
Abstra
t types in distributed systemsA partial translation of my Ph.D. dissertationGilles Peskine12 June 2008

Abstra
tConsider a network of nodes running ML programs that ex
hange data. How
an data whi
h hasan abstra
t type on one node be a

epted on another node? A safe approa
h is to treat abstra
ttypes as distin
t whenever they are de�ned on di�erent nodes. However this is too restri
tive inpra
ti
e, for example in the
ommon
ase where an abstra
t type enfor
es a semanti
 invariant.The main
ontributions of this thesis are threefold: I de�ne a notion of hash of an abstra
ttype, whereby abstra
t types that have the same hash are deemed
ompatible; I give an operationalsemanti
s for a module system that preserves types, in
luding abstra
t types; I also propose a new,more general module system that is well-suited to distributed appli
ations.The hash of an abstra
t type must re
e
t its intended semanti
s, whi
h is often not apparentfrom the program's
ode. In pra
ti
e, two modules have the same hash if they have the same
ode.Compound modules are
ompatible when they are built from
ompatible
omponents.Existing operational semanti
s for ML modules lose information as they erase abstra
tion bound-aries. I use
oloured bra
kets to tra
k the visibility of abstra
t types. I study two
al
uli equippedwith bra
kets, a simply-typed lambda-
al
ulus and a ri
h ML module
al
ulus.I use singleton signatures to keep tra
k of not only type but also
ode sharing, so that moduleequivalen
e is de�ned at arbitrary signatures. A simple e�e
t system limits type
onstraint to astati
ally
he
kable fragment, while permitting both appli
ative and generative fun
tors. I dis
ussstati
 and dynami
 forms of module sealing.

Contents
Introdu
tion 7IVTophat: a module
al
ulus suited to distributed environments 11IV.1 Introdu
tion . 11IV.2 A module
al
ulus [B℄ . 12IV.2.1 Fundamental
onstru
ts . 12IV.2.2 About the base language . 12IV.2.3 Formal des
ription of the
ore language . 12IV.2.3.1 Syntax . 12IV.2.3.2 Variables . 13IV.2.3.3 Environments . 13IV.2.4 Typing . 14IV.2.4.1 Introdu
tion . 14IV.2.4.2 �` ok Environment
orre
tions 14IV.2.4.3 �`Tok Type
orre
tness 14IV.2.4.4 �`E :T Expression typing 15IV.2.4.5 hTi, TypE Type �elds 15IV.2.5 Run-time . 15IV.2.5.1 E�!E 0 Expression redu
tion 16IV.3 Singletons [S℄ . 17IV.3.1 Motivation . 17IV.3.1.1 Abstra
t types,
on
rete types . 17IV.3.1.2 Type sharing . 17IV.3.1.3 Value singletons . 17IV.3.1.4 Higher-order singletons . 18IV.3.1.5 A pra
ti
al example . 18IV.3.2 Properties . 20IV.3.3 Typing rules . 20IV.3.3.1 �`T<:T0 ; ... Subtyping . 21IV.3.3.2 S(E) Singletons . 21IV.3.3.3 �`E :T ; �`T1<:T2 Expression typing 21IV.3.3.4 �`T�T0 ; �`E�E 0 Convertibility equivalen
es 22IV.3.3.5 �`T�!T 0 Type
onversion 22IV.3.3.6 �`E�!E 0 Expression
onversion 23IV.3.3.7 Extensionality . 24IV.4 Sealing [E℄ . 24IV.4.1 Sealing . 24IV.4.2 An e�e
t system . 24IV.4.2.1 Introdu
tion . 24IV.4.2.2 Purity . 25IV.4.2.3 Proje
tibility, separability and
omparability 25IV.4.3 Formal presentation . 263

IV.4.3.1 Syntax . 26IV.4.3.2 E�!E 0 Run-time . 27IV.4.3.3 �` . . . Typing:
orre
tion, equivalen
es, subtyping . 27IV.4.3.4 �`E :
T Expression typing 28IV.4.4 Appli
ativity . 30IV.4.4.1 Appli
ative fun
tors . 30IV.4.4.2 Stati
 sealing: formalisation [W℄ 31IV.4.4.3 Equivalen
es in the presen
e of stati
 sealing 32IV.4.4.4 Other forms of sealing . 33IV.4.4.5 Mutual en
odings of stati
 and dynami
 sealing 35IV.4.4.6 On appli
ativity through fun
tor sealing 36IV.5 Colours and bra
kets [C℄ . 36IV.5.1 Module identities . 37IV.5.1.1 Non
e generation . 37IV.5.1.2 Lexes . 38IV.5.1.3 From sealing to bra
kets . 38IV.5.1.4 Abstra
t types . 39IV.5.1.5 Sel��
ation . 40IV.5.2 Colors . 41IV.5.2.1 Colouring . 41IV.5.2.2 Semanti
s of a type and dependen
ies of a non
e 43IV.5.2.3 Variables in
olours . 45IV.5.2.4 Absolute bra
kets, additive bra
kets 46IV.5.3 Polymorphism . 47IV.5.3.1 Coloration of a type . 47IV.5.3.2 Kinds . 47IV.5.3.3 Bra
kets and fun
tion appli
ation; polymorphi
 fun
tions 48IV.5.3.4 Polymorphi
 types and values . 49IV.5.3.5 Colour fusion . 50IV.5.3.6 Generative fun
tors . 51IV.5.4 Evaluation . 52IV.5.4.1 Syntax . 52IV.5.4.2 Values and abstra
t
omponents . 53IV.5.4.3 B`E�!
B 0`E 0 Redu
tion . 54IV.5.5 Typing . 56IV.5.5.1 B;�`
 ok Environment formation 57IV.5.5.2 B;�`
T :K Type kinding 57IV.5.5.3 B;�`

0 transparent Colour transparen
y 58IV.5.5.4 B;�`
A.E :T ; ... Module
omponents 58IV.5.5.5 B;�`
E :
T Coloration of expressions 59IV.5.5.6 B;�`
E�!E 0 Conversion and
oloured bra
kets 60IV.6 Dynami
 typing and distributed programs [D℄ . 60IV.6.1 Dynami
 typing . 60IV.6.2 Formalisation . 61IV.6.2.1 Syntax . 61IV.6.2.2 Redu
tion . 61IV.6.2.3 Typing . 62IV.6.3 Communi
ation inter-ma
hines . 62IV.6.3.1 Introdu
tion . 62IV.6.3.2 Communi
ation and
olours . 63IV.6.3.3 Universals . 63IV.6.3.4 Non
e sharing . 63IV.6.3.5 Stati
 sealing and hashes . 64IV.7 Con
lusion . 65

V Con
lusion 67V.1 Summary . 67V.2 Related work . 67V.2.1 Theoreti

onsiderations . 67V.2.2 Programming languages . 67V.2.3 A
ute and HashCaml . 67V.2.4 Ali
e ML . 67V.3 Future work . 68V.3.1 Improvements to the theory . 68V.3.1.1 Strati�
ation . 68V.3.1.2 One or two language levels? . 68V.3.1.3 E�e
t analysis . 68V.3.1.4 Colours and bra
kets . 68V.3.1.5 De
idability of type-
he
king . 68V.3.1.6 Parametri
ity . 68V.3.2 Supplementary features . 68V.3.2.1 Field names and width subsignaturing 68V.3.2.2 Towards a programming language 68V.3.2.3 Generi
 programming . 68V.3.2.4 Se
urity . 69V.3.3 Implementation . 69V.3.3.1 Hash
omputation . 69V.3.3.2 Typing tophat . 69V.3.3.3 Integration into Obje
tive Caml: the module system 69V.3.4 Appli
ations of dynami
 typing . 69V.3.4.1 The JoCaml name server . 69A Formal de�nition of tophat 71Bibliography 81Index 85

Introdu
tionObje
tiveThe obje
tive of the present dissertaion is to extend an ML-like language to adapt it to distributedsystems. Spe
i�
ally, we are interested in the requirements that the distributed nature of theenvironment imposes on the type system | we will not
on
ern ourselves with other aspe
ts su
has
on
urrent exe
ution and fault toleran
e.Consider two ma
hines A and B , ea
h exe
uting a program. At some point in time, A and Bstart ex
hanging data. The
entral question of this dissertation is, how
an we make sure that Aand B agree on the semanti
s of the ex
hanged data?A network link
arries sequen
es of bits (usually arranged in bytes). When A sends data toB , the data is en
oded as a sequen
e of bits. This operation is known as marshaling (the wordspi
kling and serialisation are synonyms). Upon re
eption of the bit sequen
e, B must performthe opposite operation (known as unmarshaling, unpi
kling or deserialisation). Many languagesprovide a standard representation of data as strings: s-expressions in Lisp, Marshal library in Ob-je
tive Caml [L+℄, Pi
kle library in Standard ML [PSL℄, Serializable interfa
e in Java [Sun℄. . .Several standards (ASN.1, XML) spe
ify language-independent string en
odings of data for
om-muni
ation. While the exa
t set of supported data shapes varies greatly, serialisation libraries anddata representation standards usually spe
ify at least how to en
odes numbers (n-bit integers, little-or big-endian, de
imal notation. . .), strings (
hara
ter sets and en
odings: ASCII, Uni
ode, . . .),sequen
es of su
h. . .Marshaling data entails transforming it to an unambiguous sequen
e of bits. Unmarshaling
onsists of two parts: the bit sequen
e must be transformed ba
k into a workable representation ofthe data, and one must verify that the resulting data has the expe
ted type or shape. For example,if the program running on B expe
ts a number, and the program on ma
hine A sends the string"foo", the error must be dete
ted. The usual approa
h in ML-like languages is to dete
t su
h errorsas soon as possible, whi
h is as soon as the program has been written (during the type-
he
kingphase of
ompilation). It seems natural in an ML-like language to express the unmarshal-time
he
kas a type
onstraint; but how
an this
onstraint be imposed?A

ording to the ML approa
h, the error must be dete
ted when
ompiling the program on A orB . Thus the program on A would de
lare a
ommuni
ation
hannel of type string (on whi
h onemay send "foo"), and the program on B would de
lare a
hannel of type int (on whi
h only numbersmay be re
eived). But this only delays the problem, sin
e the fa
t that A and B disagree on thetype of their shared
ommuni
ation
hannel
annot be dete
ted until A and B start
ommuni
ating.This observation leads us to desire a run-time type-
he
k, spe
i�
ally a type-
he
k when es-tablishing a
ommuni
ation
hannel between programs that have not yet
ommuni
ated. (On
e theprograms have
ommuni
ated, su
h a
he
k is no longer ne
essary, sin
e the programs may nowhave agreed on the types of future
ommuni
ations. For example JoCaml [MM01℄ has a stati
 typesystem [FLMR97℄; however two independently started JoCaml programs that wish to
ommuni
ate7

INTRODUCTIONmust get a shared
hannel via a \name server", whi
h is
urrently not well-typed.)Although ML is designed to be stati
ally typed, and most
ompilers erase types to save memoryduring exe
ution, there are ways of
he
king whether a value has a
ertain type at run-time. Howeverexisting systems do not manage abstra
t types
orre
tly, allowing only types with a prede�nedstru
ture to be shared between separate programs.One solution is to forbid values of abstra
t types to be marshaled. Another is to require theauthor of the abstra
t type to provide marshaling and unmarshaling fun
tions. This howeverdoes not solve our problem: a serialisation format
an usually be dedu
ed automati
ally from therepresentation of the type, but this does not fully solve the problem of
he
king whether the typeof the sent data is the type that is expe
ted at the point of re
eption. Herein lies the gist of thematter: when are two abstra
t types the same?There are two main intuitions to the nature of an abstra
t type. One point of view states that anabstra
t type in hidden. It has an implementation, whi
h is a \
on
rete" type (the implementationmay make use of other abstra
t types, but these
an be tra
ed through in turn all the way to built-intypes). Hen
e an abstra
t type is a
on
rete type | but we do not know whi
h. Another view isthat an abstra
t type is a new, fresh type, distin
t form any other type (in parti
ular it is distin
tfrom any
on
rete type, and it is distin
t from its implementation type, in that one may not
onvertfreely between the two).When are two hidden types the same? One prerequisite that
omes to mind immediately is thatthe implementation types must be the same. But this
ondition is neither ne
essary nor suÆ
ient.One may wish to
onsider two hidden types as the same when their implementations have identi
albehaviour, even if their
ode di�ers. Conversely, just be
ause the implementations mat
h exa
tlydoes not mean that the types
an be mat
hed freely | for example a Euro type and a Dollar typemay have the same implementation, yet should de�nitely not be
ompatible. Type abstra
tion
anplay multiple rôles, and usages may di�er in terms of ideal degree of
ompatibility.When are two fresh types the same? The simplest answer is \when they were
reated in thesame operation". This approa
h has often been re�ned by proposing language
onstru
ts that mayor may not
reate fresh types. In ML,
ontrol of type freshness is given to the module language,whi
h we shall therefore study.General outline of the dissertationChapter I presents the basi

on
epts upon whi
h the dissertaion is based. We �rst study thenotion of abstra
tion, its uses and how to express it. In ML-like languages, abstra
tion arises viathe module language, and we highlight some points of its ri
h history. We also study how to adddynami
 type-
he
king to a stati
ally typed language.Chapter II develops a notion of imprint. The imprint of a software
omponent identi�es theabstra
tion that it provides. We examine many sample programs in order to de
ide how mu
h
ompatibility is desired in various
onditions, and we dis
uss how to
ompute imprints so that two
omponents have the same imprint if and only if they are supposed to be
ompatible.Chapter III presents a simple �rst language equipped with imprints, the hat language. Thislanguage extends the simply-typed lambda-
al
ulus with simple modules. We keep tra
k of abstra
-tion domains throughout program exe
ution using
oloured bra
kets. The language also in
ludesdynami
ally typed
ommuni
ation primitives that use imprints to test the equality of abstra
t types.Chapter IV des
ribes a new module system for ML whi
h is suitable for distributed programs,the tophat language. This language in
ludes
entral
on
epts in module
al
uli, su
h as fun
torsand sealing. Singleton types with no signature restri
tion allow for the expression of
ode equalitiesas well as type equalities, generalising the usual notion of type sharing. We show how to express8

INTRODUCTIONdi�erent kinds of sealing, depending on the expe
ted level of generativity. Like hat, tophat usesimprints to perform run-time type equality tests involving abstra
t types, and
oloured bra
kets topreserve abstra
tion barriers during program exe
ution.We
on
lude with a survey of related work and future work perspe
tives.Appendix A summarises the formal de�nition of the tophat language introdu
ed in
hapterIV. Appendix B
ontains a proof of the soundness of tophat.A note about
ode snippetsWe usually present
ode snippets in Obje
tive Caml syntax. We do not expe
t the reader toknow the �ne points of the language, and will in parti
ular explain any subtlety
on
erning thesemanti
s of modules. When features that Obje
tive Caml does not have are illustrated, we useObje
tive Caml-like syntax augmented as desired and des
ribe the intended semanti
s in the text.Readers used to Standard ML may wish to
onsult a
orrespondan
e table between the two diale
ts[Ros℄.

9

INTRODUCTION

10

Chapter IVTophat: a module
al
ulus suited todistributed environmentsIV.1 Introdu
tionObje
tivesThe purpose of this
hapter is to present a module system that
ombines the usual features foundin ML-like languages with a
exible management of abstra
t types that, as in hat, is suited todistributed programs.This module system is des
ribed as a typed lambda-
al
ulus, for whi
h we provide typing rulesand a type-preserving small-step operational semanti
s. The system des
ribed herein purports tobe a theoreti
 model, not a full-blown programming language, although our design
hoi
es will bemotivated by pra
ti
al
on
erns. As su
h, it la
ks some pra
ti
al features that might be thought ofas synta
ti
 sugar. We will also for the most part delay implementation
onsiderations until se
tionV.3.3.Existing module systems already span a wide range of features and style With respe
t to ex-pressivity, our aim is to
over the features that we think are fundamental to our spe
i�
 obje
tive of
oping well with abstra
t types in a distributed environment. Style-wise, we have tried to providea
ompositional approa
h, where ea
h aspe
t of the language is embodied in a separate language
onstru
t that
an be easily understood on its own.Vo
abulary and notationsWe will endeavour to distinguish between the words \expression", meaning a spe
i�
 language
ategory (expressions typi
ally have types, and
an be evaluated), and \term", whi
h denotes anelement of any synta
ti

ategory (expression, type, module, environment, et
.). We will usuallydenote by � or i a term of unknown synta
ti

ategory.Let � be any term, x a variable and E an expression. We will write the substitution of E for xin � as fx Eg�. Similarly, we will write fX Mg� for the substitution of module expression M formodule variable X in �.OutlineWe will present the tophat language in
rementally. Ea
h of the following �ve steps re�nes orextends the previous language. 11

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .B We will start with a basi
 module system, in
luding only module-building
onstru
ts that wouldbe suÆ
ient for our purpose in the absen
e of types. This system is simple but la
ks expres-sivity as far as types are
on
erned.S We will add singleton types (whi
h generalise singleton kinds) to the basi
 system, in order tokeep tra
k of equalities between types. The resulting system will adequately model moduleswith no type abstra
tion.E We will then add a sealing
onstru
t to the language in order to permit making types abstra
t.We will see that sealing makes the langage impure, and will equip our type system with asuitable e�e
t system.C The previous system
an express type abstra
tion at the sour
e level, but abstra
tion is lostwhen the program is evaluated. We will therefore provide a way of keeping tra
k of abstra
tionboundaries during program evaluation, in the form of module identities and
oloured bra
kets.D We will �nally be able to equip our language with dynami
 typing
onstru
ts that behave rea-sonably in a distributed setting.System D
onstitutes the full tophat language1.At ea
h stage, we will motivate the features to be introdu
ed with examples, and we will examinehow these features
an be used in programs. We will dis
uss the
hoi
es we made when designingthe theory presented here. We will then state pre
ise the semanti
s of the language we de�ne, in theform of typing rules (the stati
 semanti
s) and small-step redu
tion rules (the dynami
 semanti
s).IV.2 A module
al
ulus BThe present se
tion presents the
ore of a module des
ription language. This
ore, whi
h we
all B,builds on two essential features: aggregates of values and types,
alled stru
tures; and parametri
modules,
alled fun
tors.IV.2.1 Fundamental
onstru
ts[Sorry, this fragment has not been translated yet.℄IV.2.2 About the base language[Sorry, this fragment has not been translated yet.℄IV.2.3 Formal des
ription of the
ore languageIV.2.3.1 SyntaxWe
an now formally state the syntax and semanti
s of our
ore language. We limit ourselves tothe features mentioned so far, and delay singletons until se
tion IV.3.Sin
e we have de
ided to unify the module and expression languages, obje
ts formerly notedE and obje
ts formerly noted M now belong to the same world, and shall be noted E and
alled1Total Or Partial Hashed Abstra
t Types, in whi
h the words \total" and \partial" refer to total and partialfun
tors, also known as appli
ative and generative fun
tors.12

IV.2. A MODULE CALCULUS [B℄expressions. Similarly we will write T rather than S and speak of types. Nonetheless someexpressions will intuitively be seen as modules, and their types as signatures.E ::= expression or modulex �� y �� t �� . . . variables() unit valuefalse �� true boolean (generi
ally bv)0 �� 1 �� . . . integer (generi
ally n)hTi type �eld(E1,E2) pair�iE proje
tion (i 2 f1, 2g)�x : T. E lambda-abstra
tionE1 E2 appli
ationlet x = E0 inE : T lo
al binding
T ::= type or signatureunit unitbool booleansint integerstype abstra
t type �eldTypE proje
tion from a type �eld�x : T1. T2 dependent sum�x : T0. T1 dependent produ
tWe will use the following abbreviations.T1 � T2 := �x : T1. T2 produ
t typeT1! T2 := �x : T1. T2 arrow (fun
tion) typeIn the de�nitions of T1 � T2 and T1! T2, x is a fresh variable, i.e., a variable that is not free in T2.IV.2.3.2 VariablesWe use standard de�nitions of free variables, bound o

urren
es, alpha-
onversion and sub-stitutions. A
losed term is one with no free variable.We write fv� for the set of free variables of �. We write fx Eg� for the substitution of E forx in �.We will systemati
ally work up to alpha-
onversion, i.e., any term that we write down willformally denote its equivalen
e
lass modulo alpha-
onversion. Any typing or redu
tion step mayrename variables. For example, if a typing or redu
tion rule requires more than one instantiationof a metavariable, ea
h instantiation may use di�erent representative for bound variables. Thisfollows the tradition of the Barendregt variable
onvention, whi
h allows for substantially
learerexposition. We will generally not mention the omnipresent possibility of alpha-
onversion; syntaxdes
riptions will mention the binding stru
ture in the text.IV.2.3.3 EnvironmentsAn environment is a �nite list of (variable, type) pairs. We write nil for the empty environment,x : T for an environment of length 1, and use \," for
on
atenation, whi
h we treat as asso
iative.For example, an environment binding three variables will usually be written as x : T,y : T 0, z : T 00;other ways of writing the same environment are ((x : T,y : T 0), z : T 00) and (x : T,y : T 0), z : T 00 and(((nil, x : T),y : T 0), z : T 00).Environments are built from the following grammar:� ::= environnementnil empty�, x : T binding of the variable xAlternatively, environments may be seen as obje
ts of the form x1 : T1, . . . , xk : Tk with k 2 N.The domain of an environnement � = x1 : T1, . . . , xk : Tk is the set of variables fx1, . . . , xkg. Itis written dom �. 13

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .An environment binds the variables of its domain, and they are as usual subje
t to alpha-
onversion. Writing (�, � 0) supposes that � and � 0 have disjoint domains; alpha-
onversion must beperformed if ne
essary. In a
on
atenation (�, � 0), the variables in the domain of � bind in � 0.Note that our environments must be ordered sin
e we have dependent types. Thus (x : int,y :Typ x) is a well-formed environment, whereas (y : Typ x, x : int) is not (it
ould have been writtenas (y : Typ x, z : int) after renaming the bound variable to z, with the remaining o

urren
e of xbeing free).IV.2.4 TypingIV.2.4.1 Introdu
tionWe
onsider a
orre
t program (fragment) to be an expresion E asso
iated with a type T su
hthat E has the type T. When E
ontains free variables, these must be assigned a type through anenvironment.We will manipulate several forms of typing judgements, whi
h will always be lo
al judgements,of the form � ` J (in system B | later lo
al judgements will bear more annotations). System Bhas three forms of right-hand side for a lo
al typing judgement. .J ::= typing judgement� ` J lo
al judgementJ ::= lo
al judgement right-hand sideok environment
orre
tionT ok
orre
tion of the TE : T expression typingWe present typing rule under the usual presentation as a dedu
tion rules.IV.2.4.2 � ` ok Environment
orre
tionsEnvironments are built from left to right, binding by binding. Ea
h type assigned to a variablemust be valid in the environment that pre
edes the binding under
onsideration. Note that variablesbound by an environment are automati
ally distin
t as per our alpha-
onversion
onvention.(B/envok.nil)nil ` ok � ` T ok (B/envok.x)�, x : T ` okIV.2.4.3 � ` T ok Type
orre
tnessThe
orre
tness rules for types are standard: for base types, we require that the environmentbe well-formed, and for
onstru
ted types, we require ea
h part to be well-formed (treating depen-den
ies properly).� ` ok (B/tok.base.unit)� ` unit ok � ` ok (B/tok.base.bool)� ` bool ok � ` ok (B/tok.base.int)� ` int ok� ` ok (B/tok.type)� ` type ok� ` T 0 ok �, x : T 0 ` T 00 ok (B/tok.pair)� ` �x : T 0. T 00 ok � ` T 0 ok �, x : T 0 ` T 00 ok (B/tok.fun)� `�x : T 0. T 00 ok14

IV.2. A MODULE CALCULUS [B℄IV.2.4.4 � ` E : T Expression typingConstants Basi

onstants have their respe
tive type in a
orre
t environment.� ` ok (B/et.base.unit)� ` () : unit � ` ok (B/et.base.bool)� ` bv : bool � ` ok (B/et.base.int)� `n : intVariables Variables have the type stated in the environment.� ` ok when x : T 2 � (B/et.x)� ` x : TPairs Although our syntax allows dependent sums, system B is too restri
ted to take advantageof them (this defe
t will be remedied in system S). We
an only give pairs an ordinary pair type.� ` E1 : T1 � ` E2 : T2 (B/et.pair)� ` (E1,E2) : T1 � T2 � ` E : T1 � T2 (B/et.proj.1)� ` �1E : T1 � ` E : T1 � T2 (B/et.proj.2)� ` �2E : T2Fun
tions We state
lassi
al rules for typing fun
tions (or fun
tors) and appli
ation, keeping inmind that we have dependent types. Note that in order to type the appli
ation of a fun
tion thathas a dependent type, the o

urren
es of the formal parameter x must be repla
ed by the a
tualargument E0 inside the result type E. Thus an arbitrary expression
an appear in a type where asimple variable formally was. This illustrates the diÆ
ulty of restri
ting the presen
e of expressionsin types to
ertain synta
ti

ategories.�, x : T0 ` E : T1 (B/et.fun)� ` �x : T0. E :�x : T0.T1 � ` E1 :�x : T0.T � ` E0 : T0 (B/et.app)� ` E1 E0 : fx E0gTLo
al binding In order to type the lo
al binding of a variable to a value, we request that theprogrammer spe
ify the resulting type of the whole expression. Furthermore this type is not allowedto mention the lo
ally bound variable. This last point is easily understood from the fa
t that whileit would make sense for the variable x to be bound in the type of the body E, this variable
annotbe free in (let x = E0 inE : T). In parti
ular, if E0 were to
reate abstra
t types, there is no way toreferen
e them outside the binding. The ne
essity for the programmer to spe
ify the type is due tothe avoidan
e problem mentioned in se
tion I.2.2.6, whi
h makes inferen
e of T unde
idable.� ` E0 : T0 �, x : T0 ` E : T � ` T ok (B/et.let)� ` (let x = E0 inE : T) : TIV.2.4.5 hTi, TypE Type �eldsWe
an see h i as a
onstru
tor for the type type and Typ as the
orresponding destru
tor.This approa
h yields suitable typing rules.� ` T ok (B/et.type)� ` hTi : type � ` E : type (B/tok.�eld)� `TypE okIV.2.5 Run-timeValues The
lass of values (generi
ally written V) is given as a subgrammar of expressions.15

