A2 are both opaque in 1 but A2 is onrete in 2[(V 01 ,V 02)℄�x:T1.T2 0 �! ([V 01 ℄T1 0 , [V 02 ℄fx [V 01 ℄T1 0 gT2 0) (ered.ol.pair)[V 0℄S(E) 0 �! E (ered.ol.sing)B ` [V 0 ℄LAM 0 �! B ` [V 0℄Typ revealB(A) 0 (ered.olAbs)if underl(A) 2 \ 0[V 0℄Typ hTi 0 �! [V 0 ℄T 0 (ered.olTyp)E �! 0 E 0C 0 � E �! C 0 � E 0 (ered.ontext)dynV atT �! dynned [V℄onB (T) at onB (T) (ered.dyn)let x = V inE : T �! fx VgE (ered.let)�i (V1 ,V2) �! Vi (ered.proj)B ` V[0 !! 0 T �! B,a = V[0 :[0 T ` [V[0℄self T(a)[0[fag (ered.seal)where a is fresh (i.e., a =2 domB)B ` undyn (dynV atT) atT 0 elseE 0 �! B ` ÆV if B; nil ` T <: T 0E 0 otherwise (ered.undyn)
79

APPENDIX A. FORMAL DEFINITION OF TOPHAT

80

Bibliography[AM91℄ Andrew Appel and David B. MaQueen. Standard ML of new jersey. In J. Maluszyn-ski and M. Wirsing, editors, Programming Language Implementation and Logi Pro-gramming, Proeedings of the 3rd Intn'l Symposium, volume 528 of LNCS, pages 1{13.Springer Verlag, 1991.[CM88℄ L. Cardelli and D. MaQueen. Persistene and type abstration. In Malolm P. Atkin-son, Peter Buneman, and Ronald Morrison, editors, Data Types and Persistene. EditedPapers from the Proeedings of the First Workshop on Persistent Objets, Appin, Sot-land, August 1985, Topis in Information Systems, pages 31{41. Springer, 1988. Sinerevised.[DCH03℄ Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order mod-ules. In POPL '03: Proeedings of the 30th ACM SIGPLAN-SIGACT symposium onPriniples of programming languages, pages 236{249, New York, NY, USA, 2003. ACMPress.[Dre02℄ Derek Dreyer. Mosow ML's higher-order modules are unsound, Deember 2002. Mes-sage on the TYPES forum. Online at http://www.seas.upenn.edu/�sweirih/types/arhive/1999-2003/msg01136.html.[Dre05℄ Derek Dreyer. Understanding and Evolving the ML Module System. PhD thesis, CarnegieMellon University, 2005.[FLFS07℄ C�edri Fournet, Fabrie Le Fessant, and Alan Shmitt. The JoCaml language (betarelease), 2007.[FLMR97℄ C�edri Fournet, Cosimo Laneve, Lu Maranget, and Didier R�emy. Impliit typing �a laml for the join-alulus. In CONCUR '97: Proeedings of the 1997 8th InternationalConferene on Conurreny Theory, pages 196{212. Springer-Verlag, July 1997.[Gar04℄ Jaques Garrigue. Relaxing the value restrition. In FLOPS '04: Proeedings of the 7thInternational Symposium on Funtional and Logi Programming, volume 2998 of LetureNotes in Computer Siene, pages 196{213. Springer-Verlag, April 2004.[Gog05℄ Healfdene Goguen. A syntati approah to eta equality in type theory. In POPL'05: Proeedings of the 32nd ACM SIGPLAN-SIGACT symposium on Priniples ofprogramming languages, pages 75{84, 2005.[HL94℄ Robert Harper and Mark Lillibridge. A type-theoreti approah to higher-order moduleswith sharing. In POPL '94: Proeedings of the 21st ACM SIGPLAN-SIGACT sympo-sium on Priniples of programming languages, pages 123{137, New York, NY, USA,1994. ACM Press. 81