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .V ::= value() �� bv �� n
onstanthTi type �eld(V1,V2) pair�x : T. E lambda-abstra
tionIV.2.5.1 E �! E 0 Expression redu
tionWe de�ne the dynami
 behaviour of expressions via small-step redu
tion rules.Head redu
tion rules In the language that we have de�ned so far, head redu
tion
onfronts ea
hdestru
tor with a mat
hing
onstru
tor, and performs lo
al bindings. We impose a
all-by-valuestrategy in the rules (B/ered.app) and (B/ered.let). For the time being, we
ould allow �-redu
tion inits full generality, and obtain a
on
uent system; however we will ultimately introdu
e side e�e
ts,whi
h suggests sti
king to
all-by-value.(�x : T. E)V �! fx VgE (B/ered.app)�i (V1,V2) �!Vi (B/ered.proj)let x = V inE : T �! fx VgE (B/ered.let)No redu
tion in types We do not de�ne any redu
tion relation on types. A

ordingly there isno restri
tion on T in order for hTi to be a value; in parti
ular, if hTi
ontains embedded expressions(as in e.g., hTyp ((�x : type. x) hinti)i) these need not be values. The reason is that
omputationsin types traditionally belong in the
ompile-time world, hen
e to typing rules (and where relevanttyping algorithms), rather than in the run-time world now under s
rutiny. We will later (in systemD) add a
onstru
t for run-time type-
he
king, thus type
omputations will need to o

ur duringprogram exe
ution; run-time manipulation of types is also useful for generi
 programming (seese
tion V.3.2.3).Evaluation
ontexts We generi
ally write C for an evaluation
ontext of depth 1. Theseevaluation
ontexts are de�ned by the following grammar.C ::= evaluation
ontext (of depth 1)E1 fun
tion argumentV2 applied fun
tion(,E2) �rst
omponent of a pair(V1,) se
ond
omponent of a pair�i proje
tion (i 2 f1, 2g)let x = inE : T lo
al boundWe have arbitrarily �xed the evaluation order for fun
tion appli
ation (argument �rst, thenfun
tion) and pairing (left to right). This somewhat simpli�es the metatheory by not introdu
ingspurious lo
al nondeterminism. We
ould relax these
onstraints by authorising the redu
tion
ontexts E2 et (E1,); it is folklore that the resulting redu
tion relation would be
on
uent.The following redu
tion rule allows expressions to be redu
ed under
ontexts. The notation C �Emeans the expression resulting from pla
ing E inside the
ontext C.E �! E 0 (B/ered.
ontext)C � E �!C � E 016

IV.3. SINGLETONS [S℄IV.3 Singletons SIV.3.1 MotivationIV.3.1.1 Abstra
t types,
on
rete types[Sorry, this fragment has not been translated yet.℄IV.3.1.2 Type sharing[Sorry, this fragment has not been translated yet.℄IV.3.1.3 Value singletonsSo far, we have used singleton types to express type equalities: our singletons were of the form S(hTi)for some type T. The purpose of these singletons was to enable making x have the type T 0 when x hasthe type T and hTi and T 0 are equivalent: in other words, the judgement t : S(hTi), x : T ` x : Typ tshould be derivable (one
ould then substitute hT 0i for t).Let us now
onsider a fun
tor f whi
h
reates an abstra
t type from a type and a value, with asignature of the form �x : (�t : type.T0). (�t : type.T1). As we saw in se
tions I.2.1.3 and II.5.1.1,Typ�1 (f x) and Typ�1 (f y) are the same types only when x and y have the same behaviour: it isnot enough for them to provide the same types.Let us
onsider an example potential argument for f, with T0 = Typ t � (Typ t! unit)).module A = stru
t type t = int let x = (... : t * (t->unit)) endThe prin
ipal signature of the module A in Obje
tive Caml ismodule type S = sig type t = int val x : t * (t->unit) endIf we want to express that some module B is
ompatible with A, the best we
an do (whether inObje
tive Caml or in some other ML diale
t, or in the language de�ned so far) is to spe
ify thatB has the signature S. Unfortunately this spe
i�
ation is in
omplete sin
e it does not distinguishbetween modules that have x �elds with the same type but di�erent values.One way to illustrate this limitation is to
onsider an identity fun
tor Id1
apable of taking Aas an argument. The prin
ipal signature of su
h a fun
tor (whi
h is based on Leroy's manifest typetheory with appli
ative fun
tors [Ler95℄) is the following:fun
tor (A : sig type t val x : t * (t->unit) end) ->sig type t = A.t val x : t * (t->unit) endNoti
e that the signature of Id1(A) is the signature S de�ned above: while it does indi
atethat Id1(A).t is equal to A.t, nothing
onne
ts Id1(A).x with A.x beyond them having the sametype. The higher-order module theory of Dreyer, Crary and Harper [DCH03℄ does not performany better on this example. With our notations, the signature of the fun
tor Id1 is �x : (�t :type. Typ t � (Typ t! unit)). (�t 0 : S(�1x). Typ t 0 � (Typ t 0! unit)).In the
ase of an identity fun
tor EId0 a
ting solely on a type, i.e., whose argument has thesignature type, we get a more pre
ise signature: �x : type. S(x),
learly indi
ating that the resultof applying the identity fun
tor is equivalent to the argument | TypEId0 (EA0) has the signatureS(EId0 (EA0)). We shall extend our language so that this property also holds for value �elds.17

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .We add singleton types of the form S(E), where E is any value. For example the prin
ipaltype of the expression 3 is now S(3), the type of values that are equal to 3. We
an now giveId1 a more pre
ise signature, by also giving the se
ond
omponent a singleton type: �x : (�t :type. Typ t � (Typ t! unit)). (�t 0 : S(t). S(�1x) � S(�2x)), i.e., in an Obje
tive Caml-like notationfun
tor (A : sig type t val x : t * (t->unit) end) ->sig type t = A.t val x = A.x endThanks to this signature, Id1(A)
an have the signature sig type t = A.t val x = A.x end,whi
h makes it inter
hangeable with A.IV.3.1.4 Higher-order singletons[Sorry, this fragment has not been translated yet.℄IV.3.1.5 A pra
ti
al exampleLet us illustrate higher-order singletons on an example from the author's programming experien
e.The standard library of Obje
tive Caml provides an implementation of �nite sets via a fun
torSet.Make. This fun
tor takes an argument with the following signature:module type Set.OrderedType = sigtype tval
ompare : t -> t -> intendA module of signature Set.OrderedType provides a type as well as a fun
tion whi
h mustimplement a total order; a set is represented as a sear
h tree. An example of a module with thissignature is String: Set.Make(String).t is therefore a type for sets of strings. The result returnedby Set.Make has a signature
alled Set.S from whi
h we quote a relevant ex
erpt:module type Set.S = sigtype elt (*type of elements*)type t (*type of sets*)val add : elt -> t -> t (*addition fun
tion*)...endAn annotation in the de�nition of Set.Make spe
i�ed that Set.Make(M).elt = M.t.The program under
onsideration manipulates symbols, whi
h are internally implemented asstrings. However only suitable approved strings may be symbols, therefore the type of symbols isan abstra
t type provided by a module whi
h we
all Syntax.module Syntax : sigtype symbolval name : symbol -> String.t...end 18

IV.3. SINGLETONS [S℄Sin
e several other modules in the program manipulate sets of symbols, we wish to provide thistype alongside symbol. How do we mention the type of symbol sets in the signature of Syntax? Wemust spe
ify a module of signature Set.S, indi
ating that the element type is that of symbols. Forthat purpose we need to de�ne a symbol module.module Syntax : sigmodule Symbol : Set.OrderedTypemodule SymSet : Set.S with type elt = Symbol.tand type t = Set.Make(Symbol).t...endWe
ould also write as follows:module Syntax : sigmodule Symbol : Set.OrderedTypemodule SymSet : Set.S...end with module SymSet = Set.Make(Symbol)The signatures above are equivalent in Obje
tive Caml.The diÆ
ulty arises when writing the implementation of the Syntax module. We may writemodule Syntax = stru
tmodule Symbol = stru
t type t = String.t let
ompare = String.
ompare endmodule SymSet = Set.Make(Symbol)...endor evenmodule Syntax = stru
tmodule Symbol = Stringmodule SymSet = Set.Make(Symbol)...endUnfortunately the resulting SymSet module is not
ompatible with Set.Make(String). Sin
eObje
tive Caml only ever
ompares type �elds of modules, its type analysis remembers the equalitybetween Symbol.t and String.t but not that between Symbol and String, therefore the typesSet.Make(String).t and Set.Make(Symbol).t
annot safely be de
lared
ompatible.Sin
e our Syntax module
alls other, lower-level modules that manipulate sets of strings, the in-
ompatibility of Set.Make(String).t with Set.Make(Symbol).t is a major problem. The solutionwe
hose was to only expose the symbol type, and not its
omparison fun
tion:module Syntax = stru
ttype symbol = String.tmodule SymSet = Set.Make(String)... 19

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .end : sigtype symbolmodule SymSet : Set.S with type t = symbol...endThe disadvantage of this signature is that is hides the
hoi
e of a set implementation: that fa
tthat SymSet is the result of an appli
ation of the Set.Make fun
tor does not appear. This is aproblem be
ause some users of the Syntax modules manipulate data with more
omplex stru
tures(e.g., sets of sets of symbols) built from fun
tors that take an argument produ
ed by Set.Make. Wehad to provide these data stru
tures alongside SymSet in the Syntax module, even though theseextra data stru
tures had nothing to do in Syntax from a
ode organisation point of view.In this
ase, simply being able to write module Symbol = String in the implementation of theSyntaxmodule in su
h a way as to make the types Set.Make(String).t and Set.Make(Symbole).tinter
hangeable would have permitted the
ode to be organised properly, in parti
ular with respe
tto abstra
tion. In system S, this is possible, sin
e the Symbol module will have the signature S(x
alled "String") whi
h result in Set.Make(String) and Set.Make(Symbol) being
ompatiblewithin the implementation of the Syntax module.IV.3.2 Properties[Sorry, this fragment has not been translated yet.℄IV.3.3 Typing rulesWe state typing rules for system S. The operational semanti
s (
onsisting of the redu
tion rules(S/ered.app), (S/ered.proj), (S/ered.let), (S/ered.
ontext), as well as the de�nitions of values and redu
tion
ontexts) is un
hanged from system B.System S
ontains new typing judgements for subtyping,
onversion and
onvertibility.J ::= lo
al judgement right-hand side. . .T �! T 0 typing
onversionT � T 0
onvertibility equivalen
e on typesE �! E 0 expression
onversionE � E 0
onvertibility equivalen
e on expressionsT1 <: T2 subtypingMost typing rules of B are in
luded in S. The following rules are taken as is from B (and willnot be repeated here):� environment
orre
tion: all rules | (S/envok.nil), (S/envok.x);� type
orre
tion: all rules | (S/tok.base.unit), (S/tok.base.bool), (S/tok.base.int), (S/tok.type),(S/tok.pair), (S/tok.fun), (S/tok.�eld);� expression typing: all rules ex
ept proje
tions and lo
al binding | (S/et.base.unit),(S/et.base.bool), (S/et.base.int), (S/et.x), (S/et.pair), (S/et.fun), (S/et.app), (S/et.type).We omit lo
al binding in system S be
ause it is super
uous (see se
tion IV.2.1.4), thus avoiding theneed to take them into a

ount in singleton typing rules.20

IV.3. SINGLETONS [S℄IV.3.3.1 � ` T <: T 0 ; ... SubtypingThe subtyping relation explains how an expression may have more than one type, some of whi
hare more pre
ise than others. Intuitively, the type T is a subtype of T 0 whenever any expression thathas the type T also has the type T 0. We engrave the forward impli
ation with an impli
it subtypingrule. � ` E : T � ` T <: T 0 (S/et.sub)� ` E : T 0Our subtyping relation is de�ned synta
ti
ally (by dedu
tion rules) rather than semanti
ally, in that nothingmandates the reverse appli
ation: it is possible for � ` E : T 0 to be derivable whenever � ` E : T is without thejudgement � ` T <: T 0 being derivable. Whether a subtyping relation should be semanti
 (i.e., fully
apture typesubsumption for expressions) is debatable. On the one hand, a semanti
 subtyping relation permits a set-theoreti
interpretation of types as sets of expressions. On the other hand, the rules needed to enfor
e semanti
ity would befragile, in that they would not play well with extensions of the system. For example, if V is a value of type T, then withsemanti
 subtyping T <: S(V) must hold whenever T
ontains the single value V, whi
h may happen
oin
identally.Consider for instan
e the type �t : type. Typ t! Typ t, whi
h obviously
ontains the polymorphi
 identity fun
tion(�t : type. �x : Typ t. x)). In a suitably weak system, su
h as system S, a parametri
ity [Wad89℄ result ensures thatthere is no other fun
tion of this type. However adding either dynami
 type-
he
king (as we will do in system D) oran unrestri
ted �xpoint
ombinator would let one write other fun
tions of this type.If two types are inter
onvertible, they are subtypes of one another. Thus subtyping in
ludes
omputational equivalen
es on types. � ` T � T 0 (S/tsub.eq)� ` T <: T 0Subtyping is a preorder. The rule (S/tsub.eq) enfor
es re
exivity; we state transitivity.� ` T <: T 0 � ` T 0 <: T 00 (S/tsub.trans)� ` T <: T 00IV.3.3.2 S(E) SingletonsSingleton types appear through three generi
 rules, whi
h have no
onstraint on the type of theexpression whose singleton is taken. The singleton S(E) is well-formed as soon as E has some typeT; any well-typed expression E thus has the type S(E), and S(E) is a subtype of any of its types.Note that in order to prove that E has the type S(E), one must �rst �nd some type T that E hasand then apply (S/et.sing).� ` E : T (S/tok.sing)� ` S(E) ok � ` E : T (S/et.sing)� ` E : S(E) � ` E : T (S/tsub.sing)� ` S(E) <: TThe rule (S/et.sing) (
ombined with the subtyping rules) is a parti
ularly powerful instan
e of asel��
ation rule in a module language with manifest types [HL94, Ler94℄ (see se
tion I.2.2.2).IV.3.3.3 � ` E : T ; � ` T1 <: T2 Expression typingAs in system B, we �rst assign non-dependent types to pairs. A dependent type
an be obtainedvia the subtyping rule (S/tsub.
ong.pair) (re
all that T1 � T2 is an abbreviation for �x : T1. T2). In thisrule, note that the se
ond premise
ontains the stronger hypothesis on x, namely x : T 01 , whi
hfollows from the fa
t that the hypothesis x : T 02 might not be enough to ensure that T 001 be valid. Athird premise ensures that �x : T 02 . T 002 is well-formed, whi
h requires that T 002 be well-formed underthe weaker hypothesis x : T 02 . 21

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .� ` T1 <: T 01 �, x : T1 ` T2 <: T 02 �, x : T 01 ` T 02 ok (S/tsub.
ong.pair)� ` �x : T1. T2 <: �x : T 01 . T 02In order to type a proje
tion, the argument expression must be given a (dependent) pair type.Typing the �rst proje
tion is simple, as its type is readily available in the pair type. Typing these
ond proje
tion is more
ompli
ated. If the expression E has the type �x : T1. T2 then �2E onlyhas the type T2 with a suitably strong hypothesis on the variable x. For instan
e the expression(3, 3) has the type �x : int. S(x), and while x : S(3) ` �2 (3, 3) : S(x) holds, x : int ` �2 (3, 3) : S(x)does not.� ` E : �x : T1. T2 (S/et.proj.1)� ` �1E : T1 � ` E : �x : T1. T2 � ` E1 : S(�1E) (S/et.proj.2)� ` �2E : fx E1gT2The premises of the rule (S/et.proj.2) are usually unduely
onstraining, and we will often use oneof two admissible variants that only require the �rst premise � ` E : �x : T1. T2. The most
ommonrule repla
es the variable x by the �rst proje
tion of E in T2. Another variant keeps tra
k of the�rst
omponent via a variable x whi
h is
onstrained to the type S(�1E).� ` E : �x : T1. T2 (et.proj.2s)� ` �2E : fx
�1EgT2 � ` E : �x : T1. T2 (et.proj.2x)�, x : S(�1E) ` �2E : T2We state the usual
ongruen
e rule for subtyping through dependent produ
ts. This rule issimilar to (S/tsub.
ong.pair), with hypotheses suitably reversed when dealing with the
ontravariantargument type.� ` T 00 <: T0 �, x : T 00 ` T1 <: T 01 �, x : T0 ` T1 ok (S/tsub.
ong.fun)� `�x : T0.T1 <: �x : T 00 .T 01IV.3.3.4 � ` T � T 0 ; � ` E � E 0 Convertibility equivalen
esWe de�ne an equivalen
e relation on types and one on expressions as the smallest equivalen
erelation
ontaining the appropriate
onversion relation. (Stri
tly speaking these are two families ofrelations, indexed by environments.) These relations are
alled
onvertibility.� ` T ok (S/teq.re
)� ` T � T � ` T2 � T1 (S/teq.sym)� ` T1 � T2� ` T1 � T2 � ` T2 � T3 (S/teq.trans)� ` T1 � T3 � ` T1 �! T2 (S/teq.
onv)� ` T1 � T2� ` E : T (S/eeq.re
)� ` E � E � ` E2 � E1 (S/eeq.sym)� ` E1 � E2� ` E1 � E2 � ` E2 � E3 (S/eeq.trans)� ` E1 � E3 � ` E1 �! E2 (S/eeq.
onv)� ` E1 � E2IV.3.3.5 � ` T �! T 0 Type
onversionType
onversion mostly
onsists in
onversion of embedded expressions. Types additionallyundergo some slight simpli�
ation.Conversion is only de�ned on valid types; the rules de�ning
onversion
ontain
orre
tionpremises in addition to the
onversion premises in
ontext rules.Contexts At the type level,
onversion applies re
ursively to all subtypes. We state this via
ontext rules whi
h allow
onversion of both type and expression subterms of types.22

IV.3. SINGLETONS [S℄� ` T1 �! T 01 �, x : T1 ` T2 ok (S/t
onv.
ong.pair.1)� ` �x : T1. T2 �! �x : T 01 . T2�, x : T1 ` T2 �! T 02 � ` T1 ok (S/t
onv.
ong.pair.2)� ` �x : T1. T2 �! �x : T1. T 02� ` T0 �! T 00 �, x : T0 ` T1 ok (S/t
onv.
ong.fun.arg)� `�x : T0.T1 �! �x : T 00 .T1� ` T0 ok �, x : T0 ` T1 �! T 01 (S/t
onv.
ong.fun.ret)� `�x : T0.T1 �! �x : T0.T 01� ` E �! E 0 (S/t
onv.
ong.sing)� ` S(E) �! S(E 0) � ` E �! E 0 � ` E : type (S/t
onv.
ong.�eld)� `TypE �! TypE 0Simpli�
ations The term Typ hTi
an be seen as a destru
tor applied to the mat
hing
onstru
torapplied to T; it is equivalent to T. � ` T ok (S/t
onv.�eld)� `Typ hTi �! TSemanti
 rules We de
lare that the unit type
ontains a single value: this type is isomorphi
to a singleton, and the rule (S/t
onv.unit) enshrines this equivalen
e into the synta
ti
 de�nition oftype equivalen
e. The
hoi
e of orientation in this rule does not matter greatly.� ` ok (S/t
onv.unit)� ` S(()) �! unitIV.3.3.6 � ` E �! E 0 Expression
onversionIf E evaluates to E 0 and E has the type S(E), then type preservation requires that E 0 havethe type S(E). This is ensured by making E
onvertible to E 0. Conversion thus in
ludes run-timeredu
tion2.Conversion is only de�ned on well-typed expressions; the rules de�ning
onversion
ontain
or-re
tion premises in addition to the
onversion premises in
ontext rules.We do not state any
onversion rule for lo
al binding expressions (i.e., expressions of the formlet x = E0 inE : T). As indi
ated in se
tion IV.2.1.4, this
onstru
t is just synta
ti
 sugar when E0is pure; in E, where lo
al binding be
omes useful, it is always judged impure and thus not subje
tto
onversion.Contexts Unlike for the run-time redu
tion relation, there is no parti
ular advantage to keeping
onversion deterministi
, while
on
uen
e of
onversion is a key property of our metatheoreti
study. We therefore permit arbitrary evaluation strategies, and allow redu
tion in any
ontext. Inpreparation for the addition of impure
onstru
ts to the language, whi
h only
ome in
onversioninside fun
tion bodies that hide the impurity, we state the slightly pe
uliar rule (S/e
onv.
ong.fun.body)to allow the
onversion of any pure subexpression of an impure subexpression of a pure expression.� ` T0 �! T 00 �, x : T0 ` E1 : T1 (S/e
onv.
ong.fun.arg)� ` (�x : T0. E1) �! (�x : T 00 . E1)2For pure expressions, as we shall see in system E. 23

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .�, x : T0 ` E �! E 0 �, x : T0,y : S(E) ` E1 : T1 (S/e
onv.
ong.fun.body)� ` (�x : T0. fy EgE1) �! (�x : T0. fy E 0gE1)� ` E �! E 0 � ` E :�x : T0.T1 � ` E0 : T0 (S/e
onv.
ong.app.fun)� ` EE0 �! E 0 E0� ` E �! E 0 � ` E : T0 � ` E1 :�x : T0.T1 (S/e
onv.
ong.app.arg)� ` E1 E �! E1 E 0� ` E �! E 0 � ` E2 : T2 (S/e
onv.
ong.pair.1)� ` (E,E2) �! (E 0,E2) � ` E �! E 0 � ` E1 : T1 (S/e
onv.
ong.pair.2)� ` (E1,E) �! (E1,E 0)� ` E �! E 0 � ` E : �x : T1. T2 (S/e
onv.
ong.proj)� ` �iE �! �iE 0 � ` T �! T 0 (S/e
onv.
ong.�eld)� ` hTi �! hT 0iHead redu
tion The following rules des
ribe the usual evaluation of lambda terms with pairs.�, x : T0 ` E1 : T1 � ` E0 : T0 (S/e
onv.app)� ` (�x : T0. E1)E0 �! fx E0gE1 � ` E1 : T1 � ` E2 : T2 (S/e
onv.proj)� ` �i (E1,E2) �! EiIV.3.3.7 ExtensionalityWe state extensionality rules for system S. Su
h rules
an have many forms; we
hoose to use
onversion rules, oriented as eta-expansions. For example the rule (S/e
onv.eta.pair) may be read as\any expression that is typable as a pair
an be rewritten in su
h a way as to expose the pairstru
ture".Given the
hoi
e of using
onversion rules (�
onversions to supplement the �
onversions above),there is a further
hoi
e between expansions and
ontra
tions. A major te
hni
al advantage ofexpansions is that they do not hurt the
on
uen
e of the system, unlike eta-
ontra
tions [Klo80℄.Expansions do however have the obvious defe
t of breaking normalisation. In pra
ti
e, it seemspreferable to express extensionality using expansions, and when normalisation is required to restri
ttheir use to a �nite domain (given by the stru
ture of the type of the
onverted expression) [Gog05℄.� ` E : type (S/e
onv.eta.�eld)� ` E �! hTypEi� ` E :�x : T0.T1 (S/e
onv.eta.fun)� ` E �! (�x : T0. Ex) � ` E :�x : T1. T2 (S/e
onv.eta.pair)� ` E �! (�1E,�2E)IV.4 Sealing EIV.4.1 Sealing[Sorry, this fragment has not been translated yet.℄IV.4.2 An e�e
t systemIV.4.2.1 Introdu
tion[Sorry, this fragment has not been translated yet.℄24

IV.4. SEALING [E℄IV.4.2.2 Purity[Sorry, this fragment has not been translated yet.℄IV.4.2.3 Proje
tibility, separability and
omparabilityIn the system we are des
ribing, a \well-behaved" module is a pure module. Purity is a very strongnotion: a pure module is fully known stati
ally (it has its singleton type, and singleton types fully
hara
terise an obje
t). There are �ner notions to determine legitimate uses of a module; in thisse
tion we will dis
uss some of these.Classi
al module
al
uli, notably Harper and Lillibridge's translu
ent sums [HL94, Lil97℄ andLeroy's manifest types [Ler94, Ler95℄ fo
us on the
on
ept of proje
tibility (see se
tion I.2.2.2).The question is, given a module expression M, whether the term M.t may be used to form a type.If so, the moduleM is said to be proje
tible. In our notation, E is proje
tible if and only if Typ�1Eis a
orre
t type. We approximate proje
tibility by purity: Typ�1E is
orre
t if and only if E ispure (and has an appropriate signature). This is indeed an approximation sin
e purity is a strongernotion; for example, in the following
ode fragment, the modules A and B are both proje
tible, butonly A is pure, while B is impure.module A = stru
t type t = int let x = 3 endmodule B = stru
t type t = int let x = ref 3 endA
losely related notion is that of
omparability: a module is said to be
omparable whenits equivalen
e with another module
an be tested. In the
al
ulus of Dreyer, Crary and Harper[DCH03℄, the notions de
omparability and proje
tability
oin
ide, sin
e testing the equivalen
eof two modules amounts to
omparing their type
omponents. In our
al
ulus, purity stands for
omparability as well as proje
tability (we treat type and value
omponents identi
ally).In se
tion I.3.1.1, we mentioned the issue of phase separation, i.e.,
learly di�erentiating betweenthe stati
 phase of the program, whi
h in
ludes a type-
he
k that reje
ts programs that would gowrong, and the dynami
 phase, during whi
h
omputation pro
eeds without errors. In the
oreof ML, ea
h phase is
losely asso
iated with one part of the language: type-
he
king is mostly
on
erned with types, and
omputation is mostly
on
erned with expressions. This is no longer truewhen modules are
onsidered, as they mix types and expressions at the synta
ti
 level. Neverthelessone usually tries to separate types and expressions in the metatheory of modules, in order todistinguish between the stati
 and dynami
 aspe
ts.In his analysis of ML modules [Dre05℄, Dreyer distinguishes between two levels of purity inmodules. A module is said to be totally pure3 if it is pure in our sense, i.e., that its evaluationdoes not trigger an e�e
t of any kind. A module is said to be partially pure if its type
omponents
an be fully determined without triggering an e�e
t. For example the module B above is partiallypure but not totally pure. A proje
tible module must be partially pure.One diÆ
ulty with partial purity is in de
iding whether the e�e
ts of an expression have anin
uen
e on its type parts. Total purity is of
ourse a suÆ
ient
ondition. A weaker suÆ
ient
ondition is separability. This notion was introdu
ed by Harper, Mit
hell and Moggi [HMM90℄and is expounded in the
ontext of a module
al
ulus with fun
tors by Dreyer [Dre05℄. A module isseparable if its type
omponents do not depend at all on any
omputation that may have e�e
ts,in parti
ular any
ore-expression-level
omputation. A separable module is always partially pure,3A
tually Dreyer uses the wording \dynami
ally pure" and \stati
ally pure" where we use \totally pure" and\partially pure". We
hanged the terminology be
ause we will use \dynami
ally pure" and \stati
ally pure" in adi�erent sense, following other work by Dreyer [DCH03℄.25

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .hen
e proje
tible, but may be impure, like B above. Conversely, in a language with �rst-
lassmodules, one
an easily write pure inseparable modules, su
h as the module C in the followingprogram fragment.let n = read_int ()module A = stru
t type t = int let x = 3 endmodule B = stru
t type t = int let x = ref 3 endmodule A' = stru
t type t = bool let x = true endmodule B' = stru
t type t = bool let x = ref true endmodule C = if n >= 0 then A else A'module D = if n >= 0 then B else B'The module D is partially pure but neither totally pure nor separable.An important
on
lusion of the dis
ussion of type singletons and module equivalen
e in IV.3.1was that in the presen
e of fun
tors, separability is hard to analyse | and this is why we did nottry to analyse it, and instead integrated expressions with types when testing module equivalen
e.Separability looks all the less enti
ing to us as we eventually want to be able to
ompare typesdynami
ally, whi
h means that our notion of equivalen
e must work well even in inseparable
ases.In the present work, we do no try to go further than (total) purity. If re�nements are desired, ratherthan introdu
e separability, we suggest instead to make the e�e
t system more sophisti
ated, and inparti
ular to make it possible to dete
t partial purity by \de
lassifying" e�e
ts that do not impa
tthe value of an expression.IV.4.3 Formal presentationWe give a formal des
ription of system E, whi
h
onsists of adding the sealing
onstru
t to S and,more importantly, an e�e
t system.IV.4.3.1 SyntaxWe �rst give the syntax of e�e
ts.
 ::= e�e
tP pureI impureRe
all that e�e
ts are ordered: the relation
1 v
2 is su
h that P v I (but not the
onverse).We write
1t
2 for the least upper bound of
1 and
2, and
1u
2 for their greatest lower bound.The syntax of system E extends that of system S by adding an e�e
t annotation where ne
essary,viz.,� on fun
tion types, hen
eforth written �x : T0.
T1; they are abbreviated as T0!
 T1 when xis not free in T1;� on expression typing judgements, hen
eforth written E :
 T.We sometimes omit the e�e
t annotation when it is P, thus we might write the type of a purefun
tion as �x : T0. T1 or T0! T1. Furthermore the syntax of expressions now
omprises sealing.T ::= type. . .�x : T0.
T1 dependent produ
t (also written T1!
 T2 when x =2 fvT1)26

IV.4. SEALING [E℄E ::= expression (module). . .E !! T sealingJ ::= typing judgement right-hand side. . .E :
 T expression typingIV.4.3.2 E �! E 0 Run-timeThe only run-time novelty of system E is the need to redu
e a sealing
onstru
t. The usualintuition in ML-like languages is that types have no bearing on exe
ution, only on stati
 type-
he
king; in this light, E !! T is equivalent to E at run-time.V !! T �!V (E/ered.seal)The sealed expression is �rst redu
ed to a value.C ::= evaluation
ontext (of depth 1). . . !! T sealingThe rules (E/ered.app), (E/ered.proj), (E/ered.let) et (E/ered.
ontext) are inherited from system B via S.IV.4.3.3 � ` . . . Typing:
orre
tion, equivalen
es, subtypingSystem E
ontains all the typing rules of system S, and adds one for sealing. However theinherited rules must usually be modi�ed to add an e�e
t annotation. We will restate a�e
ted rulesand explain the e�e
t of e�e
ts.Inhreited rules The following rules are taken as is from system B via S:� (E/envok.nil), (E/envok.x);� (E/tok.base.unit), (E/tok.base.bool), (E/tok.base.int), (E/tok.type), (E/tok.pair);� (E/teq.re
), (E/teq.sym), (E/teq.trans), (E/teq.
onv);� (E/eeq.sym), (E/eeq.trans), (E/eeq.
onv);� (E/t
onv.
ong.pair.1), (E/t
onv.
ong.pair.2), (E/e
onv.
ong.�eld), (E/t
onv.
ong.sing), (E/t
onv.�eld),(E/t
onv.unit);� (E/tsub.trans), (E/tsub.eq), (E/tsub.
ong.pair).Apart from expression typing and from (E/tsub.
ong.fun), the modi�
ations to the rules of systemS
onsist of requiring expressions embedded in types to be pure, and allow dependent produ
ttypes to bear e�e
t annotations. The rules (E/e
onv.
ong.fun.arg) and (E/e
onv.
ong.fun.body) do howeverpermit the body of the fun
tion to be pure, as all that is required is that the fun
tion itself be apure expression.� ` T 0 ok �, x : T 0 ` T 00 ok (E/tok.fun)� `�x : T 0.
T 00 ok � ` E :P type (E/tok.�eld)� `TypE ok � ` E :P T (E/tok.sing)� ` S(E) ok27

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .� ` E :P T (E/eeq.re
)� ` E � E � ` E :P T (E/tsub.sing)� ` S(E) <: T� ` T0 �! T 00 �, x : T0 ` T1 ok (E/t
onv.
ong.fun.arg)� `�x : T0.
T1 �! �x : T 00 .
T1� ` T0 ok �, x : T0 ` T1 �! T 01 (E/t
onv.
ong.fun.ret)� `�x : T0.
T1 �! �x : T0.
T 01� ` E �! E 0 � ` E :P type (E/t
onv.
ong.�eld)� `TypE �! TypE 0� ` T0 �! T 00 �, x : T0 ` E1 :
 T1 (E/e
onv.
ong.fun.arg)� ` (�x : T0. E1) �! (�x : T 00 . E1)�, x : T0 ` E �! E 0 �, x : T0,y : S(E) ` E1 :
 T1 (E/e
onv.
ong.fun.body)� ` (�x : T0. fy EgE1) �! (�x : T0. fy E 0gE1)� ` E �! E 0 � ` E2 :P T2 (E/e
onv.
ong.pair.1)� ` (E,E2) �! (E 0,E2) � ` E �! E 0 � ` E1 :P T1 (E/e
onv.
ong.pair.2)� ` (E1,E) �! (E1,E 0)� ` E �! E 0 � ` E :P �x : T1. T2 (E/e
onv.
ong.proj)� ` �iE �! �iE 0� ` E �! E 0 � ` E :P �x : T0. PT1 � ` E0 :P T0 (E/e
onv.
ong.app.fun)� ` EE0 �! E 0 E0� ` E �! E 0 � ` E :P T0 � ` E1 :P �x : T0. PT1 (E/e
onv.
ong.app.arg)� ` E1 E �! E1 E 0� ` E1 :P T1 � ` E2 :P T2 (E/e
onv.proj)� ` �i (E1,E2) �! Ei �, x : T0 ` E1 :P T1 � ` E0 :P T0 (E/e
onv.app)� ` (�x : T0. E1)E0 �! fx E0gE1� ` E :P type (E/e
onv.eta.�eld)� ` E �! hTypEi� ` E :P �x : T0.
T1 (E/e
onv.eta.fun)� ` E �! (�x : T0. Ex) � ` E :P �x : T1. T2 (E/e
onv.eta.pair)� ` E �! (�1E,�2E)Subtyping for fun
tions The
ongruen
e rule for subtyping a

ross dependent produ
ts needsto take e�e
ts into a

ount. A fun
tion type is smaller than another fun
tion type when the domainof the �rst is smaller, the image of the �rst is larger, and the �rst allows fewer e�e
ts to o

ur duringexe
ution.� ` T 00 <: T0 �, x : T 00 ` T1 <: T 01 �, x : T0 ` T1 ok when
 v
 0 (E/tsub.
ong.fun)� `�x : T0.
T1 <: �x : T 00 .
 0T 01IV.4.3.4 � ` E :
 T Expression typingExpression typing judgements now
arry an e�e
t annotation.Constants, variables, type �elds Constantes, variables and type �elds are always pure.28

IV.4. SEALING [E℄� ` ok (E/et.base.unit)� ` () :P unit � ` ok (E/et.base.bool)� ` bv :P bool � ` ok (E/et.base.int)� `n :P int� ` ok when x : T 2 � (E/et.x)� ` x :P T � ` T ok (E/et.type)� ` hTi :P typePairs Pairs are simple data stru
tures: the type of a pair simply indi
ates the types of its
om-ponents. The information as to whi
h
omponent of the pair
arries whi
h e�e
t is lost. Thereforetyping a pair requires a
ommon e�e
t annotation to be found for its
omponents (the rule (E/et.sub)used on ea
h side allows one to use the least upper bound). Similarly, the e�e
ts of a �rst proje
-tion are the e�e
ts of the original expression. The se
ond proje
tion
an only be used on a pureexpression sin
e the expression appears in a type4.� ` E1 :
 T1 � ` E2 :
 T2 (E/et.pair)� ` (E1,E2) :
 T1 � T2� ` E :
 �x : T1. T2 (E/et.proj.1)� ` �1E :
 T1 � ` E :P �x : T1. T2 � ` E1 :P S(�1E) (E/et.proj.2)� ` �2E :P fx E1gT2Fun
tions An immediate fun
tion is always pure. The abstra
tion
onstru
t suspends the e�e
tsof the fun
tion, whi
h are re
e
ted in the e�e
t annotation on the fun
tion type. When a fun
tionis applied, the e�e
ts of the body are released and add to the e�e
ts of the fun
tion expression. Werequire the argument of a fun
tion to be pure as it is substituted into the result type.�, x : T0 ` E :
 T1 (E/et.fun)� ` �x : T0. E :P �x : T0.
T1 � ` E1 :
1 �x : T0.
2T � ` E0 :P T0 (E/et.app)� ` E1 E0 :
1t
2 fx E0gTLo
al binding In the rule (E/et.app), the argument E0 must be pure. In order to lift this restri
tion,one may use a lo
al binding
onstru
t instead, as dis
ussed in se
tion IV.2.1.4. One may then nolonger substitute E0 in the result type, thus a premise of (E/et.let) imposes that the result type doesnot mention the lo
ally bound variable x | T is the type of the whole expression as well as thetype of the body E. The e�e
ts of the expression are the union of that of E0 and E. Sin
e weonly distinguish between two e�e
ts, and the
ase where both E0 and E is not useful as fun
tionappli
ation
an be used instead, we dire
tly state the rule assuming the impure e�e
t I throughout.With a ri
her e�e
t system, we would use the least upper bound of the e�e
ts of E0 and E as theresult e�e
t, although we would impose that this bound not be P in order to keep the pure fragmentof the language as small as possible.� ` E0 :I T0 �, x : T0 ` E :I T � ` T ok (E/et.let)� ` (let x = E0 inE : T) :I TIf E is an impure expression of type T1 � T2, the se
ond proje
tion of E
an be en
oded aslet x = E in�2x : T2. If E0 is an impure expression and E has the type T1, then the appli
ation of Eto E0
an be en
oded as let x = E0 inEx : T2. Note that in both
ases T2 is not allowed to
ontainx: the type of E may not be dependent.Subtyping The rule (E/et.sub)
ombines impli
it subtyping with impli
it sube�e
tuation: anyexpression whose e�e
ts are
onstrained by
 has its e�e
ts
onstrained by any
 0 su
h that
 v
 0.4A
tually it would suÆ
e to require E1 to be pure, with e�e
ts allowed in E, however we will not have a use forthis generalisation. 29

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .� ` E :
 T � ` T <: T 0 when
 v
 0 (E/et.sub)� ` E :
 0 T 0Singletons We qualify the rule (E/et.sing) to restri
t singletons to pure expressions.� ` E :P T (E/et.sing)� ` E :P S(E)Sealing A new rule des
ribes how to type a sealing. In general, in the expression E !! T, the\natural" type for E is a subtype of T, and the subtyping rule must be applied. The e�e
ts of E !! Tare those of E, plus the e�e
t of the sealing; sin
e we do not distinguish between e�e
ts, the e�e
tannotation on E !! T is always I. � ` E :
 T (E/et.seal)� ` (E !! T) :I TIV.4.4 Appli
ativityIV.4.4.1 Appli
ative fun
torsConsider a fun
tor whose body is sealed, i.e., �x : T0. (E !! T). A

ording to our des
ription ofsealing, ea
h appli
ation of this fun
tor
auses the expression E !! T to be evaluated, produ
ing afresh bat
h of abstra
t types. Therefore the types Typ�1x1 and Typ�1x2 in the following programare in
ompatible: let f = �x : unit. ((hT 0i,E) !! �x : type. T1) inlet x1 = f () in let x2 = f () in . . .This means that f is a generative fun
tor (see se
tion I.2.2.3). A fun
tor whose body is sealedis always generative; this is re
e
ted by its type, whi
h has the form �x : T0. IT indi
ating that theappli
ation of the fun
tor has a side e�e
t (namely type
reation). On the other hand, a fun
torwhose body is pure (thus in parti
ular not sealed) has a type of the form �x : T0. PT, and does notparti
ipate in
reating abstra
tion: it is a transparent fun
tor.Sometimes we would like for a fun
tor to
reate abstra
tion, but for repeated appli
ations of thefun
tor to the same arguments to produ
e
ompatible abstra
t types. A typi
al example is a fun
tor
reating a data stru
ture, where the arguments des
ribe the elements of the data stru
ture. Su
hfun
tors are
alled appli
ative fun
tors [Ler95℄. We shall see two ways of supporting appli
ativefun
tors.One method is to add a new notion of sealing to the language, su
h that sealing the same moduletwi
e yields
ompatible results (in the sense that their abstra
t types are equivalent). This notion ofsealing is
alled weak sealing, and we will write a weak sealing as E :: T. The form of sealing whi
halways
reates fresh abstra
t types, whi
h we already know as E !! T, is
alled strong sealing. Wewill see how to formalise weak sealing in se
tion IV.4.4.2. Using it, the types Typ�1x1 and Typ�1x2in the following program are
ompatible:letg = �x : unit. ((hT 0i,E) :: �x : type. T1) inlet x1 = f () in let x2 = f () in . . .There is a
tually another way to build appli
ative fun
tors without extending the language. Onemay seal the fun
tor itself, rather than its body. Then all abstra
tion happens when the fun
tor30

IV.4. SEALING [E℄is de�ned, and none when it is applied. For example, in the following program, g is an appli
ativefun
tor, and the types Typ�1y1 and Typ�1y2 are
ompatible (we assume that E is pure).letg = (�x : unit. (hT 0i,E)) !! (�x : unit. P�x : type. T1) inlety1 = g () in lety2 = g () in . . .In either
ase, an appli
ative fun
tor has a pure fun
tor type �x : T0. PT1, as opposed to theimpure fun
tor type �x : T0.IT1 of a generative fun
tor. This does not prevent an appli
ative fun
torfrom
reating abstra
t types, if the result signature T1
ontains type �elds. The method for de�ningan appli
ative fun
tor using strong sealing
onveys an interesting idea about how abstra
t types are
reated: the side e�e
t of
reating the abstra
t types happens when the fun
tor is de�ned, or morepre
isely when the fun
tor is sealed, making an appli
ative fun
tor from a transparent fun
tor. Ifthe fun
tor is de�ned and sealed at the top level of the program, the side e�e
t happens duringprogram initialisation.An appli
ative fun
tor
an be transformed into a generative fun
tor at any time by sealing it tothe appropriate generative fun
tor signature (just like a transparent fun
tor
an be made appli
a-tive): �x : T0.PT1 is a subtype of �x : T0.IT1 (this is
ontained in the subtyping rule (E/tsub.
ong.fun)).The
onverse transformation, of an abstra
tion-
reating fun
tor to a less-abstra
ting fun
tor (gen-erative to appli
ative, or appli
ative to transparent), is undesirable, sin
e there would be a loss ofabstra
tion. Our e�e
t system prevents su
h loss: applying a generative fun
tor triggers an e�e
t,and the only way to hide this e�e
t is to wrap it in a lambda-abstra
tion whose type re
ords thee�e
t.IV.4.4.2 Stati
 sealing: formalisation WIntrodu
tion We shall de�ne a new, \weak" notion of sealing su
h that sealing the same moduletwi
e produ
es
ompatible results. The purpose of this notion is to de�ne appli
ative fun
tors, andthese provide a good way to understand weak sealing. We have seen how to seal a transparentfun
tor to make it appli
ative: there is then an e�e
t when the appli
ative fun
tor is de�ned. Thefamily of abstra
t types
reated by an appli
ative fun
tor (whi
h is indexed by the arguments ofthe fun
tor) is �xed on
e and for all. We mentioned earlier that when en
oding appli
ative fun
torsusing strong sealing, the e�e
t happens during program initialisation. In fa
t the e�e
t of weaksealing
an be
onsidered to happen at
ompile-time (more pre
isely during type-
he
king). Su
h aweak sealing is
alled stati
 sealing, as opposed to the dynami
 sealing E !! T. (We will dis
ussother weak forms of sealing in se
tion IV.4.4.4). Let us now formally de�ne stati
 sealing.Syntax We de�ne system W whi
h extends system E. The expression language has the newstati
 sealing
onstru
t E :: T. Lo
al binding now
arries an e�e
t annotation, whose meaning wewill explain when
ommenting on the typing rule (W/et.let); we will often omit this extra annotationin examples where it does not matter. The type language remains un
hanged.E ::= expression (module). . .let x = E0 inE :
 T lo
al bindingE :: T stati
 sealingThe main novation is that the e�e
t system is now larger.31

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .
 ::= e�e
tP pureI dynami
 e�e
tS stati
 e�e
tIS both a stati
 and a dynami
 e�e
tThe order relation on e�e
ts is given by P v I v IS and P v S v IS. Only P and I may appearin fun
tion types, i.e., as the
 in �x : T0.
T1.The type system of W is mostly identi
al with E: the di�eren
es are
on�ned to a few rulesthat feature impure expressions. Rules that are parametri
 over an e�e
t instantiation may havethe e�e
t instantiated by S or IS, with (for (W/et.sub)) the extended order relation.Typing a stati
 sealing is similar to typing a dynami
 sealing. In either
ase, the e�e
t of thesealing is added to the e�e
ts of the fun
tion body. The e�e
t of the sealing is either I for dynami
sealing or S for stati
 sealing.� ` E :
 T (W/et.seal.dyn)� ` (E !! T) :
tI T � ` E :
 T (W/et.seal.stat)� ` (E :: T) :
tS TLambda-abstra
tion hides dynami
 e�e
ts (although the type of the abstra
tion remembers thee�e
t), but stati
 e�e
ts always remain apparent. The fun
tor result e�e
t
uS
an be seen as \thestati
 part of
", while the e�e
t of the whole fun
tor
 t I is the dynamia
 part of
. We re
allthe rule for appli
ation, whi
h is un
hanged, but do note that
2 v I always holds.�, x : T0 ` E :
 T1 (W/et.fun)� ` �x : T0. E :
uS �x : T0.
uIT1 � ` E1 :
1 �x : T0.
2T � ` E0 :P T0 (W/et.app)� ` E1 E0 :
1t
2 fx E0gTIn system E, we for
ed lo
al binding expressions let x = E0 inE : T to be impure, in order to keepthe set of pure, hen
e
omparable expressions small (as soon as E0 is pure the expression
an bewritten (�x :T0. E)E0). We will keep doing this here; however we
annot simply for
e the expressionto have the e�e
t I sin
e there are now other e�e
ts: if the expression should have the e�e
t S, wedo not want to for
e it to IS (nor \forget" the stati
 e�e
t and only keep I). We now require thatthe programmer spe
ify the overall e�e
t along with the type (be
ause of the avoidan
e problem);sin
e we do not want the expression to be pure we simply forbid this e�e
t annotation from beingP. � ` E0 :
 T0 �, x : T0 ` E :I T � ` T ok when
 6= P (W/et.let)� ` (let x = E0 inE :
 T) :
 TExe
ution The dynami
 semanti
s of systemW is the same as that of E, with the rule (W/ered.seal)indi�erently a

epting a dynami
 or stati
 sealing. Sin
e this redu
tion simply erases the abstra
-tion, the degree of generativity does not matter.IV.4.4.3 Equivalen
es in the presen
e of stati
 sealingWe saw in se
tion IV.4.4.1 that dynami
 sealing does not
ommute with fun
tor abstra
tion: �x :T0. (E !! T) and (�x : T0. E) !! (�x : T0.
T) are not equivalent | if
 = I, they have the same type(they are both generative fun
tors), but the �rst expression is pure while the se
ond is impure. In
ontrast, stati
 sealing
ommutes with fun
tor abstra
tion: the expressions E1 = �x : T0. (E :: T)and E2 = (�x : T0. E) :: (�x : T0.
T)
an be used inter
hangeably. ML (or at least Obje
tive Caml)programmers often take this equivalen
e for granted. We will say that E1 and E2 are equitypable,meaning that for any �,
 0 and T 0, the typing judgement � ` E1 :
 0 T 0 is derivable if and only if� ` E1 :
 0 T 0 is. Equitypability will be the notion of interest in the present se
tion, as we will look32

IV.4. SEALING [E℄at program fragments that have the same run-time behaviour apart from the usage of sealing, butare distinguishable at the typing level as they
reate abstra
tion in di�erent amounts.To prove that E1 and E2 are equitypable, �rst note that both E1 and E2 require �, x : T0 ` E :
 Tto hold in order for ea
h of them to be well-typed (by
ase analysis on their potential typingderivations). Then E1 is typable by the rule (W/et.seal.stat) followed by (W/et.fun), while E2 is typableby the rule (W/et.fun) followed by (W/et.seal.stat) (extra appli
ations of (W/et.sub) may be inserted, butthey do not have signi�
ant impa
t as all operations involved are
ovariant in the result type). BothE1 and E2 have the prin
ipal type �x : T0.
uIT and the prin
ipal e�e
t S.Stati
 sealing also
ommutes with other
onstru
ts. For example, (E1,E2) :: (T1 � T2) is equity-pable with (E1 :: T1,E2 :: T2), as well as with (E1 :: T1,E2) and (E1,E2 :: T2), assuming that ea
h Eihas the type Ti. The key reason is that the presen
e of stati
 sealing in any position makes the wholepair stati
ally impure. Similarly the expressions �i (E :: T1 � T2) and (�iE) :: Ti are equitypable whenE has the type T1 � T2.Let us now
onsider a lo
al binding E 0 = let x = E0 inE :
 T. Sealing only E is manifestly notequivalent to sealing E 0, sin
e the set of signatures that E or E 0 may be sealed to is di�erent: only Emay be sealed by a type mentioning x. However the di�eren
e is but of little importan
e, the reasonbeing that the in
uen
e of sealing on e�e
ts is the same in both
ases, viz., introdu
ing S if sealingstati
ally, or introdu
ing I if sealing dynami
ally. As for the type of the expression, it remains T ifE is sealed (assuming the whole expression remains well-typed), and it be
omes some subtype of Tis E 0 is sealed. In parti
ular, let x = E0 in (E :: T1) : T is equitypable with (let x = E0 inE :
 T) :: T aslong as E has the type T1 in the appropriate environment.A sealing (whether dynami
 or stati
)
annot appear in a fun
tion argument. These
onsider-ations show us that we do not lose expressivity if we limit the presen
e of stati
 sealing inside aprogram to just two kinds of pla
es: on a lo
ally bound module let x = (E0 :: T0) inE :
 T and onan applied fun
tor (E1 :: T2)E0. In the �rst
ase, removing the sealing
ould allow E to make useof a more pre
ise type for x (any type of E0, not limited by E0) | in other words the abstra
tionprovided by the sealing would vanish with it. The usefulness of sealing an applied fun
tor is ofthe same order: in order for (E1 :: T2)E0 to be well-typed, T2 must be a fun
tion5 �x : T0.
T1. IfT1 is smaller than ne
essary, the abstra
tion
ould migrate above the appli
ation (one
ould write(E1 E0) :: fx E0gT1 instead). If T0 is larger than ne
essary, the
hoi
e of possible types of E0 islimited, so E0 be
omes more abstra
t than as seen by the fun
tion. In fa
t, (E1 :: �x : T0.
T1) isequitypable with let x = (E0 :: T0) inE1 x :
 T1. Hen
e, in summary, stati
 sealing is only useful on alo
ally bound module.IV.4.4.4 Other forms of sealingWe have so far formalised two forms of sealing: stati
 sealing, whi
h
reates a new family of abstra
ttypes for ea
h synta
ti
 o

urren
e of the sealing operator, and dynami
 sealing, whi
h
reates a newfamily of abstra
t types ea
h time the sealing operator is evaluated. These two forms
orrespond tothe weak sealing E :: T and strong sealing E :> T proposed by Dreyer, Crary and Harper [DCH03℄,and our e�e
t system follows theirs6 (with one minor di�eren
e: they de
lare strong sealing ashaving a stati
 e�e
t as well as a dynami
 e�e
t, whi
h uselessly stri
t but of little in
iden
e).Dreyer [Dre05℄ distinguishes between three forms of sealing:5T2
ould a
tually also be a singleton, but then the sealing would not be
reating any abstra
tion.6We use di�erent notations however: we see e�e
t annotations as indi
ating e�e
ts, whereas they see these annoa-tions as purity annotations; thus we write S for a stati
 e�e
t where they write D for dynami
 purity, and we write Ifor a dynami
 e�e
t where they write S for stati
 purity. 33