BIBLIOGRAPHY[HMM90℄ Robert Harper, John C. Mithell, and Eugenio Moggi. Higher-order modules and thephase distintion. In POPL '90: Proeedings of the 17th ACM SIGPLAN-SIGACTsymposium on Priniples of programming languages, pages 341{354, New York, NY,USA, 1990. ACM Press.[Klo80℄ Jan Willem Klop. Combinatory redution systems. PhD thesis, Mathematish Centrum,Amsterdam, 1980.[L+℄ Xavier Leroy et al. The Objetive Caml system.[Ler℄ Xavier Leroy. Private ommuniation.[Ler94℄ Xavier Leroy. Manifest types, modules, and separate ompilation. In POPL '94: Pro-eedings of the 21st ACM SIGPLAN-SIGACT symposium on Priniples of programminglanguages, pages 109{122, New York, NY, USA, 1994. ACM Press.[Ler95℄ Xavier Leroy. Appliative funtors and fully transparent higher-order modules. InPOPL '95: Proeedings of the 22nd ACM SIGPLAN-SIGACT symposium on Priniplesof programming languages, pages 142{153, New York, NY, USA, 1995. ACM Press.[Lil97℄ Mark Lillibridge. Transluent Sums: A Foundation for Higher-Order Module Systems.PhD thesis, Carnegie Mellon University, May 1997.[LPSW03℄ James J. Leifer, Gilles Peskine, Peter Sewell, and KeithWansbrough. Global abstration-safe marshalling with hash types. In ICFP '03: Proeedings of the eighth ACM SIGPLANinternational onferene on Funtional programming, pages 87{98, New York, NY, USA,2003. ACM Press.[Ma84℄ David MaQueen. Modules for Standard ML. In LFP '84: Proeedings of the 1984 ACMSymposium on LISP and funtional programming, pages 198{207, New York, NY, USA,1984. ACM Press.[MM01℄ Louis Mandel and Lu Maranget. The JoCaml language, 2001.[OTCP90℄ Atsushi Ohori, Ivan Tabkha, Rihard Connor, and Paul Philbrow. Persistene andtype abstration revisited. In Implementing Persistent Objet Bases, Priniples andPratie, Proeedings of the Fourth International Workshop on Persistent Objets, 23-27 September 1990, Martha's Vineyard, MA, USA, pages 141{153. Morgan Kaufmann,1990.[Pie05℄ Benjamin C. Piere, editor. Advaned Topis in Types and Programming Languages.MIT Press, 2005.[PS00℄ Benjamin C. Piere and Eijiro Sumii. Relating ryptography and polymorphism.Manusript, July 2000.[PSL℄ Programming System Lab, Saarland University. The Alie ML Language.[Ros℄ Andreas Rossberg. SML vs. Oaml. Online at http://www.ps.uni-sb.de/�rossberg/SMLvsOaml.html. 82

BIBLIOGRAPHY[Ros03℄ Andreas Rossberg. Generativity and dynami opaity for abstrat types. In PPDP'03: Proeedings of the 5th ACM SIGPLAN international onferene on Priniples andpratie of delaritive programming, pages 241{252, New York, NY, USA, 2003. ACMPress.[Ros07℄ Andreas Rossberg. Typed Open Programming | A higher-order, typed approah todynami modularity and distribution. PhD thesis, Universit�at des Saarlandes, January2007.[RRS℄ Sergei Romanenko, Claudio Russo, and Peter Sestoft. Mosow ML Language Overview.[Rus98℄ Claudio Russo. Types For Modules. PhD thesis, University of Edinburgh, 1998.[Sew01℄ Peter Sewell. Modules, abstrat types, and distributed versioning. In POPL '01: Pro-eedings of the 28th ACM SIGPLAN-SIGACT symposium on Priniples of programminglanguages, pages 236{247, New York, NY, USA, 2001. ACM Press.[Sha99℄ Zhong Shao. Transparent modules with fully syntati signatures. In ICFP '99: Proeed-ings of the fourth ACM SIGPLAN international onferene on Funtional programming,pages 220{232, New York, NY, USA, 1999. ACM Press.[SP04℄ Eijiro Sumii and Benjamin C. Piere. A bisimulation for dynami sealing. In POPL '04:Proeedings of the 31st ACM SIGPLAN-SIGACT symposium on Priniples of program-ming languages, pages 161{172, New York, NY, USA, 2004. ACM Press.[Sun℄ Sun Mirosystems, In. Java API Spei�ations.[Wad89℄ Philip Wadler. Theorems for free! In FPCA '89: Proeedings of the fourth internationalonferene on Funtional programming languages and omputer arhiteture, pages 347{359, New York, NY, USA, 1989. ACM Press.[Wri95℄ Andrew K. Wright. Simple imperative polymorphism. Lisp Symb. Comput., 8(4):343{355, 1995.[ZGM99℄ Steve Zdanewi, Dan Grossman, and Greg Morrisett. Prinipals in programming lan-guages: a syntati proof tehnique. In ICFP '99: Proeedings of the fourth ACMSIGPLAN international onferene on Funtional programming, pages 197{207, NewYork, NY, USA, 1999. ACM Press.