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .� impure sealing impure(E :> T) is the strong sealing of Dreyer, Crary and Harper [DCH03℄mentioned in the previous paragraph;� separable sealing E :> T and inseparable sealing pure(E :> T) both
orrespond to our stati
sealing, being only distinguished by their separability, whi
h we do not take into a

ount (seese
tion IV.4.2.3).Many other variants
an be
on
eived, with varying strengths. As
ription
onsists in
onstrain-ing an expression to a type without restri
ting the view to it, i.e., without introdu
ing abstra
tion:if E has the type T, the as
ription E :a T has any type that E has; in parti
ular, if E is pure, thenE :a T is also pure and has the type S(E). As
ription
an be seen as a degenerate form of sealing.Minimal sealing
reates a
omparable abstra
t type: E :s T has the type T and the purity of E.Thus minimal sealing is a new way to
onstru
t pure expressions; two minimally sealed expressionsare
omparable. Minimal sealing
heerfully generates
oin
idental type equivalen
es, whenever thesame expression happens to be sealed to the same type. A vairant of minimal sealing
onsists inde
laring E :s T to be equivalent to E :s T 0 whenever both are valid. Yet another variant
onsists inhaving a whole family of minimal sealings indexed by a name,
onsidering two minimal sealings ofthe same expression to be equivalent if and only if they
arry the same name.Note that minimal sealing
an be emulated using stati
 sealing. All we need is a standard libraryfun
tion providing an appli
ative fun
torfminseal = �t : type. �x : string.((t, ((�x : Typ t. x), (�x : Typ t. x))) ::�t 0 : type. (Typ t! Typ t 0) � (Typ t 0! Typ t))or in Obje
tive Caml syntaxlet MinSeal = fun
tor (A : sig type t end) ->stru
t type t = A.t let a x = x let
 x = x end :sig type t val a : t->A.t val
 : A.t->t endendFor any type T and any name x, fminseal hTi x provides an abstra
t type and
onversion fun
tionsbetween that type and T. (In Obje
tive Caml, we should de�ne on
e module MnameT = stru
t typet = T end for every type T and name name sin
e stru
tures are generative.) This de�nes thenamed variant of minimal sealing; getting rid of x yields the basi
 variant. As we remarked inse
tion IV.4.4.1, fminseal
ould equally well be de�ned using dynami
 sealing.We have limited our exposition to two forms of sealing be
ause, together with the easily de�nableminimal sealing, they seem to be suÆ
ient for all pra
ti
al purposes. We
an roughly partition usesof sealing into three
ategories:� abstra
t datatypes, in whi
h abstra
tion enfor
es algebrai
 properties that go beyond theexpressive power of the type system: stati
 sealing is the perfe
t mat
h;� named variants of isomorphi
 types (e.g., dollar and euro): minimal sealing is suitable;� abstra
t types used to limit a

ess to some resour
e, whi
h require dynami
 sealing.34

IV.4. SEALING [E℄IV.4.4.5 Mutual en
odings of stati
 and dynami
 sealingCan we go even further and be
ontent with a single form of sealing? The answer is \sort of": whilestati
 and dynami
 sealing
an be en
oded in terms of one another, a global program transformationis required either way.Let us �rst express stati
 sealing in terms of dynami
 sealing. We start with two observations.Firstly, the two forms of sealing are equivalent if the sealing is exe
uted exa
tly on
e. Se
ondly,we saw in se
tion IV.4.4.3 that it suÆ
es to study stati
 sealing on lo
ally bound expressionslet x = E0 :: T0 inE :
 T.We
an see any program as a sequen
e of lo
al bindings let x1 = E1 :: T1 in . . . let xk = Ek :: Tk inE(we omit the return type on lets as they are not important here). We
all E the body of the program,and the exposed lo
al bindings are said to be toplevel. A program is said to be in prenex sealingsform if none of the expressions E1, . . . , Ek
ontain any stati
 sealing. Finally a
lean program isone in prenex sealings form where E
ontains no stati
 sealing either, i.e., all stati
 sealings aretoplevel. In a
lean program, stati
 sealings
an be repla
ed by dynami
 sealings without a�e
tingthe typing of the program. We will show how to transform any program into an equitypable
leanprogram.Le E0 :: T0 be a subexpression of the program, so that the body of the program is E0 :: T0 in some
ontext C, whi
h we write E = C �(E0 :: T0). We
an repla
e E0 :: T0 by E 00 = (�y1 :T1. . . . �yj :Tj. E0 ::T0 . . .)y1 . . . yj where y1, . . . , yj are the variables bound by C from outermost to innermost,omitting toplevel bindings. If j = 0 we instead take j = 1, T1 = unit and E 00 = (�y :unit. E0 :: T0) ().In every
ase, E 00 is the appli
ation of a lambda-abstra
tion to one or more parameters. All freevariables in this lambda-abstra
tion are bound at the toplevel. We
an therefore extra
t it out ofthe
ontext C in order to bind it above, going by beta-expansion and let lifting from E = C �(E0 :: T0)to E 0 = (let f = E 00 inC � (f y1 . . . yj)) where f is a fresh variable. Now, as we saw earlier, stati
sealing
an be lifted out of a lambda-abstra
tion, so E 00 is equitypable with some expression E 000 :: T 000 .Let E 00 = (let f = E 000 :: T 000 inC � (f y1 . . . yj)). Provided E0 itself
ontains no stati
 sealing, E 00 is inprenex sealings form, and the number of toplevel bindings has in
reased by 1.Iterating the transformation we have just des
ribed over all of the stati
 sealings in the initialprogram (from inside out), we
an put any program in prenex sealings form. By repla
ing ea
htoplevel stati
 sealing with a dynami
 one, we obtain an equitypable program that does not usestati
 sealing. One intuitive view of this transformation is that ea
h stati
 sealing
reates a singlefamily of abstra
t types, and we lift the
reation of this family to be performed exa
tly on
e duringprogram initialisation.We now turn to the dual problem of en
oding dynami
 sealing into stati
 sealing. The di�eren
ebetween stati
 sealing and dynami
 sealing is the e�e
t of the
onstru
tion. One way to for
e adynami
 e�e
t is to apply a generative fun
tor, and a generative fun
tor
an be
reated by anysealing, in
luding stati
 sealing, of a transparent fun
tor. This leads Dreyer, Crary and Harper[DCH03℄ to propose the following en
oding of strong sealing (whi
h is almost our dynami
 sealing)into weak sealing (identi
al to our stati
 sealing):E :> T = ((�x : unit. E) :: (�x : unit. IT)) ()Unlike dynami
 sealing E !! T, strong sealing E :> T has a stati
 e�e
t in addition to its dynami
e�e
t: E :> T is equitypable with E !! T :: T. This e�e
t
annot be dis
harged by a lambda-abstra
tion, so that generative fun
tors
annot be pure in Dreyer, Crary and Harper's system.Nonetheless we
an move the extra stati
 sealings to the toplevel by applying the transformationabove. 35

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .In summary, stati
 and dynami
 sealing
an be en
oded in terms of one another, albeit in
urringthe
ost of a global transformation. In the remainder of this do
ument, we will study a languagewith only dynami
 sealing (whi
h we prefer due to its more
ompositional semanti
s). We propose totreat stati
 sealing as an additional
onstru
t whi
h should be provided in a programming languagealongside dynami
 sealing, and then elaborated away inside the
ompiler.IV.4.4.6 On appli
ativity through fun
tor sealingThe observation that the position of the sealing determines whether a fun
tor is appli
ative orgenerative does not seem to be universally known in the ML
ommunity. It requires being able to seala fun
tor, whereas early module systems for ML only had sealing of stru
tures. In Obje
tive Caml,where fun
tors are systemati
ally appli
ative, it is
ustomary to seal the body of a fun
tor, andsealing the fun
tor is
onsidered equivalent (and needlessly
omplex as the type of the argumentis then repeated) [Ler℄. Note that if sealing is interpreted as an e�e
t, the fa
t that it does not
ommute with lambda-abstra
tion is unsurprising.Early module systems for ML only de�ned sealing on stru
tures, and the possibilities of fun
torsealing seeped in slowly and with a low pro�le. Russo [Rus98℄ distinguishes appli
ative fun
torsfrom generative fun
tors by their de�nition rather than by their signature, with the defe
t that agenerative fun
tor
an be dire
tly seen as an appli
ative fun
tor [Dre02℄ as seen in se
tion I.2.2.4.Shao [Sha99℄ remarks in passing that sealing a transparent fun
tor is a way of building an appli
ativefun
tor. This possibility is also mentioned by Dreyer, Crary and Harper [DCH03, Dre05℄ but theyre
ommend using weak sealing to build appli
ative fun
tors.One argument in favor of weak sealing ([DCH03℄, x2, p. 7) is that it
an be applied to asingle member of a stru
ture in the body of the fun
tor, whi
h makes some types abstra
t alreadyin following members, whereas sealing the fun
tor only makes types abstra
t on
e the fun
tor isapplied. In our notation, the fun
tors under dis
ussion are of the form �x:T0. lety = E1 :: T1 inE2 : T2.We saw in se
tion IV.4.4.5 that this is pre
isely the
ase when the transformation of stati
 sealinginto dynami
 sealing requires a global
ode reorganisation.Dreyer [Dre05℄ (x1.2.7) mentions in parti
ular the
ase of a fun
tor whose body de�nes anduses a \generative" de
lared type (datatype in Standard ML, ordinary variant or re
ord type inObje
tive Caml). If de
lared types are modelled by an abstra
t type obtained through dynami
sealing, su
h a fun
tor is automati
ally generative. However we do not see any reason to insist ondynami
 sealing: minimal sealing would do just �ne, as the generative nature of de
lared types onlyserves to di�erentiate between the
onstru
tor and destru
tor names of di�erent de
lared types.Sin
e minimal sealing
an easily be modelled by dynami
 sealing, the la
k of sealing other thandynami
 is not a problem on this
ount.IV.5 Colours and bra
kets CIn system E, the sealing
onstru
t a�e
ts typing but not evaluation, as witnessed by the redu
tionrule for sealing whi
h just forgets the sealing:E !! T �! E (E/ered.seal)This rule is type-preserving in the sense that if the left-hand side is well-typed then the right-hand is also well-typed and has the same type. However information is
learly lost: this rule isnot abstra
tion-preserving. This la
k is no
on
ern when evaluating a single program, as typepreservation ensures that nothing
an \go wrong" and the whole program text is available for any36

IV.5. COLOURS AND BRACKETS [C℄If T is of the form . . . then E !! T redu
es to an expression of type. . .�t : type. (int! Typ t) S(�1a) � (int! Typ�1a)�t : type. �t 0 : type. (Typ t � Typ t 0 � int) S(�1a) � S(�1�2a) � Typ t � Typ t 0 � int�x : T0. �t : type. (Typ t � int) �x : T0. S(�1 (ax)) � Typ t � intIn ea
h
ase, a is the non
e (fresh module identity)
reated by the sealing operation.Figure IV.1: Examples of non
e generationanalysis that might rely on the typing of the program. However we aim to rid ourselves of the stri
tphase separation between type-
he
king and evaluation, by introdu
ing a fa
ility for type-
he
king.This fa
ility requires additional information to remember the distin
tion between an abstra
t typeand its representation type as long as it matters, whi
h is as long as dynami
 type-
he
king mightbe performed, i.e., throughout program evaluation. We will now study system C, whi
h is based onE but where the redu
tion of a sealing preserves the abstra
tion.IV.5.1 Module identitiesIV.5.1.1 Non
e generationThe rule (E/ered.seal) does not properly re
e
t our intention regarding the semanti
s of sealing. Wedes
ribed sealing as
reating a new type. Consider the example sealing expression (hinti, 3) !!�t : type. Typ t. It redu
es by (E/ered.seal) to (hinti, 3), whi
h has the type �t : S(hinti). Typ t =S(hinti) � int, whereas we would like a type of the form �t : S(hT 0i). Typ t = S(hT 0i) � T 0 where T 0is distin
t from any previously existing type (espe
ially int).More pre
isely, we do not need to
reate a type but a module identity, as
an be seen by lookingat the sealing of modules with a more
omplex stru
ture. For example, if the same sealed modulede�nes several abstra
t types, these types share a
ommon unique identity. If the sealed moduleis a fun
tor, a new identity must be
reated but on
e when the sealing
onstru
t is evaluated, andthis identity will be used ea
h time the fun
tor is applied. Ea
h module identity
hara
terises oneinstantiation of the abstra
tion, whi
h may produ
e any number of fresh types: as many as thereare abstra
t type �elds for a stru
ture, an unbounded number for a fun
tor (sin
e the argumentmust be taken into a

ount). . .Figure IV.1 shows a few examples of uses of module identities. A fresh module identity is
alleda non
e (or (h)apax), and written a. These non
es have the same universal uniqueness propertyas those used in models of se
urity. They generalise the stamps of Ma
Queen [AM91℄. Unlikethe stamps of many module systems, our non
es
an designate modules of arbitrary signatures(in parti
ular fun
tors). Also the
reation of a non
e is performed when the sealing
onstru
t isevaluated, and not whenever a module is built. Non
es
orrespond to the singularised identitiesdes
ribed in se
tion II.6.1.2.At the synta
ti
 level, we will for the time being
onsider non
es an extra
onstru
t in the syntaxof modules, whi
h should not appear in sour
e programs7. However the purpose of non
es is todesignate abstra
t types, and we will eventually restri
t their presen
e to \type
omponents" (seese
tion IV.5.1.4). We assume an in�nite supply of distin
t non
es (similar to the in�nite supply ofvariable names).7Note that (as we shall see) non
e-free programs have non
e-free types, so types of sour
e programs are expressiblein the sour
e language. 37

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .IV.5.1.2 LexesEvaluating a sealing
onstru
t E !! T requires a fresh non
e, i.e., one that is not present in the originalterm. We manage this freshness requirement by using a store of non
es,
alled a lexis (or stampbook), and written B. A lexis keeps tra
k of non
es in use as well as the module implementationand signature from the sealing
onstru
t from whi
h the non
e originated. The syntax of a lexis isthus B = (a1 = E1 : T1, . . . ,ak = Ek : Tk)As with environments, we treat lexis
on
atenation as asso
iative, and the empty lexis (written nil)is a neutral element for this operation.Lexes adorn evaluation judgements as well as typing judgement. A non
e a is well-typed andhas type T when the ambient lexis
ontains the binding a = E : T for some E (just as a variablex has the type T when the environment
ontains the binding x : T). The redu
tion relation forsystem C is formally de�ned on pairs
onsisting of a lexis and a type; a redu
tion will be writtenB ` E �! B 0 ` E 0. However in most instan
es the lexis does not a�e
t the redu
tion and does not
hange, and we will then
ontinue to write E �! E 0. Redu
ing a sealing augments the lexis:B ` E !! T �!B,a = E : T ` E 0The non
e a is
hosen fresh, i.e., outside the domain of B. Sin
e the language does not in
ludebinders for non
es, any non
e appearing in E or T must be re
orded in B.An alternative to this global store would be to introdu
e a \new" binder for non
es,
lassi
allywriting (�a = E0 : T0)E. We prefer the use of a global store not only be
ause we have no need fora non
e binder, but also be
ause managing the migration of � binders a

ross other syntax nodesand above environments8 would be problemati
.IV.5.1.3 From sealing to bra
ketsWe have seen that redu
ing a sealing E !! T
reates a fresh non
e a, and the result is an expressionE 0 of a type T 0, where T 0 uses the non
e a as the identity of the newly
reated module in order topre
isely spe
ify the abstra
t parts of T.This type T 0 is
alled a strengthening of T, or more pre
isely it is what we will
all thesel��
ation of the type T for the module identity a (see se
tion I.2.2.2). We will write thissel��
ation as self T(a). The general idea behind sel��
ation is to mirror the original stru
ture ofthe type, but repla
e the parts originally left abstra
t by a referen
e to the newly
reated non
e.Figure IV.1 shows a few examples of sel��
ation; we will defer the task of formulating a pre
isede�nition until se
tion IV.5.1.5.Sealing must transform the expression E of type T into an expression E 0 with essentially thesame behaviour as E but a di�erent type self T(a). This new type is more pre
ise than T: it is asubtype of T. Although T is usually not the most pre
ise type of E, E
annot have the type self T(a)in general: if the same expression is sealed twi
e, the resulting expressions E 01 and E 02 should havethe respe
tive in
ompatible types self T(a1) et self T(a2). Thus E 0 must
ontain a referen
e to thespe
i�

hoi
e of non
e a.The most obvious way to
onstru
t E 0 is to start with E and apply a type
oer
ion to it:E 0 =
oer
e E to self T(a). However how this
oer
ion should intera
t with the rest of the languageis not obvious. What does an expression of the form
oer
e E toT 0 redu
e to? With su
h littleinformation in a readily extra
tible form, when is
oer
eE toT 0 well-typed?8A non
e may appear in the type of a bound variable.38

IV.5. COLOURS AND BRACKETS [C℄We were already
onfronted with this problem in the simpler setting of the hat language, asdis
ussed in III.1.1. We will use the same solution as then, to wit,
oloured bra
kets [ZGM99℄.The expression [E℄self T(a)a denotes the
oer
ion of E to the type self T(a), but re
ords the justi�
ationa for equating the implementation E with the abstra
tion. (Re
all that E is re
orded in the entryfor a in the ambient lexis.) More generally, if E1 is any expression, and if T2 is equivalent to thetype of E1 modulo the equivalen
e between a and its implementation, the expression [E1℄T2a has typeT2. This expression is
alled the
oloured bra
ket (or bra
kets) surrounding E1 and annotated withthe
olour a and the type T2.The expression E1 should be seen as inside the bra
ket, while the annotations a and T2 are
arried by the bra
ket. Non
es (or fresh module identities) a have the same rôle as the hashes(or stru
tual module identities) h in hat. The
olour a indi
ates the possibility of using the extratyping equality between a and its implementation E inside the bra
ket. We say that a is transparentinside the bra
ket. We will dis
uss the syntax and semanti
s of
olours in system C more fully inse
tion IV.5.2.The redu
tion rule for sealing is thus as follows:B ` E !! T �!B,a = E : T ` [E℄self T(a)aAs in hat, the next redu
tion steps are devoted to pushing the
oloured bra
kets towards the insideof E.IV.5.1.4 Abstra
t typesIn the expression [E℄self T(a)a , the non
e a
an only appear in two positions: as the
olour annotationon the bra
ket, and in building the type annotation on said bra
ket. It seems therefore possible torestri
t the pla
es where non
es may appear in the syntax. But do we have to?Treating a non
e a as a full-
edged expression de�nitely simpli�es the overall language stru
ture.Under a lexis
ontaining the binding a = E : T, the expression a has the type T, and the transparen
yof a
an be simply expressed by the
onversion a �! E.Su
h uninhibited use of non
es nonetheless
auses two problems, one theoreti
, one pra
ti
al.Both problems arise from redu
ing
ertain expressions
ontaining non
es.Consider for instan
e the sealing E !! T where E = (hinti, (2, 3)) and T = �t : type.Typ t�Typ t,resulting in the lexis binding a = E :�t : S(�1a). Typ t � Typ t. While it may be reasonable to treatsu
h expressions as a, maybe even �1a, as values | although �1a has a destru
tor at the head,whi
h is odd in a value | the same does not go for �2a. Typing ex
epted, the expe
ted behaviour ofthis expression is the same as (2, 3). Evaluating �2 (E !! T) yields the expression [(2, 3)℄Typ �1a�Typ�1aa .We might redu
e a to [E℄�t:S(�1a).Typ t�Typ ta and then let bra
ket pushing do the rest; however,for type preservation, this expression must still have the original type S(a).9. Experien
e with apreliminary version of this system shows that obtaining su
h a typing requires a substantially more
omplex metatheory as analysing the types that are equivalent to Typ�1a be
omes intra
table.On the pra
ti
al side, su
h a redu
tion requires the implementation of a to be available at anytime, whereas a non
e is intuitively an opaque pie
e of data on whi
h only an equality predi
ateis de�ned. In parti
ular, the implementation of a non
e might be
ryptographi
ally hidden, as wewill see in se
tion IV.5.2.1.We saw that the prin
iple of sel��
ation is to mirror the original stru
ture of the type whilesubstituting the appropriate proje
tion of the non
e for abstra
t type �elds (type) in the signature.9Note that a must be pure, sin
e it is meant for use in types.39

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .Therefore the non
e a only appears in self T(a) as a proje
tion of a �eld for whi
h the signatureindi
ates type. Su
h a proje
tion has the form TypA where A may be a non
e, a pair proje
tion�iA, or the appli
ation of a fun
tor to an argument AE0. A term A of the grammar we just des
ribeshall be
alled a module
omponent.From now on, we will not allow a to be an expression, prefering to add a new entry to the syntaxof types. A
omponent type LAM is a type, denoting what we would have written TypA. Wherethe expression A was desired, we
an now write hLAMi (provided that the proje
tion goes all theway to a single �eld of type type).Expressing the transparen
y of a non
e takes on a more
ompli
ated form sin
e the equivalen
ea � E (where E is the implementation of a) is no longer grammati
al. Transparen
y must beexpressed separately for ea
h
omponent type. Let a be the underlying non
e of the module
omponent A1 (whi
h we shall write as a = underl(A1)). When a is transparent, LA1M is equivalentto TypE1 where E1 is the proje
tion of E with the same shape as A1. We will say that A1 isrevealed as E1, whi
h we write E1 = revealB(A1) (where B is the ambient lexis). For instan
e,if T = �t1 : type. �t2 : type. �t3 : S(hinti). T4, then transparen
y of a entails the equivalen
esL�1aM � Typ�1E and L�1�2aM � Typ�1�2E.IV.5.1.5 Sel��
ationThe
ore of the sealing operation
onsists in repla
ing the abstra
t
omponents of a type by the
orresponding proje
tions of a
ertain non
e. Generally speaking, let us study the sel��
ation of atype T for a module
omponent A, written self T(A).Base
ases There are three kinds of elementary signatures: manifest type �elds S(hT1i) (sigtype t = T1 end), abstra
t type �elds type (sig type t end), and term �elds (sig val x :T2 end). The purpose of sel��
ation is to transform abstra
t type �elds into manifest type �elds:the sel��
aiton of type by A is S(hLAMi). Type �elds that were already manifest (i.e., S(hT1i)) areleft un
hanged, as are term �elds sin
e no extra information is required. Type �elds thus alwaysgain singleton types, while term �elds are un
hanged.Stru
tures Sel�fying a stru
ture
onserves its de
omposition into �elds, with ea
h �eld sel��edseparately. For example, in ML notation, sigtype t1type t2type u = int * t1val f : int -> t1 -> uend sel��ed by the name
M is sigtype t1 = M.t1type t2 = M.t2type u = int * t1val f : int -> t1 -> uendNote that the name of the module appears more than on
e: the same name M is used as part ofthe global designation of all the abstra
t types in the signature.Sel�fying a pair T1 �T2 by a
omponent A naturally yields the pair self T1(�1A)�self T2(�2A). Anatural generalisation to dependent pairs is a
hieved by independently sel�fying ea
h
omponent,thus self �x:T1.T2(A) = �x : self T1(�1A). self T2(�2A).40

IV.5. COLOURS AND BRACKETS [C℄It is tempting to try to go further: sin
e x is now fully known, why not substitute it in T2? Thus in the exampleabove referen
es to t1 and u
ould be
ome M.t1 and M.u respe
tively. However this is not possible in our language,whi
h in
ludes signatures that
annot be expressed in ML | to wit, dependen
ies (and in parti
ular equalities) onterm �elds. If the �rst
omponent of a pair
ontains term �elds, its signature does not be
ome a singleton aftersel��
ation, and the e�ort to spe
ialise the se
ond
omponent
annot pro
eed further. For example the sel��
ationof �x : int. S(x) by a is �x : int. S(x), no more. The sel��
ation of a dependent pair is therefore still dependent ingeneral.Fun
tors The notation type admits two radi
ally di�erent interpretations, depending on whetherit is used in the argument or in the result of a fun
tor. In the argument, type denotes a type thatwill remain unknown until the fun
tor is applied, and will vary from appli
ation to appli
ation: afun
tor with a type-quali�ed argument is polymorphi
. Thus sel�fying a fun
tor type �x : T0.
T1does not restri
t the domain of the arguments of the fun
tor10: the sel��
ation has the form�x : T0.
T 01 . As for the interpretation of type in the result type of the fun
tor, it depends onwhether the fun
tor is appli
ative or generative. With an appli
ative type, the e�e
tive identity ofthe type �eld is fully determined by the argument passed to the fun
tor, and sel��
ation
onsistsof eta-expanding the body as �x : T0.
self T1(Ax). On the other hand, if the fun
tor is generative,ea
h appli
ation generates a new identity; the sel��
ation operation must then be delayed until theappli
ation is performed, and T1 must remain abstra
t for the duration.De�nition Sel��
ation is de�ned by stru
tural indu
tion on the type as follows:self BT(A) = BT if BT is a base type (unit, bool, int)self �x:T1.T2(A) = �x : self T1(�1A). self T2(�2A)self �x:T0. PT1(A) = �x : T0. P(self T1(Ax))self �x:T0. IT1(A) = �x : T0. IT1self S(E 0)(A) = S(E)self type(A) = S(hLAMi)Evaluation of type �elds The table above does not state how to
ompute self TypE(A). Thereason for this omission is that the
omputation depends entirely in the value of E: the de�nitionof sel��
ation
annot be purely synta
ti
. Intuition whispers that the sel��
ation of two equivalenttypes at the same identity should be equivalent; this implies for instan
e self Typ hTi(A) = self T(A).Therefore E must be redu
ed to a value, whi
h will have the form hTi for typing reasons, in orderto
ompute the sel��
ation of TypE.IV.5.2 ColorsIV.5.2.1 ColouringColoured bra
ket A

ording to their introdu
tion in se
tion IV.5.1.3, a
oloured bra
ket [E℄Talets the expression E be given the type T using the typing equations resulting from the knowledge ofthe implementation of a. As in hat, we will have a wider view of
oloured bra
kets as the synta
ti
manifestation of a boundary between the inside and the outside of the module. This boundary takesthe form of the sealing
onstru
t in the sour
e
ode, and
oloured bra
kets embody it at run time.10The sel��
ation is a fun
tor �x : T 00.
T 01 per
onservation of the overall stru
ture.41