83

BIBLIOGRAPHY

84

Index
abstrattype, 8abstrat omponent, 53abstrat type, see typeabstration kind, 65alpha-onversion, 13, 46ambient olour, 42apax, see noneappliativefuntor, see funtorasription, 34avoidane problem, 15losedterm, 13olourprimary |, 42, 51transpareny, 57variables in |, 44oloured braket, 39, 41, 51absolute |, 46additive, 46pushing, 44, 48universal |, 46oloured braketspushing, 42, 54omparable (module), 25ompletely spei�ed, see monomorphiomponent type, 40omponent value, 53onretisation, 44, 47onversion, 20type |, 22onvertibility, 22deidability, 64dependenyof a module identity, 43distributedsystem, 7

domain, 13dynamisealing, see sealinge�et, 26empty olour, 42environment, 13equitypable, 32equivaleneonvertibility, see onvertibilityevaluation ontext, 16extensionality, 24free variable, 13fully spei�ed, see monomorphifuntionpolymorphi |, see polymorphifuntorappliative, 30generative, 30transparent, 30generativefuntor, see funtorgeneris, 50hash, 63impure, 26sealing, see sealinginompletely spei�ed, see polymorphiinseparablesealing, see sealingjudgementloal typing |, 14kind, 48, 51abstration |, see abstration kindlexis, 3885

INDEXloal binding, 29marshal, 61marshaling, 7minimalsealing, see sealingmodule, 13module omponent, 40, 51module identity, 37, see nonemonomorphi, 44, 48name server, 67none, 37, 63transpareny, 57opaity, 66opaque, 42parametriity, 21, 66partially spei�ed, see polymorphiphase separation, 25pikling, see marshalingpolymorphi, 48funtion, 49type parameter, 50value, 50projetible, 25pure, 26module, 25quasi-values, 53redution, 16reveal, 40revelation, 52sandbox, 46sealing, 27dynami |, 31, 63, 65dynami |dynami, 33dynami |stati, 33dynami |strong, 33dynami |weak, 33impure |, 33inseparable |, 33minimal |, 34separable |, 33stati |, 31, 63strong |, 30weak |, 30

sel��ation, 21, 38, 48separable, 25, 67sealing, see sealingserialisation, see marshalingsignature, 13singleton, 30higher-order, 18of an expression, 17singularised identity, 37, 63sound, 64stamp, 37, 63stamp book, see lexisstatisealing, see sealingstrengthening, 38strongsealing, see sealingsubstitution, 13, 46transparent, 39, 42, 52, 57funtor, see funtorvariable, 45typeabstrat|, 51arrow |, 13oerion, 38funtion, 13inferene, 64produt |, 13underlying none, 40, 52universal, 62| term, 44oloured braket, see oloured braketvalue, 15polymorphi |, see polymorphivalue restrition, 67variabletranspareny, 57weaksealing, see sealingweakeningolour, 43, 45, 46
86

	Introduction
	Tophat: a module calculus suited to distributed environments
	Introduction
	A module calculus [B]
	Fundamental constructs
	About the base language
	Formal description of the core language
	Syntax
	Variables
	Environments

	Typing
	Introduction
	Environment corrections
	Type correctness
	Expression typing
	Type fields

	Run-time
	Expression reduction

	Singletons [S]
	Motivation
	Abstract types, concrete types
	Type sharing
	Value singletons
	Higher-order singletons
	A practical example

	Properties
	Typing rules
	Subtyping
	Singletons
	Expression typing
	Convertibility equivalences
	Type conversion
	Expression conversion
	Extensionality

	Sealing [E]
	Sealing
	An effect system
	Introduction
	Purity
	Projectibility, separability and comparability

	Formal presentation
	Syntax
	Run-time
	Typing: correction, equivalences, subtyping
	Expression typing

	Applicativity
	Applicative functors
	Static sealing: formalisation [W]
	Equivalences in the presence of static sealing
	Other forms of sealing
	Mutual encodings of static and dynamic sealing
	On applicativity through functor sealing

	Colours and brackets [C]
	Module identities
	Nonce generation
	Lexes
	From sealing to brackets
	Abstract types
	Selfification

	Colors
	Colouring
	Semantics of a type and dependencies of a nonce
	Variables in colours
	Absolute brackets, additive brackets

	Polymorphism
	Coloration of a type
	Kinds
	Brackets and function application; polymorphic functions
	Polymorphic types and values
	Colour fusion
	Generative functors

	Evaluation
	Syntax
	Values and abstract components
	Reduction

	Typing
	Environment formation
	Type kinding
	Colour transparency
	Module components
	Coloration of expressions
	Conversion and coloured brackets

	Dynamic typing and distributed programs [D]
	Dynamic typing
	Formalisation
	Syntax
	Reduction
	Typing

	Communication inter-machines
	Introduction
	Communication and colours
	Universals
	Nonce sharing
	Static sealing and hashes

	Conclusion

	Conclusion
	Summary
	Related work
	Theoretic considerations
	Programming languages
	Acute and HashCaml
	Alice ML

	Future work
	Improvements to the theory
	Stratification
	One or two language levels?
	Effect analysis
	Colours and brackets
	Decidability of type-checking
	Parametricity

	Supplementary features
	Field names and width subsignaturing
	Towards a programming language
	Generic programming
	Security

	Implementation
	Hash computation
	Typing tophat
	Integration into Objective Caml: the module system

	Applications of dynamic typing
	The JoCaml name server

	Formal definition of tophat
	Bibliography
	Index