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .Coloured syntax One way to des
ribe the syntax of system C from the syntax of E would be toasso
iate a
olour to ea
h node of the syntax. This
olour would represent the origin of that node,i.e., from whi
h sealed module the node
omes from. The bra
kets provide this information in adi�erent form: the
olour of a syntax node is that
arried by the innermost surrounding bra
ket.In the absen
e of a surrounding bra
ket, the
olour is the ambient
olour
arried by thejugdement in whi
h the term under
onsideration is pla
ed. The �nal form of an expression typingjudgement in system C in
ludes a
olour annotation:B; � `
 E :
 TSo does the �nal form of an expression redu
tion rule:B ` E �!
 B 0 ` E 0Colours appear in other pla
es in the syntax. The rule of thumb is that anywhere a type isattributed to an expression, a
olour must also be provided. For instan
e a lexis binding hasthe form (a = E :
 T), and an environment binding has the form (x :
 T).Colour semanti
s In a typing judgement, the
olour determines whi
h abstra
t types may berevealed. Following the intuition outlined in se
tion IV.5.1.4, they are the
omponents of transparentnon
es in the indi
ated
olour. A redu
tion rule (C/ered.
olAbs) allows the revelation of transparentnon
es.Redu
tion of a sealing We
an �nally state the rule for sealing redu
tion in full. Let us �rst
onsider our usual example
onsisting of the module stru
t type t = int let x = 3 end sealedto the signature sig type t val x : t end.nil ` (hinti, 3) !! (�t : type. Typ t) �!�a = (hinti, 3) :� (�t : type. Typ t) ` [(hinti, 3)℄�t:S(hL�1aMi).Typ taSubsequent redu
tion steps push the bra
kets towards the inside of the value, as in hat (see se
tionIII.1.2.2).In general a sealing V !! T is evaluated in the ambient
olour
 to [V℄T 0
 0 , where
 0 =
 [fag etT 0 = self T(a), with a being a fresh non
e. Thus the redu
tion rule (C/ered.seal)11 is as follows:B ` V !! T �!
 B,a = V :
 T ` [V℄self T(a)
[fagThe ambient
olour
 may be ne
essary just to ensure that V has the type T; for V to have thetype self T(a) requires the transparen
y of a in addition12. A
olour
an thus be a (�nite) set ofnon
es, whi
h we shall write as
 = fa1, . . . ,akg. The semanti
s of a
olour is to render its elementstransparent. Until now, we had only seen singleton
olours fag, abbreviated as a; we
all su
h
olours primary
olours. By syne
do
he we will also
all an element of a
olour a primary
olour.The empty
olour, for whi
h we will prefer the notation �, makes no non
e transparent.11Spe
ialised to an un
oloured sealing | see se
tion IV.5.3.6.12This situation is possible be
ause a sealing
an be embedded inside another, possibly with a fun
tor interposedwhi
h prevents from pushing the bra
kets indu
ed by the outermost sealing before rea
hing the evaluation of thefun
tor body
ontaining the innermost sealing. This s
enario did not arise in hat where module de�nitions werealways sequential. 42

IV.5. COLOURS AND BRACKETS [C℄Transparen
y A non
e is said to be transparent or opaque (in a
olour
, often obvious from
ontext) depending on whether it is, or is not, an element of the
olour. (This de�nition will begeneralised under a more semanti
 form for a larger
lass of
olours in se
tion IV.5.2.3.)Colour weakening Redu
ing a sealing moves the sealed expression from a
olour to a larger
olour. Intuitively, this should not
ause any typing trouble: the larger
olour provides more typingequations, so more typings are possible. We shall indeed state a
olour weakening lemma: if Ehas the type T in the
olour
, and
 0 is a well-formed
olour
ontaining
, then E has the type Tin
 0.Border
olour In a
oloured bra
ket [E℄T
 0 , the type annotation T lives on the border betweenthe inner
olour
 0 and the outer (ambient)
olour
. We
an formalise this by requiring that T bevalid in both
 and
 0. By the
olour weakening lemma, it suÆ
es that T be valid in
\
 0, and wewill use this requirement in typing rules.13Colours and se
urity Let us brie
y mention the se
urity interpretation of
oloured bra
kets.Colours
an be seen as
apabilities handed to expressions | in our appli
ation these
apabilitiesunlo
k type equations. The bra
kets mark and maintain the boundaries of privileged
hunks of
ode.Non
es are the usual non
es of abstra
t
ryptography. This interpretation was �rst formulated earlyin the history of
oloured bra
kets [PS00℄ and has been studied, in parti
ular, under the name �seal[SP04℄.IV.5.2.2 Semanti
s of a type and dependen
ies of a non
eSemanti
s of a type in a
olour A
olour denotes equalities between types, so that there maybe more than one way to express a type in a given
olour. For instan
e, if the ambient lexis
ontainsa1 = (hinti,E1) :� �t : type. T1, then L�1a1M is equivalent to int in the
olour fa1g but not in theempty
olour �. This possibility for a term to be a valid type in di�erent
olours with di�erentsemanti
s (in terms of what expressions have that type) is the key to the expressivity of
olouredbra
kets, as the type annotation is
onsidered in both the inner and the outer
olour. Note thatthe set of terms having a given type is a monotone fun
tion of the ambient
olour.Semanti
s vs. validity Sin
e a type may
ontain embedded expressions, the very validity of atype (and not just its semanti
s) may depend on the
olour. In the lexis above, the type S((�x :L�1a1M. x) 3) is only valid in a
olour that makes a1 transparent. Our type system
an apparentlya

omodate this phenomenon, simply by virtue of annotating every typing judgement with a
olour,in
luding type
orre
tness B; � `
 T ok.Lexis binding Consider in parti
ular the redu
tion of a sealing B ` V !! T �!
 B 0 ` [V℄self T(a)
[fag .Sin
e V and T are only known to be valid in the
olour
,
 must be re
orded together with V andT in B 0, hen
e B 0 = B,a = V :
 T. The elements of
 are
alled the dependen
ies of the non
e a.13Using
\
 0 rather than repli
ating a premise in the
olour
 and
 0 has te
hni
al advantages, mainly in that justbe
ause the judgements B; � `
 J and B; � `
0 J are derivable does not automati
ally mean their derivations have thesame shape. We suspe
t that a
ommon shape
an be found, and would work equally well to derive B;� `
\
0 J, butproving su
h a result looks very diÆ
ult in our synta
ti
 approa
h. Furthermore, given the presen
e of variables in
olours (see se
tion IV.5.2.3), we would have to use a semanti
 interse
tion that operates on the transparent
losuresof the
olours (see se
tion B.1.2). 43

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .Colour well-formation If the non
e a is used (as part of a type LAM) in some
olour, theequivalen
es between proje
tions of a and of its implementation V must hold. Hen
e the
olour inquestion must
ontain
 (the only
olour where V is known to be valid). Therefore a non
e
an onlybe transparent if its dependen
ies are also transparent. We express this
onstraint in a side
onditionin the rule for
olour well-formation ((C/envok.
.a)). Another option would be to automati
ally makeall dependen
ies transparent, so that fag and fag[
 would have the same semanti
. We
hoose therestri
tion on well-formation as simpler and be
ause it is similar to the
ondition for using a non
ein an expression.Use of a non
e in an expression If the non
e a is used in an expression, its type T must bevalid. Therefore the ambient
olour must
ontain
 (the only
olour where T is known to be valid).Therefore a non
e
an only be used if its dependen
ies are transparent, whi
h is expressed in a side
ondition in the rule (C/a
.a).Con
retisation We might attempt another approa
h to uses of non
es in an expression. Insteadof giving the non
e a the type T taken dire
tly from the sealing expression that
reated a, wemight
reate a type T 0 that is equivalent to T in
olours
ontaining
 but is valid in any
olour. Inthe
olour
, we
an repla
e any dependen
y of a by its implementation. The type resulting fromperforming all su
h possible repla
ements meets the stated requirement. This operation is
alled
on
retisation of the type T for the
olour
. Con
retisation is also mutually re
ursively de�nedon types, expressions and module
omponents. Con
retisation is a
opy fun
tion, ex
ept for thefollowing
ases:
on
B
 (LA1M) = Typ revealB(A1) if underl(A1) 2

on
B
 (LA1M) = LA1M if underl(A1) =2

on
B
 ([E℄T
 0) = [E℄
on
B
\
 0 (T)
 0(other
ases by simple indu
tion)We get B; � `
 0 T �
on
B
 (T) as soon as
 0
ontains
.The advantage of
on
retisation is to allow the non
e a (with dependen
ies
) to be used inany
olour
 0, whether or not
 �
 0 holds. This is a
hieved by giving a the type
on
B
 (T).Unfortunately, when
 is not in
luded in the ambient
olour,
on
B
 (T) is generally not equivalentto T even if the latter is well-formed, whi
h is somewhat
onfusing. For
ing
on
retisation insteadof restri
ting non
e use to a suitable
olour does not on balan
e simplify the system design, whi
his why we es
hew it here.Seal-time
on
retisation Could we
on
retise the type of a non
e when the non
e is
reated, rather thanwhen the non
e is used? The redu
tion rule for sealing would look like the following:B ` V !! T �!
 B,a = [V℄
on
B
 (T)
 :
on
B
 (T) ` [V℄self T(a)
[fagThe type of the sealed expression is then universal, i.e., valid in any
olour. A lexis binding is also universal, andso need not be annotated with a
olour. The slight loss of expressivity triggered by the for
ed
on
retisation is thus
ompensated by a simpli�
ation of the type system.Unfortunately we are here using
oloured bra
kets outside their operating parameters. Usually the type T will
ontain some abstra
t
omponents (otherwise the sealing is useless). However the point of sel��
ation was to repla
ethese abstra
t
omponents in the type annotation on the bra
ket by a manifest type (using the abstra
t moduleidentity a). In fa
t, the type annotation on
oloured bra
kets must be monomorphi
, i.e.,
ompletely spe
i�ed, freeof type �elds (se
tion IV.5.3 will dis
uss the
on
ept further).44

IV.5. COLOURS AND BRACKETS [C℄IV.5.2.3 Variables in
oloursWe saw that in hat substitution of a value of type T for a variable assumed to have the type Tdoes not always result in a well-typed term. An addditional hypothesis is required stating that thevalue have the type T in any
olour at whi
h the variable is used. One way to ensure that thisadditional requirement is met is to asso
iate a
olour to ea
h variable, whi
h will be the
olourof the syntax node at whi
h the variable is bound, and then only allow using the variable in this
olour. Then type preservation by substitution only require that the substituted-in value have theright type in the
olour of the variable. Redu
tion rules a�e
ting
olours push bra
kets inside data
onstru
tors; they do not a�e
t the
olours of variables inside redu
ed terms (the
ase of pushinga bra
ket inside a lambda-abstra
tion will be dis
ussed in se
tion IV.5.3.3). Compared with hat,we gain the advantage that beta-redu
tion (C/ered.app) does not mention any bra
ket. Annotatingvariable binding sites with
olours is
onsistent with the prin
iple stated above that anything thatis attributed a type is also attributed a
olour. However we shall see that
on�ning variables to a
olour is not, in itself, sound, and requires additional ma
hinery to make the system sound.As usual, the
olour of a variable binding is given by the innermost surrounding bra
ket, or inthe absen
e of one by the surrounding
olour. A variable binding in an environment re
ords that
olour, so that an environment binding in system C has the form (x :
 T).The simplest way to state the variable typing rule would be x :
 T `
 x :P T, i.e., the variablex is (only) usable in its
olour of de�nition. In order for
olour weakening to hold, this
onditionneeds to be relaxed to allow using x in any
olour
ontaining the
olour of de�nition, i.e.,x :
 T `
 0 x :P T when
 �
 0Unfortunately this formulation does not suÆ
e to ensure that
olour weakening holds, as shown bythe following example: B; nil `
 (�x : int. [[x℄int
 ℄int
1) :P int! intProvided that B,
 and
1 are well-formed, this typing judgement is
orre
t. There is no requirementfor the intermediate
olour
1 to have any
onne
tion with
. If
 is widened to some
olour
 0(su
h that
 �
 0), the judgement above be
omesB; nil `
 0 (�x : int. [[x℄int
 ℄int
1) :P int! intThe
olour of the innermost bra
ket remains
, as there is no indi
ation that it should
hange duringweakening. As a result, the term is no longer well-typed | the variable x is now used in a
olourthat is smaller than its
olour of de�nition.One way to per
eive this problem is to
onsider the
olour of a variable o

urren
e as expli
itlybound to the
olour of the binding of the variable, as opposed to these
olours merely having toalways being related. One might say that o

urren
e
olours must be
omputed by name ratherthan by value. Ea
h variable is then assigned a \symboli
 primary
olour" (
ontrast with non
esas
onstant primary
olours). This new primary
olour is written identi
ally with the variable. A
olour therefore has the form
 = fa1, . . . ,ak, x1, . . . , xng, i.e., a �nite set of non
es and
olours14.A variable
an only be used if it is present in the ambient
olour, whi
h gives us the following rule:x :
 T `
 0 x :P T when x 2
 0A further point to note is that the
olour
 in whi
h x is de�ned may itself
ontain other variables| and it may of
ourse
ontain non
es. These variables and non
es will automati
ally be
onsidered14Another, symboli
, notation might be
 = fa1, . . . ,akg [
ol(x1) [� � � [
ol(xn) where the symbol
ol notes the
olour of de�nition of its argument and the symbol [is interpreted as set union.45

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .transparent whenever x is. In other words, if x 2
 0, then any element of
 [fxg is transparent in
 0. We note this by the typing judgement x :
 T `
 0
[fxg transparent. The rule for using a variablein an expression is �nally�0, x :
 T, �1 `
 0 x :P T when �0, x :
 T, �1 `
 0 x transparentSin
e variables now o

ur in
olours,
olours are subje
t to alpha-
onversion and substitution.Additionally, a substitution must now in
lude a target
olour along with a target expression for thevariable: the substitution of x by E in the
olour
 will be written fx
Eg. The following exampleillustrates the intera
tion of substitutions and
oloured bra
kets, assuming that x 2
:fx
0E0g[x℄S(x)
 = [E0℄S(E0)(
nfxg)[
0IV.5.2.4 Absolute bra
kets, additive bra
ketsA
oloured bra
ket [E℄T
 0 lets the expression E (of
olour
 0) be used in any ambient
olour
. This isa spe
ial
ase of a relation between the inner
olour
 0 and the outer
olour
. Let R be any binaryrelation on
olours. We
an write [E℄TR for a
oloured bra
ket with relation R, whi
h is well-typedin the ambient
olour
 if and only if there exists a
olour
 0 su
h that E has the type T in
 0 and(
,
 0) 2 R (we assume throughout this dis
ussion that T is valid in the outer
olour).When R
an be an arbitrary relation, an important pie
e of information is lost, as the inner
olour be
omes ambiguous. We will therefore limit our analysis to the
ase where the inner
olouris a (partial) fun
tion of the outer
olour: [E℄Tf is well-typed in the ambient
olour
 if and only ifE has the type T in f(
). Furthermore an important property that ensures that
olour weakeningwill hold is that any widening of the inner
olour mat
hes a widening of the outer
olour, in otherwords f must be monotone in
reasing (
1 �
2 implies f(
1) � f(
2)).The
oloured bra
kets that we have seen so far
orrespond to the
ase where the fun
tion f istotal and
onstant. Su
h bra
kets are known as absolute bra
kets. At this point the only wayto introdu
e a bra
ket in an expression is the redu
tion of a sealing, in whi
h the bra
ket has somearbitrary outer
olour
0 and an internal
olour of the form
0[fag. Rather than an absolute bra
ket,we
ould use an additive bra
ket whose relation is
 7!
[fag (a total, one-to-one fun
tion fromthe inner
olour to the outer
olour, thus a (partial) one-to-one fun
tion from the outer
olour tothe inner
olour15). We write su
h an additive bra
ket as [E℄T+a.Additive bra
kets blend in ni
ely with the rest of the language. In parti
ular o

urren
es ofvariables under additive bra
kets trigger none of the problems dis
ussed in se
tion IV.5.2.3: in anexpression su
h as �x :T. [[x℄T+a2 ℄T+a1 , the
olour of the bound o

urren
e is automati
ally a supersetof the binding
olour. Hen
e we
ould dispense with the additional
omplexity resulting from havingvariables in
olour, provided additive bra
kets were suÆ
ient for our purposes.Unfortunately, additive bra
kets are not expressive enough. They
an never restri
t the set oftyping equations a

essible in a subexpression, and in parti
ular do not provide a way to enfor
ethat an expression is independent from any surrounding
olour. Although this does not impa
t theintrinsi
 validity of C, it does limit possible appli
ations. In the se
urity interpretation of bra
kets,an additive bra
ket provides additional privileges to the surrounding
ode, whi
h prohibits anymodelling of a , and means that any ordinary
ode
alled by privileged
ode would inherit theprivileges. In the
ontext of our obje
tive to
ope with distributed system, we will need universalbra
kets, whi
h ensure that their
ontents is usable in any
ontext: these
an be expressed natu-rally as absolute bra
kets annotated with the empty
olour � (see se
tion IV.6.3.1). This se
ondappli
ation motivates our
hoi
e of only in
luding absolute bra
kets in the language (other formsof bra
kets being then super
uous).15Sin
e a is fresh,
0
annot
ontain a. 46

IV.5. COLOURS AND BRACKETS [C℄IV.5.3 PolymorphismIV.5.3.1 Coloration of a typeWe saw that how a
oloured bra
ket
an be used to build a value of an abstra
t type, thanks toa suitable type annotation on the bra
ket. For instan
e, if a is a non
e whose implementation is(hinti, 3) et and signature �t : type. Typ t, the expression [3℄L�1aMfag is a value of the abstra
t typeL�1aM, whereas [3℄intfag evaluates to 3. Now
onsider a bra
ket around a type �eld: [hinti℄S(hL�1aMi)fagis the abstra
t type �eld written more simply as hL�1aMi, while [hinti℄S(hinti)fag is equivalent to thesimple hinti. Another expression that might be written is [hinti℄typefag ; but what does it mean?In an expression of the form [hTi℄type
 0 , the annotation
arried by the bra
ket is not suÆ
ient tode
ide between the abstra
t and the
on
rete version of the type T. The annotation type does notprovide any abstra
tion | any abstra
tion would result from the use of an abstra
t type (i.e., of anon
e) in T. Rather type is here an in
ompletely spe
i�ed type, a mere indi
ation of the signatureof the module expression rather than a full spe
i�
ation of its type �eld.The expression [hTi℄type
 0 denotes a type �eld, the type in question being des
ribed as the typeT as seen in the
olour
 0. As we saw in se
tion IV.5.2.2, the
olour has a double in
uen
e on thetype. On the one hand, it
ontributes in determining whether the type is well-formed (i.e., whetherthe judgement B; � `
 T ok holds). On the other hand, it
ontributes in determining the semanti
sof the type, that is, whi
h expressions have this type. For instan
e, if a is the above non
e, thetype L�1aM is well-formed in any
olour; in the
olour a, the values 3 and [3℄Typ �1afag both have thistype, while only the latter does in the empty
olour. In general, a larger
olour makes more typesvalid16 makes more expressions have a given type.We have seen a way to transform a type into an equivalent universal type, i.e., a type thatis valid in any
olour and, in the original
olour,
hara
terises the same expressions: this is the
on
retisation operation
on
B
 0(T). However
on
B
 0(T) does not have the same semanti
s in other
olours, for all it is valid; hen
e [hTi℄type
 0
annot be repla
ed by h
on
B
 0(T)i.The semanti
s of the expression [hTi℄type
 0 is novel: it
annot be expressed by previously seenmeans. It is not
lear whether su
h an expression should be a

epted at all. We shall evaluate thepros and
ons of allowing su
h expressions. But �rst, we need to
hara
terise them pre
isely, whi
hwe do by assigning kinds to types.IV.5.3.2 KindsWe would like to re
ognise types that fully spe
ify values. Obvious su
h types are singletons: allpure expressions having a given singleton types are essentially equivalent. Following a very stri
tinterpretation, one might say that the only fully spe
i�ed types are singletons. However, underextensional equivalen
e, a type
an be a singleton semanti
ally without being one synta
ti
ally; forexample the type S(3)�S(4) does not
ontain any more values than S((3, 4)). Some types may even
ontain a single value up to observational equivalen
e for reasons having to do with the languageas a whole, su
h as parametri
ity [Wad89℄ results in ML that ensure that the only fun
tion of type8�,�! � (whi
h we would write �t : type. Typ t! Typ t) is the identity fun
tion.In fa
t, we are trying to
hara
terise the signatures that fully spe
ify the type �elds that they
ontain. For example, although the type bool
ontains two observationally distinguishable values,we are
ontent with bool as a spe
i�
ation of a boolean value: we do not treat bool as an abstra
t16The
olour has a bearing on embedded expressions. For instan
e S((�x : Typ�1a. x) 3) is only well-formed in a
olour that reveals a. 47

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .type. We aim to des
ribe a programming language, not a proof language; as a
onsequen
e we limitabstra
tion to types, and allow the revelation of [true ℄bool
 0 as true .The paradigm of an in
omplete signature is type, whi
h designates an unspe
i�ed type �eld.More generally, any type
ontaining type in a
ovariant position, su
h as int � type or int!type, is in
ompletely spe
i�ed. The presen
e of type in a
ontravariant position does not indi
atein
ompleteness, as shown for example in the
onstant fun
tion type �t : type. S(V).In order to formalise this notion, we equip system C with two kinds. The kind o
ontains fullyspe
i�ed types su
h as S(E), int or �t : type. T with T of kind o. A type of kind o is said tobe fully spe
i�ed or
ompletely spe
i�ed. The kind �
ontains all types irregardless of theirlevel of spe
i�
ation; a type that does not have the kind o is said to be partially spe
i�ed orin
ompletely spe
i�ed. Kinds, written K, are equipped with an order relation o 6 �; the leastupper bound of two kinds is written K1 _ K2 (o _� = �) and the greatest lower bound is writtenK1 ^ K2 (o ^� = o). Type kinding
omes with a very simple subkinding relation ship: if T has thekind K1 and K1 6 K2 then T has the kind K2.It is tempting to
all a fully spe
i�ed type monomorphi
 (as opposed to polymorphi
 fora partially spe
i�ed type). Another tempting designation is
on
rete (vs. abstra
t). These termi-nologies is slightly misleading out of
ontext (as attested by their multipli
ity). In a way the typetype is a type variable (under whi
h interpretation o is the kind of
losed types), and the meaningof its presen
e depends on how type variables are quanti�ed. If they are quanti�ed universally,types of kind � are polymorphi
; if they are quanti�ed existentially, types of kind � are abstra
t.For aestheti
 reasons, we will usually use the words \monomorphi
" and \polymorphi
" (the latterusually meaning non-monomorphi
 rather than just having the kind �). We do however warn thereader to take this terminology with a grain of salt.Type kinding rules are fairly simple: type is polymorphi
, any other
onstru
tor is monomorphi
if and only if its
omponents are. In parti
ular, all base types (bool, int, et
.) other than type aremonomorphi
, as are singletons. A produ
t type is monomorphi
 if its
omponents are. A fun
tiontype is monomorphi
 if its result type is.The remaining
ase is that of the proje
tion of a type �eld from an expression: when is TypEmonomorphi
? Sin
e the types Typ hTi and T are equivalent, Typ hTi must be monomorphi
 if andonly if T is. Given the presen
e in our language of the dependent type TypE, we need to re
e
t typekinding at the expression typing level. We annotate the type type with a kind annotation, writingtypeo or type�: the type typeK
hara
terises type �elds whose
ontents is a type of kind K. Forexample hinti and htype�!inti have the type typeo, and so does hint�Typ xi when x has the typetypeo; whereas htypeKi and hint!typeoi only have the type type�. One must be
areful not to
onfuse the type assigned to the expression with the type
ontained in the �eld: for example htype�iis an expression
ontaining a type �eld, whi
h happens to be the type of arbitrary type �elds (inML, this would be a signature �eld in a module, e.g., stru
t module type S : sig end end inObje
tive Caml). The expression htype�i has the momonorphi
 type S(htype�i), but not the typeof monomorphi
 �elds typeo | nor does htypeoi sin
e typeo does not have the kind o.IV.5.3.3 Bra
kets and fun
tion appli
ation; polymorphi
 fun
tionsRedu
ing a sealing introdu
es a
oloured bra
ket during evaluation. The type on this bra
ket isprodu
ed by the sel��
ation operation, whi
h
reates a monomorphi
 type. This is the
entral pointof sel��
ation: the type on a sealing is usually in
ompletely spe
i�ed, and sel��
ation
ompletes thesel��
ation, by repla
ing the unspe
i�ed parts by proje
tions of the new name. When a
olouredbra
ket is pushed inside a data stru
ture, the monomorphi
 nature of the type annotations is pre-served | all the terms being manipulated have monomorphi
 bra
kets (as opposed to polymorphi
48

IV.5. COLOURS AND BRACKETS [C℄bra
kets whose type annotation is partially spe
i�ed). One aspe
t of bra
ket pushing in system Cremains to be des
ribed however, namely pushing bra
kets inside a fun
tion.Consider the expression [�x : T2. E℄�x:T0. PT1
 0 in some ambient
olour
. In order for it to bewell-typed, T2 must be a subtype of T0 and E must have the type T1 in the
olour
 0. Whenthis expression is applied to an argument V of type T0, the result must be that of beta-redu
tionfx VgE, with any ne
essary
oloured bra
kets thrown in. Let us study how to manage bra
ketsduring evaluation.We announ
ed in se
tion IV.5.2.3 that beta-redu
tion would remain unadorned, whi
h for
es usto rule on the the fate of bra
kets as soon as they are pushed under the lambda. This does not
onstrain our latitude regarding the
hoi
e of semanti
s: we are e�e
tively giving a symboli
 namex to the e�e
tive argument (as well as the outer
olour
, whi
h is the
olour of the argument). Thequestion is therefore how to redu
e [�x : T2. E℄�x:T0. PT1
 0 .The most obvious target uses
oloured bra
kets both around the body of the fun
tion (to markthe border on exit from the fun
tion) and around ea
h o

urren
e of the parameter (to mark theborder when entering the fun
tion). The argument must also be prote
ted in the return type.[�z : T2. E℄�y:T0. PT1
 0 �!
 �x : T0. [fz fxg[x℄T0
[fxggE℄fy fxg[x℄T0
[fxggT1
 0 (ered.
ol.fun.P-POLY)The bra
ket around the parameter x in the fun
tion body and in the return type must allow xto be used inside, hen
e the
olour annotating the bra
ket must
ontain x (adding
 as well iste
hni
ally useless sin
e x automati
ally brings in the
olour of the binding
). The
hoi
e of whattype annotation to put on this bra
ket is not so obvious. We know that E and T1 are well-typed assoon as their variable has the type T0 (note that T2 is a subtype of T0); T0 is valid in
 given theannotation on the bra
ket in the redex, therefore T0 is a possible
hoi
e.Nothing however requires T0 to be monomorphi
, even if �y : T0. PT1 is. Therefore this ruleintrodu
es bra
kets
arrying polymorphi
 type annotations. In fa
t, for T0 to be partially spe
i�edmeans that the fun
tion �z : T0. E is a polymorphi
 fun
tion17. This terminology follows thatof ML: in ML, a polymorphi
 fun
tion has a type s
heme 8�,T0 ! T1, whi
h
orresponds in ourdependently typed system to �t : typeo. T0! T1 (with Typ t
orresponding to �).If we want to adopt bra
ket pushing into fun
tions as stated above, we must a

ept polymorphi
bra
kets. Let us now study these further, in the light of how they
an appear. We will then lookfor a way of avoiding them.IV.5.3.4 Polymorphi
 types and valuesWe still assume that bra
ket pushing into fun
tions happens a

ording to the rule (ered.
ol.fun.P-POLY)from se
tion IV.5.3.3. Polymorphi
 bra
kets result from applying a polymorphi
 fun
tion inside a
olour other than its
olour of de�nition: a bra
ket [E℄typeo
 0 appears when applying a fun
tion[f℄�t:typeo.T1
 0 . Let us �rst look at a very simple example: the identity fun
tion on the type typeo,published from
 0 under the type �t : typeo. S(t).�[�t : typeo. t℄�t:typeo. S(t)
 0 � hinti �!
 �t : typeo. [[t℄typeo
[ftg℄S([t℄typeo
[ftg)
 0 ! hinti�!
 [[hinti℄typeo
 ℄S([hinti℄typeo
)
 017This is a
ase of the strong
onne
tion between partial spe
i�
ation and polymorphism when the variable isuniversally quanti�ed that we mentioned in se
tion IV.5.3.2.49

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .In this
ase, the �nal value is [hinti℄typeo
 | the identity fun
tion returns its argument prote
tedby a spurious bra
ket annotated by the ambient
olour.Let us now examine the polymorphi
 identity fun
tion �t : typeo. �x : Typ t. x published from
 0 under the type �t : typeo. Typ t! Typ t.�[�t : typeo. �x : Typ t. x℄�t:typeo.Typ t!Typ t
 0 � hinti 3�!
 �t : typeo. [�x : Typ [t℄typeo
[ftg. x℄Typ [t℄typeo
[ftg!Typ [t℄typeo
[ftg
 0 ! hinti 3�!
 [�x : Typ [hinti℄typeo
 . x℄Typ [hinti℄typeo
 !Typ [hinti℄typeo

 0 3�!
 ��x : Typ [hinti℄typeo
 . [[x℄Typ [hinti℄typeo

[fxg ℄Typ [hinti℄typeo

 0 � 3�!
 [[3℄Typ [hinti℄typeo

 ℄Typ [hinti℄typeo

 0The argument 3 is now surrounder by two bra
kets. The inner bra
ket pla
es the value into the
olour
 0 with a polymorphi
 value; the outer bra
ket, in spite of its similar appearan
e, has adi�ernet rôle as the seemingly polymorphi
 type Typ [hinti℄typeo
 is in fa
t monomorphi
 in theoutside
olour
.In order to generalise upon these examples, a few
on
epts are worth noting. A bra
ket [hTi℄typeo
is a polymorphi
 type parameter for a fun
tion. A bra
ket [V℄Typ [hTi℄typeo

 is a polymorphi
value. A polymorphi
 value has no apparent stru
ture, sin
e it is prote
ted by a bra
ket (whi
h
annot be redu
ed away sin
e its type annotation itself has no apparent stru
ture). The body ofthe fun
tion is unable to manipulate polymorphi
 values in a way other than polymorphi
. Thisapproa
h should work to model parametri
ally polymorphi
 languages su
h as ML. However it isproblemati
 in a non-parametri
 language with generi
s or dynami
 type-
he
king (whi
h we willintrodu
e in system D).We shall not go any further along the lines of studying polymorphi
 values. It remains to beseen how to redu
e polymorphi
 bra
kets. In parti
ular, how
an the polymorphi
 identity fun
tionreturn its argument with no super
uous bra
ket? (Note that the argument passes through the
olour
 0; how
an we make sure that this passage is harmless?)IV.5.3.5 Colour fusionWe present a solution to the problem of managing bra
kets around polymorphi
 fun
tion
alls. Thissolution la
ks expressivity and �nesse, but remains attra
tive in a
ertain light | not least be
auseof its simpli
ity. The idea is to merge the
olour of the argument with the
olour of the fun
tionbody. [�x : T2. E℄�x:T0. PT1
 0 �!
 �x : T0. [E℄T1
 0[fxg (C/ered.
ol.fun.P)We abandon any thought of prote
ting the argument: all type equations required to type theargument are allowed when exe
uting the fun
tion. This rule is very simple, te
hni
ally speaking:one bra
ket turns into one bra
ket, with a smaller type annotation and smaller
ontents.This rule enjoys a
ertain symmetry: applying [�x : T2. E℄�x:T0. PT1
 0 to an argument V yields[fx
VgE℄fx
VgT1
[
 050

IV.5. COLOURS AND BRACKETS [C℄so that the
omputations are simply performed in the union of the
olours of the expressions that
ome into
onta
t (V and E)Let us
he
k the result of an appli
ation of the polymorphi
 identity fun
tion using this rule.�[�t : typeo. �x : Typ t. x℄�t:typeo.Typ t!Typ t
 0 � hinti 3�!
 ��t : typeo. [�x : Typ t. x℄Typ t!Typ t
 0[ftg � hinti 3�!
 [�x : Typ hinti. x℄Typ hinti!Typ hinti
[
 0 3�!
 ��x : Typ hinti. [x℄Typ hinti
[
 0[fxg� 3�!
 [3℄Typ hinti
[
 0 �!
 [3℄int
[
 0 �!
 3In our study of system C, we will retain this fusion formulation of bra
ket pushing around afun
tion.IV.5.3.6 Generative fun
torsWe saw in se
tion IV.5.1.5 that sel��
ation does not a�e
t generative fun
tors. Sin
e sel��
ationprodu
es a type that is meant to annotate a
oloured bra
ket (as it is used in (C/ered.seal)), theresulting type must be monomorphi
. Therefore a generative fun
tor type �x : T0. IT1 must bemonomorphi
 even if T1 is polymorphi
18.We have stated a rule (C/ered.
ol.fun.P) to push
oloured bra
kets bearing an appli
ative fun
tortype. The transposition to a generative fun
tor type is not straightforward. A naive proposal wouldbe [�x : T2. E℄�x:T0. IT1
 0 �!
 �x : T0. [E℄T1
 0[fxgHowever T1 may be polymorphi
, in whi
h
ase the right-hand side is ill-typed. Intuitively,the rule above
annot be suitable be
ause the left-hand side is a generative fun
tor, whose everyappli
ation triggers the
reation of a new non
e, whereas this aspe
t is simply not present in theright-hand side.Non
es are generated by the redu
tion rule (C/ered.seal) for sealing expressions. Let us thereforeintrodu
e a sealing in the right-hand side. We may attempt to pla
e the sealing inside or outsidethe
oloured bra
kets: [�x : T2. E℄�x:T0. IT1
 0 �!
 �x : T0. ([E℄T1
 0[fxg !! T1)[�x : T2. E℄�x:T0. IT1
 0 �!
 �x : T0. [E !! T1℄T1
 0[fxgIn both
ases, although the intuitive behaviour is a

eptable, formal
orre
tion is la
king, as thetype annotation on the
oloured bra
ket may still be polymorphi
. However this is a benign formof ill typing, as redu
tion will
hange the type into a monomorphi
 one before the
oloured bra
ketis redu
ed.A sealing
onstru
t expresses a stati
 border between abstra
tion domains, whereas a
olouredbra
ket is a dynami
 border. We have here a border that is both stati
 and dynami
. We will noteit by a
oloured sealing, written E !!
 0 T. This sealing a
ts like normal sealing, ex
ept that it givesthe expression E the additional knowledge of abstra
t types designated by
 0. A
oloured sealing18In a way a generative fun
tor type is amorphous: it is not yet fully spe
i�ed, but will give rise to a monomorphi
type when the fun
tor is applied. 51

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .therefore in
ludes the e�e
t of an additive bra
ket (see se
tion IV.5.2.4). A normal sealing is thespe
ial
ase where the
oloured sealing adds no extra knowledge: E !! T = E !!� T.Pushing a
oloured bra
ket bearing a generative fun
tor type shall produ
e a
oloured sealing:[�x : T2. E℄�x:T0. PT1
 0 �!
 �x : T0. (E !!
 0 T1) (C/ered.
ol.fun.I)Note that thanks to the additivity of
 0 we do not need to in
lude x, in
ontrast with (C/ered.
ol.fun.P).A
oloured sealing is redu
ed by the rule (C/ered.seal) whi
h we
an �nally state in its full glory:(C/ered.seal)B ` V !!
 0 T �!
 B,a = V :
[
 0 T ` [V℄self T(a)
[
 0[fagIV.5.4 EvaluationIV.5.4.1 SyntaxThe syntax of system C extends system E with two new
onstru
ts that should not appear in sour
eprograms: abstra
t types and
oloured bra
kets. Furthermore the signature type now
arries akind annotation, and sealing now
arries a
olour annotation (the notation E !! T is kept as anabbreviation for E !!� T).K ::= kindo monomorphi
 (fully spe
i�ed)� polymorphi
 (partially spe
i�ed)T ::= type. . .typeK abstra
t type �eldLAM abstra
t typeE ::= expression. . .E !!
 T sealed and
oloured module[E℄T

oloured bra
ketA ::= module
omponenta non
eAE appli
ation�iA proje
tion (i 2 f1, 2g)� ::= primary
oloura non
ex variable
 ::=
olour� empty
olour (also written fg)fa1, . . . ,ak, x1, . . . , xkg �nite set of primary
oloursRe
all that kinds are equipped with an order relation, written K1 6 K2, su
h that o 6 �. Wewrite K1 _ K2 for the least upper bound of K1 and K2, and K1 ^ K2 for their greatest lower bound.If A is a module
omponent, its underlying non
e underl(A) is formally de�ned as follows:52

IV.5. COLOURS AND BRACKETS [C℄underl(a) = aunderl(AE) = underl(A)underl(�iA) = underl(A)Revelation of a module
omponent is de�ned as follows:revealB(a) = E where a = E :
 T 2 BrevealB(AE) = (revealB(A))ErevealB(�iA) = �i (revealB(A))Typing judgements now
arry a lexis and a
olour. Additional right-hand sides to those in systemE are
olour transparen
y, revelation of a module
omponent and
onversion and
onvertibility for
omponents.J ::= typing judgementB; � `
 J lo
al judgementJ ::= lo
al judgement right-hand side. . .T : K type kinding (generalising T ok)
0 transparent
olour transparen
yA . E : T
omponent revelationA �! A 0
omponent
onversionA � A 0
onvertibility equivalen
e on
omponentsWe write � transparent for f�g transparent.Environments now
ontain
olour annotations. We also state the syntax of lexes.B ::= lexisnil emptyB,a = E :
0 T non
e a with implemented by E with the signature T� ::= environnementnil empty�, x :
 T binding of the variable xFollowing the de�nition for environments, the domain of a lexis B, i.e., the set of non
es that itre
ords, is written domB.Sin
e
olours may
ontain variables, they are a�e
ted by substitutions. A substitution spe
i�esboth an expression and a
olour to repla
e the variable with. The substitution of E for x under
in � is written fx
Eg�.IV.5.4.2 Values and abstra
t
omponentsBra
kets and values As in hat, the set of values depends on the ambient
olour. We �rst de�nea grammati
al notion of quasi-value, whi
h is a value with some possibly-eliminatable bra
kets. Inaddition to the values of system E (whi
h are the same as in system B),
oloured bra
kets mayappear in quasi-values and (with restri
tions) in values. In order for an expression of the form [V℄T
 0to be a value, V must be a value (in the
olour
 0), and T must have an appropriate form. If T hasapparent stru
ture, the bra
ket pushing rules allow [V℄T
 0 to be redu
ed. The only
ase where [V℄T
 0may be a value is when T is an abstra
t type LAM. Even then, [V℄LAM
 0 may be redu
ible in some
olours. 53

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .Quasi-values The language of quasi-values in system C is a supergrammar of the one for B,with bra
kets
arrying an abstra
t type annotation thrown in. The abstra
t type annotation mustitself be in a redu
ed form,
alled
omponent value, where fun
tor arguments are all values.V ::= quasi-value. . .[V℄LAVM
 0 potentially abstra
tion-making
oloured bra
ketAV ::=
omponent valuea non
eAVV appli
ation to a quasi-value�iAV proje
tion (i 2 f1, 2g)Irredu
ioble
oloured bra
kets A quasi-value of the form [V℄LAVM
 0 is only a value if the bra
ket
annot be eliminated. Intuitively a
oloured bra
ket is indispensible only if it a
tually
reatesabstra
tion, whi
h translates as the requirement that the underlying non
e of AV must be opaquein the ambient
olour yet transparent in the inside
olour
 0. We will analyse the behaviour of a
oloured bra
ket expression a

ording to the transparen
y of the underlying non
e when presentingbra
ket elimiation rules in se
tion IV.5.4.2.Values and abstra
t
omponents The set of values depends on the ambient
olour: we writeV
 for a value in the
olour
. The set of values is des
ribed as a family of grammars parametrisedby a
olour; it is a subset of quasi-values. In order for a quasi-value [V℄LAVM
 0 to be a value, the bra
ketmust be indispensible in the sense des
ribed above, and the quasi-values in AV must themselves bevalues in the appropriate
olour.V
 ::= value in
() �� bv �� n
onstanthTi type �eld(V
1 ,V
2) pair�x : T. E lambda-abstra
tion[V
 0℄LAV
\
 0 M
 0
oloured bra
ket, if AV
\
 0 is abstra
t in
 but
on
rete in
 0AV
 ::= abstra
t
omponent in
a non
e, if opaque in
AV
V
 appli
ation of a fun
tor to a value�iAV
 proje
tion (i 2 f1, 2g)Stri
tly speaking, sin
e transparen
y of a non
e is a semanti
 value depending on a lexis and anenvironment, the notions of values and abstra
t
omponents should be indexed by a lexis and anenvironment. In pra
ti
e the lexis and environments will always be
lear from
ontext, so we omitthem.IV.5.4.3 B ` E �!
 B 0 ` E 0 Redu
tionEvaluatin
ontexts We redu
e expressions under bra
kets. Although bra
kets are initially in-trodu
ed around values, this property is not preserved by redu
tion; spe
i�
ally, pushing a bra
ketinside a fun
tion body results in a bra
ket surrounding an arbitrary expression. When the typeannotation on a bra
ket is the type �eld of a module, the module expression must also be redu
ed.54

IV.5. COLOURS AND BRACKETS [C℄C ::= evaluation
ontext (of depth 1). . . !!
1 T sealing[℄T
1
oloured bra
ket[V
1 ℄Typ
1 type �eld on a bra
ketFormally speaking, the set of evaluation
ontexts, like values, depends on a lexis and an envi-ronment. In the
ontext [℄T
1 , the expression inside is redu
ed in the
olour
1. In the
ontext[V
1℄Typ
1 , the expression inside is redu
ed in the
olour
 \
1 (the interse
tion of the
oloursoutside and inside the border upon whi
h the expression lies).Computational rules System C inherits the rules that were already present inB, viz., (C/ered.app),(C/ered.proj), (C/ered.let), (C/ered.
ontext). These rules
an be used in any
olour and any lexis; the
olour is added to substitution when required. Values are also
onsidered in their ambient
olour.Redu
tion inside
ontexts happens in the inside
olour of the
ontext. Appending A lists all therules of system C, in
luded the inherited rules.The rule for redu
ing a sealing is modi�ed to surround the value with a
oloured bra
ket, andto take the
olour annotation on the sealing into a

ount.B ` V
[
 0 !!
 0 T �!
 B,a = V
[
 0 :
[
 0 T ` [V
[
 0℄self T(a)
[
 0[fag(C/ered.seal)where a is fresh (i.e., a =2 domB)Redu
tions in types Until system E, types
ontained in expressions did not in
uen
e redu
tion.This is no longer the
ase in system C, sin
e the redu
tion of a
oloured bra
ket depends on the typeannotation
arried by the bra
ket, spe
i�
ally on the head
onstru
tor on this type. Nonethelessour
omputational needs on types are small enough | we only need to rea
h a weak head normalform, and only in a single
ontext within expressions, so we do not need to introdu
e a redu
tionon types. The only destru
tor in the syntax of types is Typ ; its argument
an be redu
ed via the
ontext [V
1 ℄Typ
1 , after whi
h the destru
tor
an be eliminated with (C/ered.
olTyp).[V
 0℄Typ hTi
 0 �!
 [V
 0 ℄T
 0 (C/ered.
olTyp)Abstra
t types are pe
uliar, as LAM is in weak head normal form if and only if the underlyingnon
e is opaque, but must be revealed if it is transparent.B ` [V
 0 ℄LAM
 0 �!
 B ` [V
 0℄Typ revealB(A)
 0 (C/ered.
olAbs)if underl(A) 2
 \
 0Bra
ket pushing When a bra
ket surrounds a value, and the type annotation on the bra
ket isnot an abstra
t type, the bra
ket is pushed inside a value. The bra
ket pushing rules mostly followthe same prin
iple as in hat (see se
tions III.1.2.2 and III.2.5). The sele
tion of the bra
ket pushingrule relies on the type that is apparent on the bra
ket (spe
i�
ally its head
onstru
tor); the e�e
t55

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .on the expression is to push the bra
ket inside the
onstru
tor for this type.[()℄unit
 0 �!
 () (C/ered.
ol.base.unit)[bv℄bool
 0 �!
 bv (C/ered.
ol.base.bool)[n℄int
 0 �!
 n (C/ered.
ol.base.int)[V
 0℄S(E)
 0 �!
 E (C/ered.
ol.sing)[(V
 01 ,V
 02)℄�x:T1. T2
 0 �!
 ([V
 01 ℄T1
 0 , [V
 02 ℄fx
[V
 01 ℄T1
 0 gT2
 0) (C/ered.
ol.pair)In the
ase of fun
tions, we adopt the
olour fusion rule explained in se
tion IV.5.3.5. In the
ase of a generative fun
tor, new types must be
reated whenever the fun
tor is applied, so we add asealing to the body of the fun
tor; the
olour annotation on the sealing plays the role of a
olouredbra
ket. [�x : T2. E℄�x:T0. PT1
 0 �!
 �x : T0. [E℄T1
 0[fxg (C/ered.
ol.fun.P)[�x : T2. E℄�x:T0. IT1
 0 �!
 �x : T0. (E !!
 0[fxg T1) (C/ered.
ol.fun.I)When a bra
ket immediately surrounds another bra
ket and neither bra
ket
an be redu
edby one of the already mentioned pushing rules, i.e., given an expression of the form [[V
2 ℄LA2M
2 ℄LA1M
1where [V
2 ℄LA2M
2 is a value, there are three possible behaviours.� If the annotation on the outer bra
ket makes it simpl�able, the outer bra
ket disappears.In hat, this is performed by (H/ered.
ol.le). Here the rule (C/ered.
olAbs) is used, followed by
omputations on the revealed expression in the type annotation and possibly later bra
ketpushing.� If the annotation on the outer bra
ket is abstra
t outside but
on
rete inside, the expressionis a value.� The remaining
ase is when the annotation on the outer bra
ket is abstra
t outside as well asinside. In hat, typing ensures that A1 and A2 are equal, and the outer bra
ket is erased bythe rule (H/ered.
ol.
ol).In our present systems, whi
h in
ludes fun
tors and
olours with non-trivial interse
tions, thesituation is more
omplex. A new possibility arises that A1 = a1 V1 and A2 = a2 V2; then typingensures that (as in hat) a1 = a2, but the arguments are only known to be equivalent in theintermediate
olour
1. The arguments may not be equivalent in
, so
1 is (sometimes) an obligatoryintermediate. We state a weaker rule, whi
h (as in fun
tion appli
ation) merges the
olours in play.[[V
2 ℄LA2M
2 ℄LA1M
1 �!
 [V
2 ℄LA1M
1[
2 (C/ered.
ol.merge)if A1 et A2 are both opaque in
1 but A2 is
on
rete in
2IV.5.5 TypingThe type system of system C inherits from that of E, but all rules must be modi�ed to add lexes and
olours. For most rules, this modi�
ation is done me
hani
ally by permitting an arbitrary lexis and
olour. Ea
h judgement � ` J be
omes B; � `
 J. When a variable is bound by the environment,it must be added to the
olour: �, x : T ` J be
omes B; �, x :
 T `
[fxg J. Substitutions must alsobe de
orated with the appropriate
olours. Typi
al examples are given by the rules (C/et.fun) et(C/et.app) given below: 56

IV.5. COLOURS AND BRACKETS [C℄B; �, x :
 T0 `
[fxg E :
 T1 (C/et.fun)B; � `
 �x : T0. E :P �x : T0.
T1 B; � `
 E1 :
1 �x : T0.
2T B; � `
 E0 :P T0 (C/et.app)B; � `
 E1 E0 :
1t
2 fx
E0gTIn addition to the addition of
olours, type
orre
tion judgements T ok now be
ome type kindingjudgements T : �. Contexts that required an expression of type type now require type�. The
omplete list of adapted rules is the following:� all
onversion,
onvertibility and subtyping rules: (C/e
onv.
ong.fun.arg), (C/e
onv.
ong.fun.body),(C/e
onv.
ong.app.fun), (C/e
onv.
ong.app.arg), (C/e
onv.
ong.pair.1), (C/e
onv.
ong.pair.2),(C/e
onv.
ong.�eld), (C/e
onv.
ong.proj), (C/e
onv.app), (C/e
onv.proj), (C/e
onv.eta.�eld), (C/e
onv.eta.fun),(C/e
onv.eta.pair), (C/t
onv.
ong.pair.1), (C/t
onv.
ong.pair.2), (C/t
onv.
ong.fun.arg), (C/t
onv.
ong.fun.ret),(C/t
onv.
ong.sing), (C/t
onv.
ong.�eld), (C/t
onv.�eld), (C/t
onv.unit), (C/eeq.re
), (C/eeq.sym),(C/eeq.trans), (C/eeq.
onv), (C/teq.re
), (C/teq.sym), (C/teq.trans), (C/teq.
onv), (C/tsub.trans), (C/tsub.eq),(C/tsub.
ong.fun), (C/tsub.
ong.pair), (C/tsub.sing);� most expression typing rules: (C/et.base.unit), (C/et.base.bool), (C/et.base.int), (C/et.fun), (C/et.app),(C/et.pair), (C/et.proj.1), (C/et.proj.2), (C/et.let), (C/et.sub), (C/et.sing).Appendix A
ontains a
omplete list of the rules of system C in their �nal form, in
luding inheritedrules.IV.5.5.1 B; � `
 ok Environment formationWe des
ribe how to build lexes, environments and
olours. These
omponents are built fromleft to right, both inside lexes and environments (whi
h are built binding by binding from left toright) and in that the lexis is built �rst, then the environment, then the
olour.Lexis and environment validity follow a similar prin
iple: all entered information must be
he
kedfor validity, and a fresh name must be used to label ea
h binding. Note that the
olour of a lexisbinding may in
lude previous non
es, while that of an environment binding may use any non
e inthe lexis as well as previous variables.(C/envok.nil)nil; nil `� ok B; nil `
0 E :P T when a =2 domB (C/envok.a)B,a = E :
0 T; nil `� okB; � `
 T : � when x =2 dom � (C/envok.x)B; �, x :
 T `� okA
olour may
ontain non
es and variables taken respe
tively from the lexis and the environment.As a
olour is an unordered set, there is no
onstraint on the order in whi
h a
olour is built (otherthan the validity of intermediate
olours when adding a non
e). Non
es may only be added to the
olour if their dependen
ies are already present (or otherwise transparent), while variables may beadded at any time | see se
tion IV.5.2.3 and the transparen
y rules below).B; � `
 0 ok when a = E :
0 T 2 B^
0 �
 0 (C/envok.
.a)B; � `
 0[fag okB; � `
 0 ok when x :
0 T 2 � (C/envok.
.x)B; � `
 0[fxg okIV.5.5.2 B; � `
 T : K Type kindingType kinding rules re�ne the type
orre
tion rules of system E. Adding
olours is straightforward.57

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .As dis
ussed in se
tion IV.5.3.6, a generative fun
tor is always monomorphi
 (whereas an appli
ativefun
tor has the same kind as its result type); the rule (E/tok.fun) is split to treat ea
h
ase
orre
tly.B; � `
 ok (C/tok.base.bool)B; � `
 bool : o B; � `
 ok (C/tok.base.int)B; � `
 int : o B; � `
 ok (C/tok.base.unit)B; � `
 unit : oB; � `
 E :P typeK (C/tok.�eld)B; � `
 TypE : KB; � `
 T 0 : K 0 B; �, x :
 T 0 `
[fxg T 00 : K 00 (C/tok.fun.P)B; � `
 �x : T 0. PT 00 : K 00B; � `
 T 0 : K 0 B; �, x :
 T 0 `
[fxg T 00 : K 00 (C/tok.fun.I)B; � `
 �x : T 0. IT 00 : oB; � `
 T 0 : K 0 B; �, x :
 T 0 `
[fxg T 00 : K 00 (C/tok.pair)B; � `
 �x : T 0. T 00 : K 0 _ K 00B; � `
 ok (C/tok.type)B; � `
 typeK : � B; � `
 E :P T (C/tok.sing)B; � `
 S(E) : oAn extra rule indi
ates that any monomorphi
 type is also polymorphi
. Similarly a type �eld
ontaining a monomorphi
 type
an be seen as a type �eld
ontaining a polymorphi
 type, so thetype of the formed is a subtype of the type of the latter.B; � `
 T : K 0 when K 0 6 K (C/tok.sub)B; � `
 T : K B; � `
 ok when K1 6 K2 (C/tsub.
ong.type)B; � `
 typeK1 <: typeK2Let us also state the rule for forming a type �eld, whi
h is also modi�ed to a

ount for kinding.B; � `
 T : K (C/et.type)B; � `
 hTi :P typeKIV.5.5.3 B; � `

0 transparent Colour transparen
yA primary
olour (non
e or variable)
an be transparent if it is dire
tly present in the ambient
olour. It
an also be transparent if it is indire
tly made so, via a variable that is present inthe ambient
olour and whose
olour of de�nition makes the primary
olour under
onsiderationtransparent. B; � `
 ok when � 2
 (C/vis.in)B; � `
 � transparentB; � `
 ok B; �0 `
0 � transparent when � = (�0, x :
0 T, �1)^ x 2
 (C/vis.env)B; � `
 � transparentA
olour is transparent if and only if all of its elements are transparent.B; � `
 ok (C/vis.o)B; � `
 � transparent B; � `

1 transparent B; � `

2 transparent (C/vis.union)B; � `

1 [
2 transparentNon
e transparen
y is used in (C/t
onv.abs) to justify revealing it. Colour transparen
y is used inseveral rules ((C/a
.a), (C/et.x)) to express the transparen
y of the dependen
ies of a primary
olour.IV.5.5.4 B; � `
 A . E : T ; ... Module
omponentsRevelation judgements B; � `
 A .E : T assign two pie
es of information to a
omponent A: the58

IV.5. COLOURS AND BRACKETS [C℄expression E to whi
h it is revealed, and the apparent signature T me
hani
ally derived from thesignature of the underlying non
e in the lexis. The stru
ture of the revelation derivation followsthat of this signature.B; � `

0 transparent when a = E :
0 T 2 B (C/a
.a)B; � `
 a . E : T B; � `
 A . E : �x : T1. T2 (C/a
.proj.1)B; � `
 �1A . �1E : T1B; � `
 E1 :P S(�1E) B; � `
 A . E : �x : T1. T2 (C/a
.proj.2)B; � `
 �2A . �2E : fx
E1gT2B; � `
 A . E : �x : T0. PT1 B; � `
 E0 :P T0 (C/a
.app)B; � `
 AE0 . EE0 : fx
E0gT1When a
omponent has the apparent signature typeK, it
an be used to form an abstra
ttype. If the underlying non
e is transparent, this abstra
t type
an be
onverted to the revealedrepresentation. B; � `
 A . E : typeK (C/tok.abs)B; � `
 LAM : KB; � `
 A . E : typeK B; � `
 underl(A) transparent (C/t
onv.abs)B; � `
 LAM �! TypEA
omponent is almost inert: the only
onversion that might signi�
antly a�e
t it is its revela-tion. Context rules are however needed to enable
onversion of embedded expressions.B; � `
 E0 �! E 00 B; � `
 E0 :P T0 B; � `
 A . E : �x : T0. PT1 (C/a
onv.
ong.app.arg)B; � `
 AE0 �! AE 00B; � `
 A �! A 0 B; � `
 A . E : �x : T0. PT1 B; � `
 E0 :P T0 (C/a
onv.
ong.app.fun)B; � `
 AE0 �! A 0 E0B; � `
 A �! A 0 B; � `
 A . E : �x : T1. T2 (C/a
onv.
ong.proj)B; � `
 �iA �! �iAB; � `
 A �! A 0 B; � `
 A . E : typeK (C/t
onv.
ong.abs)B; � `
 LAM �! LA 0MConvertibility equivalen
e for
omponents follows the same model as for types and expressions,with four rules (C/aeq.re
), (C/aeq.sym), (C/aeq.trans) and (C/aeq.
onv) following the model of (teq.*) and(eeq.*).IV.5.5.5 B; � `
 E :
 T Coloration of expressionsThe rule for typing variables
ontains a novel side
ondition whi
h requires the transparen
y ofthe variable in the ambient
olour. This ensures that the dependen
ies of the variable keep beingpresent if the ambient
olour is weakened.B; � `
 x transparent when x :
 0 T 2 � (C/et.x)B; � `
 x :P TColoured bra
kets surround an expression with a di�erent
olour from its surroundings. Thetype annotation must be valid both in both the outer and inner
olours, for whi
h we use theinterse
tion of the two
olours.B; � `
 0 E :
 T B; � `
\
 0 T : o B; � `
 ok (C/et.
ol)B; � `
 [E℄T
 0 :
 T59

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .The sealing typing rule takes the
olour annotation into a

ount. The
olour is added whentyping the body of the module.B; � `
[
 0 E :
 T B; � `
 T : � (C/et.seal)B; � `
 (E !!
 0 T) :I TIV.5.5.6 B; � `
 E �! E 0 Conversion and
oloured bra
ketsNew
onversion rules re
e
t the new redu
tion rules
on
erning bra
kets: new redu
tion
on-texts, and bra
ket pushing rules.B; � `
 0 E �! E 0 B; � `
 0 E :P T B; � `
\
 0 T : o B; � `
 ok (C/e
onv.
ong.
ol.e)B; � `
 [E℄T
 0 �! [E 0℄T
 0B; � `
 0 E :P T1 B; � `
\
 0 T1 �! T2 B; � `
\
 0 T1 : o B; � `
 ok (C/e
onv.
ong.
ol.t)B; � `
 [E℄T1
 0 �! [E℄T2
 0B; � `
 0 ok B; � `
 ok (C/e
onv.
ol.base.unit)B; � `
 [()℄unit
 0 �! () B; � `
 0 ok B; � `
 ok (C/e
onv.
ol.base.bool)B; � `
 [bv℄bool
 0 �! bvB; � `
 0 ok B; � `
 ok (C/e
onv.
ol.base.int)B; � `
 [n℄int
 0 �! nB; � `
 0 T0 <: T2 B; �, x :
 0 T2 `
 0[fxg E :P T1B; � `
 ok B; �, x :
\
 0 T0 `(
\
 0)[fxg T1 : o (C/e
onv.
ol.fun.P)B; � `
 [�x : T2. E℄�x:T0. PT1
 0 �! �x : T0. [E℄T1
 0[fxgB; � `
 0 T0 <: T2 B; �, x :
 0 T2 `
 0[fxg E :I T1B; � `
 ok B; �, x :
\
 0 T0 `(
\
 0)[fxg T1 : o (C/e
onv.
ol.fun.I)B; � `
 [�x : T2. E℄�x:T0. IT1
 0 �! �x : T0. E !!
 0[fxg T1B; � `
 0 E1 :P T1 B; � `
\
 0 T1 : o B; �, x :
 0 T1 `
 0[fxg E2 :P T2B; � `
 ok B; �, x :
\
 0 T1 `(
\
 0)[fxg T2 : o B; � `
 0 E2 :P fx
 0[E1℄T1
 0 gT2 (C/e
onv.
ol.pair)B; � `
 [(E1,E2)℄�x:T1. T2
 0 �! ([E1℄T1
 0 , [E2℄fx
 0 [E1℄T1
 0 gT2
 0)B; � `
2 E :P T2 B; � `
1\
2 T2 : oB; � `
1 T2 <: T1 B; � `
\
1 T1 : o B; � `
 ok (C/e
onv.
ol.merge)B; � `
 [[E℄T2
2 ℄T1
1 �! [E℄T1
1[
2B; � `
 0 E 0 :P S(E) B; � `
\
 0 E :P T B; � `
 ok (C/e
onv.
ol.sing)B; � `
 [E 0℄S(E)
 0 �! EB; �, x :
 T0 `
 0 E1 :
 T1 B; �, x :
\
 0 T0 `(
\
 0)[fxg T1 �! T 01B; �, x :
\
 0 T0 `(
\
 0)[fxg T1 : o (C/e
onv.
ong.fun.seal)B; � `
 (�x : T0. E1 !!
 0 T1) �! (�x : T0. E1 !!
 0 T 01)IV.6 Dynami
 typing and distributed programs DIV.6.1 Dynami
 typing[Sorry, this fragment has not been translated yet.℄60

IV.6. DYNAMIC TYPING AND DISTRIBUTED PROGRAMS [D℄IV.6.2 FormalisationIV.6.2.1 SyntaxWe de�ne a new language, system D, whi
h is a
onservative extension of system C. The newfeatures are the type dyn and two
onstru
tors and a destru
tor for this type.T ::= type. . .dyn dynami
ally typed valuesE ::= expression. . .dynE atT dynami
dynnedE atT universal dynami
undynE atT elseE 0 dynami
 type veri�
ationIV.6.2.2 Redu
tionThe universal dynami
 of a value is a value. The new
onstru
tors and destru
tor are evaluation
ontexts.V ::= quasi-value. . .dynnedV� atT universal dynami
V
 ::= value in
. . .dynnedV� atT universal dynami
C

 0 ::= evaluation
ontext with inner
olour
 0 and outer
olour
. . .dyn atT dynami
dynned atT universal dynami
, when
 0 = �undyn atT elseE 0 dynami
 type veri�
ationWe saw in se
tion IV.6.1.4 how to produ
e a universal dynami
 from a dynami
. Evaluatinga dynami
 type veri�
ation
an either result in a

epting the underlying value if the types are
ompatible, or evaluating the alternate expression otherwise. A new rule lets a bra
ket be pushedinto a dynami
. A
oloured bra
ket around a universal dynami

an simply be erased, sin
e its
ontents are already prote
ted. dynV
 atT �!
 dynned [V
℄
on
B
 (T)
 at
on
B
 (T) (D/ered.dyn)B ` undyn (dynV
 atT) atT 0 elseE 0 �!
 B ` ÆV
 if B; nil `
 T <: T 0E 0 otherwise (D/ered.undyn)[dynnedV� atT℄dyn
 0 �!
 dynnedV� atT (D/ered.
ol.dynned)61

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .IV.6.2.3 TypingAs we saw in se
tion IV.6.1.4, ordinary dynami
s dynE atT, but universal dynami
s dynnedE atT(whi
h are only useful with E pure) are pure. We do not wish to have to manage dynami
 typinginside a
ompiler19, thus we de
lare that any expression of the form undynE atT elseE 0 is impure.B; � `
 ok (D/tok.base.dyn)B; � `
 dyn : K B; � `
 E :
 T B; � `
 T : o (D/et.dyn)B; � `
 dynE atT :I dynB; � `� E :P T B; � `� T : o B; � `
 ok (D/et.dynned)B; � `
 dynnedE atT :P dynB; � `
 E :
 dyn B; � `
 E 0 :
 T (D/et.undyn)B; � `
 undynE atT elseE 0 :I TSin
e the language has a new
onstru
tor, we need
orresponding
onversion rules:
ongruen
erules to rewrite the arguments of the
onstru
tor, and a bra
ket pushing rule (re
e
ting the redu
tionrule (D/ered.
ol.dynned)).B; � `� E �! E 0 B; � `� T : o B; � `� E :P T B; � `
 ok (D/e
onv.
ong.dynned.e)B; � `
 dynnedE atT �! dynnedE 0 atTB; � `� T �! T 0 B; � `� T : o B; � `� E :P T B; � `
 ok (D/e
onv.
ong.dynned.t)B; � `
 dynnedE atT �! dynnedE atT 0B; � `� E :P T B; � `� T : o B; � `
 0 ok B; � `
 ok (D/e
onv.
ol.dynned)B; � `
 [dynnedE atT℄dyn
 0 �! dynnedE atTThe dynamisation fun
tion Our typing rules let us write any monomorphi
 dynamisation fun
-tion �x :T. dyn x atT, with the type T!Idyn. They also let us write the polymorphi
 dynamisationfun
tion �t :typeo. �x :Typ t. dyn x atTyp t, with the type �t : typeo. PTyp t!I dyn. Applying oneof these dynamisation fun
tion produ
es a value of the form dynned [V℄
on
B
 (T)
 at
on
B
 (T) where
is the ambient
olour.IV.6.3 Communi
ation inter-ma
hinesIV.6.3.1 Introdu
tionThe present dissertation was motivated by the need for dynami
 type-
he
kin in distributed pro-grams with abstra
t types. The present
hapter has so far mainly dealt with abstra
t types, andwe have now introdu
ed dynami
 type-
he
king. We now add the last ingredient: inter-ma
hine
ommuni
ation.As in
hapter II, we assume the availability of some serialisation me
hanism to send valuesbetween programs running on di�erent ma
hines. In the present dis
ussion, we deal with networkedprograms, but many
onsiderations also apply to time- rather than spa
e-separated programs, i.e.,a program writing data to persistent storage and another program later reading the data.In order for a value sent by a ma
hine A to be
orre
tly re
eived and de
oded on a ma
hine B ,the programs running on the two ma
hines must agree on their interpretations of the bit stringsthey ex
hange. We assume that all programs are written in the same language and use the sameserialisation library, so that it suÆ
es to ensure that the ex
hanged values do not depend on anymanner of environment that is not shared by the two ma
hines. Our semanti
s does
ontain one19Not only would it be useless, it would also work around a putative strati�
ation (see se
tion V.3.1.1).62

IV.6. DYNAMIC TYPING AND DISTRIBUTED PROGRAMS [D℄ma
hine-dependent element: abstra
t types de�ned on one ma
hine may not be available on anotherma
hine.As a �rst step, we will make the soundness-safe assumption that abstra
t types de�ned on onema
hine are distin
t from abstra
t types de�ned on any other ma
hine, i.e., abstra
t types areglobally fresh. We spent most of
hapter II studying how to lift this restri
tion, and we will see inse
tion IV.6.3.5 how to integrate these ideas into system D.IV.6.3.2 Communi
ation and
oloursIn this se
tion, we assume the existen
e of two primitives send and re
v for respe
tively sendingand re
eiving a value. Communi
ation
an take pla
e on a network, via temporary storage or byany other means. More pre
isely, sin
e we are working in a typed language, we will assume twotype-indexed families of primitives sendT and re
vT, the type T being that of transmitted values;their types are sendT : T!I unit et re
vT : unit!I T. In order for
ommuni
ations to respe
ttyping, the
ommuni
ation proto
ol must ensure that values sent by sendT will only ever be re
eivedby re
vT 0 when it
an be guaranteed that any value of type T also has the type T 0, whi
h we modelwith the
onstraint T <: T 0.One thorny issue is that T and T 0 live in di�erent
ontexts: the sending lo
us and the re
eptionlo
us may have di�erent knowledge of abstra
t types. In our framework, this means that theambiant
olour might di�er between sending and re
eption. As we saw in se
tion IV.5.3.1, the
olour in
uen
es both the validity and the semanti
s of a type. This also applies to the transmittedvalue, whi
h may have the type T in the sending
olour
 without having the type T, or indeed anytype, in the re
eption
olour
 0.One way to ensure the safety of
ommuni
ation is to index the primitives by a
olour as wellas a type, i.e., sendT
 and re
vT 0
 0 , and require that the
ommuni
ation proto
ol ensure
olour
ompatibility
 �
 0 (or rather more pre
isely � `
 0
 transparent) as well as type
ompatiblity� `
 T <: T 0. However adapting a
ommuni
ation proto
ol to ensure
olour
ompatibility is notstraightforward, all the less as the ambiant
olour of a value may
hange as it is passed around(whereas the type annotations T and T 0 are usually known stati
ally).One way to prevent any in
ompatibility from o

urring is to require that the sending
olour beempty, in other words that the sending type T as well as the transmitted value be universal. Wewill study how to a
hieve this in se
tion IV.6.3.3.If we wish to transmit values between arbitrary
olours, they need to be prote
ted. We en
oun-tered a similar situation in se
tion IV.5.2.2: given a value V and a type T, we need to
onstru
ta value that is \equivalent" to V and has a type \equivalent" to T in the empty
olour �. Thesolution is to use
on
retisation and send [V℄
on
B
 (T)
 instead of V, where
on
B
 (T) is the type Twith uses of
 expanded out. The extra
oloured bra
ket prote
ts V by bestowing upon it any typeequation that it may need. Having obtained the universal value [V℄
on
B
 (T)
 , we
an safely send it toany re
eiver for the type
on
B
 (T).IV.6.3.3 Universals[Sorry, this fragment has not been translated yet.℄IV.6.3.4 Non
e sharingIn se
tion IV.6.3.2, we dis
ussed how to send values between di�erent
olours. We glossed over thefa
t that a
olour is only de�ned in a
ertain lexis |
omparing
olours de�ned in di�erent lexes, or63

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .transmitting a
olour from one lexis to another, does not a priori make sense. However in a networkof ma
hines, ea
h ma
hine would have its own lexis.We modelled the exe
ution of a program (
onsisting of a single thread running on a givenma
hine) by a redu
tion relation of the form B ` E �!� B 0 ` E 0 (at the top level, outside of anybra
ket, the ambiant
olour is empty). An immediate generalisation to networked programs leads usto
onsider a family of redu
tions Bi ` Ei �!� B 0i ` E 0i where the index i represents the ma
hine onwhi
h the redu
tion takes pla
e. In this model,
ommuni
ation must take into a

ount the
hangeof lexis from Bi to Bj as well as the
olour
hange.Re
all that a lexis is a set of non
es (plus some information about these non
es), and ea
h non
ethat is added to the lexis is freshly
reated (by the rule (C/ered.seal) and globally unique). Two lexesB1 and B2 formed on di�erent ma
hines are therefore disjoint; it is
lear that (B1,B2), or indeedany lexis made by interleaving the elements of B1 with the elements of B2 is also a well-formed lexis,with the same information stored for ea
h non
e as in B1 or B2. In the metatheory, we
an justmerge lexes and model the evolution of a networked program by a redu
tion relation of the formB ` E1 k . . . k En �! B 0 ` E 01 k . . . k E 0n(where E1k. . .kEn notes the parallel
omposition of n expressions, ea
h running on its own ma
hine).This model makes
onsiderations about mixing lexes moot as far as the metatheory is
on-
erned. However, in pra
ti
e, requiring ea
h non
e to be broad
ast as soon as it is
reated would beprohibitively expensive (and might be impossible in networks with
omplex dynami
 topologies).Fortunately one
an easily implement the shared lexis model by
onsidering that ea
h ma
hine onlyhas a partial
opy of the global lexis at any time, and requiring every transmission of a value toalso
ontain any information ne
essary to re
onstru
t the parts of the lexis that the value dependson (that is, the non
es
ontained in a value as well as their dependen
ies). Thus the lexis is spreadaround lazily. Note that although non
e
reation requires the generation of a globally unique name,this does not in pra
ti
e require syn
hronisation: it suÆ
es that ea
h ma
hine have a globally uniquename that
an be in
luded in the non
e, whi
h is the
ase in most distributed systems.IV.6.3.5 Stati
 sealing and hashesNon
es are singularised identities in the sense of se
tion II.6.1.2, as a fresh non
e is generatedwhenever a new family of abstra
t types is
reated by evaluating a dynami
 sealing
onstru
t E !! T.In se
tion IV.4.4.2, we presented system W, whi
h has another notion of sealing, namely stati
sealing E :: T. Unlike dynami
 sealing, stati
 sealing
reates a new family of abstra
t types on
eand for all at program
ompile- or initialisation-time, and thus requires an identity to be generatedat the
orresponding time.In a distributed environment, there are several
hoi
es as to when to generate identities forstati
ally sealed modules. The two main possibilities,
ompile- and initialisation-time, give di�erentresults.Generating stamps at
ompile-time [Ma
84℄ is one traditional way of obtaining
omparabledesignations of abstra
t types. This is not suitable when the identity of a type depends on therun-time behaviour of the program, but this is never the
ase with our stati
 sealing. Some modulesystems for distributed programs [Sew01℄ expli
itly allow for abstra
t type generation at
ompile-time. This feature has a grave pra
ti
al defe
t, namely the impossibility of re
onstru
ting a programfrom its sour
e alone. If two instan
es of the same program are deployed, they will only have
ompatible types if they stem from the same
ompilation, not if the program was distributed insour
e form. For this reason, we
hoose not to support any way to generate module identities at
ompile-time. 64

IV.7. CONCLUSIONGenerating new identities at program-initialisation time allows for less
ompatibility than at
ompile-time. However the behaviour is easily predi
table and reprodu
ible: any ex
essive gen-erativity
an be spotted in testing. Thus we propose that this is a viable semanti
s for stati
sealing.None of the generation semanti
s des
ribed so far allows sharing abstra
t types between inde-pendently
ompiled instan
es of the same program (let alone independently deployed instan
es of aprogram
omponent). Yet most
ases where stati
 sealing is used | often to enfor
e data stru
tureinvariants |
orrespond to
ases where stru
tural module identities, i.e., hashhashes are desired(see se
tion II.3). It is therefore natural to designate stati
ally sealed modules by their hash. Theidentities are de�ned by a purely mathemati
al
omputation and therefore reprodu
ible at will.As in hat (see se
tion III.2.7.5), we
an see hashes as unifying separate de�nitions of the \same"module on di�erent ma
hines.We shall not des
ribe hash formation for system W formally here. This
onstru
tion requiresthat the stati
ally sealed module be lifted from its lo
al potentially-generative
ontext as des
ribedin se
tion IV.4.4.5. Note that in system W, unlike in hat, the identity of a type is an arbitrarily-sized term whi
h may mention more than one hash. For example, if f is a stati
ally sealed modulewith the signature �x : T0. �t : type. T1 that is applied to a dynami
ally sealed module whi
h wasgiven the non
e a, the identity of the type �eld in the resulting module is �1 (ha) where h is thehash of the fun
tor.IV.7 Con
lusionSummary In the present
hapter we presented a des
ription language
alled tophat for a modulesystem for an ML-like language. The main features of this language are:� stru
tures and fun
tors, whose types are respe
tively dependent sums and dependent produ
ts;� a way to test the equivalen
e of two modules, and propagate knowledge of su
h an equivalen
e,using singleton signatures;� abstra
t types
an be de�ned by sealing a module, and an e�e
t system determines whi
hexpressions remain
omparable;� an redu
tion abstra
tion-preserving, thanks to
oloured bra
kets;� a dynami
 type-
he
king
onstru
t that does not depend on the program
ontext.Soundness The most basi
 requirement for a type system is that it for the proposed exe
utionme
hanism. Appendix B
ontains a soundness proof for tophat,
lassi
ally formulated as twotheorems: type preservation by redu
tion (?? ()) and progress of well-typed expressions (?? ()).De
idability of type-
he
king Another expe
ted property of a type system for a programminglanguage is de
idability, i.e., we would like an algorithm for de
iding whether a given expression hasa given type20. In parti
ular, we would need to de
ide when two types are equivalent. De
ision pro-
edures exist for weaker type systems, in parti
ular the one proposed by Dreyer, Crary and Harper[DCH03℄. However their algorithm does not easily generalise to our system, and we regretfully leavethe question open.20Type inferen
e would in fa
t be desirable. However inferen
e is known to be unde
idable in mu
h weakertype systems su
h as system F. With the type annotations that we require in the syntax, in parti
ular on fun
tionarguments, type re
onstru
tion might not be substantially harder than veri�
ation.65

CHAPTER IV. TOPHAT: A MODULE CALCULUS . . .

66

Chapter VCon
lusionV.1 Summary[Sorry, this fragment has not been translated yet.℄V.2 Related workV.2.1 Theoreti

onsiderations[[CM88℄, [OTCP90℄℄V.2.2 Programming languages[Modula-3, Java, .NET, Obje
tive Caml℄V.2.3 A
ute and HashCaml[Sorry, this fragment has not been translated yet.℄V.2.4 Ali
e MLRossberg's work is to my knowledge the only other in-depth treatment of the main topi
 of thisdissertation. Interestingly, my and his independent study of the problem led us towards the sametools.Rossberg's �rst step [Ros03℄ was to use
oloured bra
kets [ZGM99℄ to keep tra
k of abstra
ttypes at run-time and obtain an abstra
tion-preserving redu
tion relation, in a manner similar toour hat [LPSW03℄. Our theories di�er in that Rossberg's approa
h is purely generative: abstra
ttypes
reated on di�erent ma
hines are in
ompatible.Rossberg also studied the generalisation from simple modules to a full-
edged ML module
al-
ulus [Ros07℄. His implementation builds on Ali
e ML [PSL℄. Rossberg de�nes the �!SA	-
al
ulus,whi
h models the
ore of Ali
e ML. This
al
ulus in
ludes a
onstru
t that de�nes an abstra
ttype (x10.5{10.7), and he shows that this is equivalent to ML-like module sealing (spe
i�
ally , seemy se
tion IV.4.4.2). An abstra
t type is identi�ed by a type variable � with an abstra
tion kind(x11.3). An abstra
tion kind A(�) is similar to a singleton kind S(�) but only the singleton kindallows impli
it
onversion between � and �. Abstra
tion-kinded type variables play the same roleas my lexis-stored non
es. The type system of �!SA	-
al
ulus allows expli
it
onversions between67

CHAPTER V. CONCLUSIONan abstra
t type and its representation type anywhere in the program, whereas I materialise su
h
onversions with
oloured bra
kets.Rossberg proves an opa
ity property (x12.9): a program that does not
ontain any expli
it
onversion between an abstra
t type and its representation is parametri
 with respe
t to said repre-sentation. Rossberg also proposes a me
hanism to seal fun
tors (x13), allowing for both appli
ativeand generative fun
tors. Given the
omplexity of both systems, I leave to future work a
omparisonbetween the expressivity of �!SA	-
al
ulus with fun
tors and that of tophat.V.3 Future workV.3.1 Improvements to the theoryV.3.1.1 Strati�
ation[indexing type with a universe℄V.3.1.2 One or two language levels?[Sorry, this fragment has not been translated yet.℄V.3.1.3 E�e
t analysis[Sorry, this fragment has not been translated yet.℄V.3.1.4 Colours and bra
kets[Sorry, this fragment has not been translated yet.℄V.3.1.5 De
idability of type-
he
king[Sorry, this fragment has not been translated yet.℄V.3.1.6 Parametri
ity[Sorry, this fragment has not been translated yet.℄V.3.2 Supplementary featuresV.3.2.1 Field names and width subsignaturing[Sorry, this fragment has not been translated yet.℄V.3.2.2 Towards a programming language[polymorphism; re
ursion; libraries℄V.3.2.3 Generi
 programming[Sorry, this fragment has not been translated yet.℄68

V.3. FUTURE WORKV.3.2.4 Se
urity[Sorry, this fragment has not been translated yet.℄V.3.3 ImplementationV.3.3.1 Hash
omputation[Sorry, this fragment has not been translated yet.℄V.3.3.2 Typing tophat[Sorry, this fragment has not been translated yet.℄V.3.3.3 Integration into Obje
tive Caml: the module systemAdding named stru
ture �elds and width subtyping to tophat as des
ribed in se
tion V.3.2.1 yieldsa language that
overs all the features of the module
al
ulus of Obje
tive Caml [L+℄. But is ourlanguage
ompatible, i.e., is it a
onservative extension of Obje
tive Caml?The answer is a quali�ed \no". There are programs that Obje
tive Caml a

epts and we reje
t,be
ause Obje
tive Caml treats every fun
tor as appli
ative, even if its body
ontains side e�e
ts.This is una

eptable in tophat as appli
ations of appli
ative fun
tors must be able to be stati
allyevaluated. One way to improve
ompatibility would be to introdu
e a notion of separation (inthe sense of separability [Dre05℄ as dis
ussed in se
tion IV.4.2.3). It is however debatable whetherthis is desirable: treating a fun
tor whose appli
ation has side e�e
ts as appli
ative does not breakstru
tural typing but does not fully respe
t abstra
tion. We prefer to treat any fun
tor whosebody has side e�e
ts as generative be
ause when appli
ativity is desired, the body is usually pure([Dre05, RRS℄). For example, all the fun
tors in the standard library of Obje
tive Caml have apure body (mainly
onsisting of type de�nitions and immediate fun
tions, as well as a few datastru
ture values).The existing sealing of Obje
tive Caml should be
onsidered a stati
 sealing (see se
tion IV.4.4.2.It would be desirable to add a dynami
 sealing
onstru
t. Another ne
essary extension is syntax tomark a fun
tor as generative (i.e., a purity annotation on fun
tor types), in order for all signaturesto be expressible in the sour
e language.In addition to examining the module language, we need to
he
k for in
ompatibilities withthe
ore language. We dis
ussed polymorphism in se
tion V.3.2.2. We
an freely extend tophatwith impure
onstru
ts; a safe
hoi
e is to make almost all
ore expressions impure. The mainrequirements with respe
t to purity are that proje
ting a �eld of a module and immediate fun
tionsmust be
onsidered pure. In fa
t, Obje
tive Caml (like any implementation of Standard ML)already performs a suitable purity analysis, in order to
he
k the value restri
tion for polymorphism[Wri95, Gar04℄.V.3.4 Appli
ations of dynami
 typing[Sorry, this fragment has not been translated yet.℄V.3.4.1 The JoCaml name serverThe JoCaml \name server" was one of the main motivations of this work. The JoCaml language[FLFS07, MM01℄ is stati
ally typed, in
luding
ommuni
ations [FLMR97℄. However this result only69

CHAPTER V. CONCLUSIONapplies inside a single program instan
e: when two separate instan
es
ommuni
ate, the fa
t thatthe value sent by one instan
e has the type expe
ted by the other instan
e
annot result solelyfrom adheren
e to a proto
ol that only allows for veri�
ation inside a single instan
e, whi
h stati
type
he
king is.The re
ommended programming methodology for JoCaml keeps unsafe intera
tions to a mini-mum: one instan
e publishes a
ommuni
ation
hannel of an agreed-upon type, and other instan
es
an send values (in
luding other
hannels) over this initial
hannel, all
ommuni
ations but theinitial re
eption of the publi

hannel being type-safe. The JoCaml standard library provides aNs module to assist in equipping depolyed programs with a name server. This name server is aparti
ular program instan
e whi
h a
ts as a database for
ommuni
ation
hannels (the names inquestion). Parti
ipating instan
es
an publish their entry points by uploading them to the nameserver. A program instan
e that wants to join the network
an query the name server to obtain a
hannel to send data on. The only type-
he
king that must take pla
e at run-time is that performedby new parti
ipants as they
he
k that the data returned by the name server mat
hes their typingexpe
tations (the a
tual veri�
ation may be performed by the name server itself; in any
ase thename server must retain typing information for the values that it stores).

70

Appendix AFormal de�nition of tophatThis appendix is a pr�e
is of the language tophat, whi
h is identi
al to D of
hapter IV.E ::= expressionx �� y �� t �� . . . variables() unit valuefalse �� true boolean (generi
ally bv)0 �� 1 �� . . . integer (generi
ally n)hTi type �eld(E1,E2) pair�iE proje
tion (i 2 f1, 2g)�x : T. E lambda-abstra
tionE1 E2 appli
ationlet x = E0 inE : T lo
al bindingE !!
 T sealed and
oloured module[E℄T

oloured bra
ketdynE atT dynami
dynnedE atT universal dynami
undynE atT elseE 0 dynami
 type veri�
ationT ::= typeunit unitbool booleansint integersTypE proje
tion from a type �eld�x : T1. T2 dependent sum (also written T1 � T2 when x =2 fvT2)�x : T0.
T1 dependent produ
t (also written T1!
 T2 when x =2 fvT1)S(E) singletontypeK abstra
t type �eldLAM abstra
t typedyn dynami
ally typed valuesK ::= kindo monomorphi
 (fully spe
i�ed)� polymorphi
 (partially spe
i�ed)71

APPENDIX A. FORMAL DEFINITION OF TOPHATA ::= module
omponenta non
eAE appli
ation�iA proje
tion (i 2 f1, 2g)
 ::= e�e
tP pureI impure� ::= primary
oloura non
ex variable
 ::=
olour� empty
olour (also written fg)fa1, . . . ,ak, x1, . . . , xkg �nite set of primary
oloursB ::= lexisnil emptyB,a = E :
0 T non
e a with implemented by E with the signature T� ::= environnementnil empty�, x :
 T binding of the variable xJ ::= lo
al judgement right-hand sideok environment
orre
tionT : K type kinding (generalising T : �)T �! T 0 typing
onversionT � T 0
onvertibility equivalen
e on typesE �! E 0 expression
onversionE � E 0
onvertibility equivalen
e on expressionsT1 <: T2 subtyping
0 transparent
olour transparen
yA . E : T
omponent revelationA �! A 0
omponent
onversionA � A 0
onvertibility equivalen
e on
omponentsE :
 T expression typingV ::= quasi-value() �� bv �� n
onstanthTi type �eld(V1,V2) pair�x : T. E lambda-abstra
tion[V℄LAVM
 0 potentially abstra
tion-making
oloured bra
ketdynnedV� atT universal dynami
 72

V
 ::= value in
() �� bv �� n
onstanthTi type �eld(V
1 ,V
2) pair�x : T. E lambda-abstra
tion[V
 0 ℄LAV
\
 0 M
 0
oloured bra
ket, if AV
\
 0 is abstra
t in
 but
on
rete in
 0dynnedV� atT universal dynami
AV ::=
omponent valuea non
eAVV appli
ation to a quasi-value�iAV proje
tion (i 2 f1, 2g)AV
 ::= abstra
t
omponent in
a non
e, if opaque in
AV
V
 appli
ation of a fun
tor to a value�iAV
 proje
tion (i 2 f1, 2g)C

 0 ::= evaluation
ontext with inner
olour
 0 and outer
olour
E1 fun
tion argumentV2 applied fun
tion(,E2) �rst
omponent of a pair(V1,) se
ond
omponent of a pair�i proje
tion (i 2 f1, 2g)let x = inE : T lo
al bound!!
1 T sealing[℄T
 0
oloured bra
ket[V
1 ℄Typ
1 type �eld on a bra
ket, when
 0 =
 \
1dyn atT dynami
dynned atT universal dynami
, when
 0 = �undyn atT elseE 0 dynami
 type veri�
ationself BT(A) = BT if BT is a base type (unit, bool, int, dyn)self �x:T1.T2(A) = �x : self T1(�1A). self T2(�2A)self �x:T0. PT1(A) = �x : T0. P(self T1(Ax))self �x:T0. IT1(A) = �x : T0. IT1self S(E 0)(A) = S(E)self typeK(A) = S(hLAMi)
on
B
 (LA1M) = Typ revealB(A1) if underl(A1) 2

on
B
 (LA1M) = LA1M if underl(A1) =2

on
B
 ([E℄T
 0) = [E℄
on
B
\
 0(T)
 0(other
ases by simple indu
tion) 73

APPENDIX A. FORMAL DEFINITION OF TOPHATfx
0E0gx = E0fx
0E0gy = y si y 6= xfx
0E0g[E℄T
 = [fx
0E0gE℄fx
0E0gTfx
0E0g
fx
0E0g
 = (
 n fxg) [
0 si x 2
fx
0E0g
 =
 si x =2
(other
ases follow the usual notion of
apture-avoiding substitution)underl(a) = aunderl(AE) = underl(A)underl(�iA) = underl(A)revealB(a) = E where a = E :
 T 2 BrevealB(AE) = (revealB(A))ErevealB(�iA) = �i (revealB(A))
B; nil `
0 E :P Twhen a =2 domBB,a = E :
0 T; nil `� ok (envok.a) B; � `
 0 okwhen a = E :
0 T 2 B^
0 �
 0B; � `
 0[fag ok (envok.
.a)B; � `
 0 okwhen x :
0 T 2 �B; � `
 0[fxg ok (envok.
.x) nil; nil `� ok (envok.nil) B; � `
 T : �when x =2 dom �B; �, x :
 T `� ok (envok.x)B; � `
 okB; �0 `
0 � transparentwhen � = (�0, x :
0 T, �1)^ x 2
B; � `
 � transparent (vis.env) B; � `
 okwhen � 2
B; � `
 � transparent (vis.in) B; � `
 okB; � `
 � transparent (vis.o)B; � `

1 transparentB; � `

2 transparentB; � `

1 [
2 transparent (vis.union)B; � `

0 transparentwhen a = E :
0 T 2 BB; � `
 a . E : T (a
.a) B; � `
 A . E : �x : T0. PT1B; � `
 E0 :P T0B; � `
 AE0 . EE0 : fx
E0gT1 (a
.app)B; � `
 A . E : �x : T1. T2B; � `
 �1A . �1E : T1 (a
.proj.1) B; � `
 E1 :P S(�1E)B; � `
 A . E : �x : T1. T2B; � `
 �2A . �2E : fx
E1gT2 (a
.proj.2)B; � `
 A . E : typeKB; � `
 LAM : K (tok.abs) B; � `
 okB; � `
 bool : o (tok.base.bool) B; � `
 okB; � `
 dyn : K (tok.base.dyn)B; � `
 okB; � `
 int : o (tok.base.int) B; � `
 okB; � `
 unit : o (tok.base.unit) B; � `
 E :P typeKB; � `
 TypE : K (tok.�eld)74

B; � `
 T 0 : K 0B; �, x :
 T 0 `
[fxg T 00 : K 00B; � `
 �x : T 0. IT 00 : o (tok.fun.I) B; � `
 T 0 : K 0B; �, x :
 T 0 `
[fxg T 00 : K 00B; � `
 �x : T 0. PT 00 : K 00 (tok.fun.P)B; � `
 T 0 : K 0B; �, x :
 T 0 `
[fxg T 00 : K 00B; � `
 �x : T 0. T 00 : K 0 _ K 00 (tok.pair) B; � `
 okB; � `
 typeK : � (tok.type) B; � `
 E :P TB; � `
 S(E) : o (tok.sing)B; � `
 T : K 0when K 0 6 KB; � `
 T : K (tok.sub)B; � `
 E0 �! E 00B; � `
 E0 :P T0B; � `
 A . E : �x : T0. PT1B; � `
 AE0 �! AE 00 (a
onv.
ong.app.arg) B; � `
 A �! A 0B; � `
 A . E : �x : T0. PT1B; � `
 E0 :P T0B; � `
 AE0 �! A 0 E0 (a
onv.
ong.app.fun)B; � `
 A �! A 0B; � `
 A . E : �x : T1. T2B; � `
 �iA �! �iA (a
onv.
ong.proj)B; � `
 A1 �! A2B; � `
 A1 � A2 (aeq.
onv) B; � `
 A . E : TB; � `
 A � A (aeq.re
) B; � `
 A2 � A1B; � `
 A1 � A2 (aeq.sym) B; � `
 A1 � A2B; � `
 A2 � A3B; � `
 A1 � A3 (aeq.trans)B; � `
 A �! A 0B; � `
 A . E : typeKB; � `
 LAM �! LA 0M (t
onv.
ong.abs) B; � `
 E �! E 0B; � `
 E :P type�B; � `
 TypE �! TypE 0 (t
onv.
ong.�eld)B; � `
 T0 �! T 00B; �, x :
 T0 `
[fxg T1 : �B; � `
 �x : T0.
T1 �! �x : T 00 .
T1 (t
onv.
ong.fun.arg)B; � `
 T0 : �B; �, x :
 T0 `
[fxg T1 �! T 01B; � `
 �x : T0.
T1 �! �x : T0.
T 01 (t
onv.
ong.fun.ret)B; � `
 T1 �! T 01B; �, x :
 T1 `
[fxg T2 : �B; � `
 �x : T1. T2 �! �x : T 01 . T2 (t
onv.
ong.pair.1)B; �, x :
 T1 `
[fxg T2 �! T 02B; � `
 T1 : �B; � `
 �x : T1. T2 �! �x : T1. T 02 (t
onv.
ong.pair.2) B; � `
 E �! E 0B; � `
 S(E) �! S(E 0) (t
onv.
ong.sing)B; � `
 A . E : typeKB; � `
 underl(A) transparentB; � `
 LAM �! TypE (t
onv.abs) B; � `
 T : �B; � `
 Typ hTi �! T (t
onv.�eld)B; � `
 okB; � `
 S(()) �! unit (t
onv.unit)75

APPENDIX A. FORMAL DEFINITION OF TOPHATB; � `
 T1 �! T2B; � `
 T1 � T2 (teq.
onv) B; � `
 T : �B; � `
 T � T (teq.re
) B; � `
 T2 � T1B; � `
 T1 � T2 (teq.sym) B; � `
 T1 � T2B; � `
 T2 � T3B; � `
 T1 � T3 (teq.trans)
B; � `
 E �! E 0B; � `
 E :P T0B; � `
 E1 :P �x : T0. PT1B; � `
 E1 E �! E1 E 0 (e
onv.
ong.app.arg) B; � `
 E �! E 0B; � `
 E :P �x : T0. PT1B; � `
 E0 :P T0B; � `
 EE0 �! E 0 E0 (e
onv.
ong.app.fun)B; � `
 0 E �! E 0B; � `
 0 E :P TB; � `
\
 0 T : oB; � `
 okB; � `
 [E℄T
 0 �! [E 0℄T
 0 (e
onv.
ong.
ol.e) B; � `
 0 E :P T1B; � `
\
 0 T1 �! T2B; � `
\
 0 T1 : oB; � `
 okB; � `
 [E℄T1
 0 �! [E℄T2
 0 (e
onv.
ong.
ol.t)B; � `� E �! E 0B; � `� T : oB; � `� E :P TB; � `
 okB; � `
 dynnedE atT �! dynnedE 0 atT (e
onv.
ong.dynned.e)B; � `� T �! T 0B; � `� T : oB; � `� E :P TB; � `
 okB; � `
 dynnedE atT �! dynnedE atT 0 (e
onv.
ong.dynned.t) B; � `
 T �! T 0B; � `
 hTi �! hT 0i (e
onv.
ong.�eld)B; � `
 T0 �! T 00B; �, x :
 T0 `
[fxg E1 :
 T1B; � `
 (�x : T0. E1) �! (�x : T 00 . E1) (e
onv.
ong.fun.arg)B; �, x :
 T0 `
[fxg E �! E 0B; �, x :
 T0,y :
[fxg S(E) `
[fyg[fxg E1 :
 T1B; � `
 (�x : T0. fy
[fxgEgE1) �! (�x : T0. fy
[fxgE 0gE1) (e
onv.
ong.fun.body)B; �, x :
 T0 `
 0 E1 :
 T1B; �, x :
\
 0 T0 `(
\
 0)[fxg T1 �! T 01B; �, x :
\
 0 T0 `(
\
 0)[fxg T1 : oB; � `
 (�x : T0. E1 !!
 0 T1) �! (�x : T0. E1 !!
 0 T 01) (e
onv.
ong.fun.seal)B; � `
 E �! E 0B; � `
 E2 :P T2B; � `
 (E,E2) �! (E 0,E2) (e
onv.
ong.pair.1) B; � `
 E �! E 0B; � `
 E1 :P T1B; � `
 (E1,E) �! (E1,E 0) (e
onv.
ong.pair.2)B; � `
 E �! E 0B; � `
 E :P �x : T1. T2B; � `
 �iE �! �iE 0 (e
onv.
ong.proj) B; �, x :
 T0 `
[fxg E1 :P T1B; � `
 E0 :P T0B; � `
 (�x : T0. E1)E0 �! fx
E0gE1 (e
onv.app)B; � `
 0 okB; � `
 okB; � `
 [bv℄bool
 0 �! bv (e
onv.
ol.base.bool) B; � `
 0 okB; � `
 okB; � `
 [n℄int
 0 �! n (e
onv.
ol.base.int)76

B; � `
 0 okB; � `
 okB; � `
 [()℄unit
 0 �! () (e
onv.
ol.base.unit)B; � `� E :P TB; � `� T : oB; � `
 0 okB; � `
 okB; � `
 [dynnedE atT℄dyn
 0 �! dynnedE atT (e
onv.
ol.dynned)B; � `
 0 T0 <: T2B; �, x :
 0 T2 `
 0[fxg E :I T1B; �, x :
\
 0 T0 `(
\
 0)[fxg T1 : oB; � `
 okB; � `
 [�x : T2. E℄�x:T0. IT1
 0 �! �x : T0. E !!
 0[fxg T1 (e
onv.
ol.fun.I)B; � `
 0 T0 <: T2B; �, x :
 0 T2 `
 0[fxg E :P T1B; �, x :
\
 0 T0 `(
\
 0)[fxg T1 : oB; � `
 okB; � `
 [�x : T2. E℄�x:T0. PT1
 0 �! �x : T0. [E℄T1
 0[fxg (e
onv.
ol.fun.P)B; � `
2 E :P T2B; � `
1\
2 T2 : oB; � `
1 T2 <: T1B; � `
\
1 T1 : oB; � `
 okB; � `
 [[E℄T2
2 ℄T1
1 �! [E℄T1
1[
2 (e
onv.
ol.merge)B; � `
 0 E1 :P T1B; � `
\
 0 T1 : oB; �, x :
 0 T1 `
 0[fxg E2 :P T2B; � `
 0 E2 :P fx
 0 [E1℄T1
 0 gT2B; �, x :
\
 0 T1 `(
\
 0)[fxg T2 : oB; � `
 okB; � `
 [(E1,E2)℄�x:T1.T2
 0 �! ([E1℄T1
 0 , [E2℄fx
 0 [E1℄T1
 0 gT2
 0) (e
onv.
ol.pair)B; � `
 0 E 0 :P S(E)B; � `
\
 0 E :P TB; � `
 okB; � `
 [E 0℄S(E)
 0 �! E (e
onv.
ol.sing) B; � `
 E1 :P T1B; � `
 E2 :P T2B; � `
 �i (E1,E2) �! Ei (e
onv.proj)B; � `
 E :P type�B; � `
 E �! hTypEi (e
onv.eta.�eld) B; � `
 E :P �x : T0.
T1B; � `
 E �! (�x : T0. Ex) (e
onv.eta.fun)B; � `
 E :P �x : T1. T2B; � `
 E �! (�1E,�2E) (e
onv.eta.pair)
77

APPENDIX A. FORMAL DEFINITION OF TOPHATB; � `
 E1 �! E2B; � `
 E1 � E2 (eeq.
onv) B; � `
 E :P TB; � `
 E � E (eeq.re
) B; � `
 E2 � E1B; � `
 E1 � E2 (eeq.sym) B; � `
 E1 � E2B; � `
 E2 � E3B; � `
 E1 � E3 (eeq.trans)B; � `
 T 00 <: T0B; �, x :
 T 00 `
[fxg T1 <: T 01B; �, x :
 T0 `
[fxg T1 : �when
 v
 0B; � `
 �x : T0.
T1 <: �x : T 00 .
 0T 01 (tsub.
ong.fun) B; � `
 T1 <: T 01B; �, x :
 T1 `
[fxg T2 <: T 02B; �, x :
 T 01 `
[fxg T 02 : �B; � `
 �x : T1. T2 <: �x : T 01 . T 02 (tsub.
ong.pair)B; � `
 okwhen K1 6 K2B; � `
 typeK1 <: typeK2 (tsub.
ong.type) B; � `
 T � T 0B; � `
 T <: T 0 (tsub.eq) B; � `
 T <: T 0B; � `
 T 0 <: T 00B; � `
 T <: T 00 (tsub.trans)B; � `
 E :P TB; � `
 S(E) <: T (tsub.sing)B; � `
 E1 :
1 �x : T0.
2TB; � `
 E0 :P T0B; � `
 E1 E0 :
1t
2 fx
E0gT (et.app) B; � `
 okB; � `
 bv :P bool (et.base.bool) B; � `
 okB; � `
 n :P int (et.base.int)B; � `
 okB; � `
 () :P unit (et.base.unit) B; � `
 0 E :
 TB; � `
\
 0 T : oB; � `
 okB; � `
 [E℄T
 0 :
 T (et.
ol) B; � `
 E :
 TB; � `
 T : oB; � `
 dynE atT :I dyn (et.dyn)B; � `� E :P TB; � `� T : oB; � `
 okB; � `
 dynnedE atT :P dyn (et.dynned) B; �, x :
 T0 `
[fxg E :
 T1B; � `
 �x : T0. E :P �x : T0.
T1 (et.fun)B; � `
 E0 :I T0B; �, x :
 T0 `
[fxg E :I TB; � `
 T : �B; � `
 (let x = E0 inE : T) :I T (et.let) B; � `
 E1 :
 T1B; � `
 E2 :
 T2B; � `
 (E1,E2) :
 T1 � T2 (et.pair)B; � `
 E :
 �x : T1. T2B; � `
 �1E :
 T1 (et.proj.1) B; � `
 E :P �x : T1. T2B; � `
 E1 :P S(�1E)B; � `
 �2E :P fx
E1gT2 (et.proj.2) B; � `
[
 0 E :
 TB; � `
 T : �B; � `
 (E !!
 0 T) :I T (et.seal)B; � `
 T : KB; � `
 hTi :P typeK (et.type) B; � `
 E :
 dynB; � `
 E 0 :
 TB; � `
 undynE atT elseE 0 :I T (et.undyn) B; � `
 x transparentwhen x :
 0 T 2 �B; � `
 x :P T (et.x)B; � `
 E :P TB; � `
 E :P S(E) (et.sing) B; � `
 E :
 TB; � `
 T <: T 0when
 v
 0B; � `
 E :
 0 T 0 (et.sub)
78

(�x : T. E)V
 �!
 fx
V
gE (ered.app)[bv℄bool
 0 �!
 bv (ered.
ol.base.bool)[n℄int
 0 �!
 n (ered.
ol.base.int)[()℄unit
 0 �!
 () (ered.
ol.base.unit)[dynnedV� atT℄dyn
 0 �!
 dynnedV� atT (ered.
ol.dynned)[�x : T2. E℄�x:T0. IT1
 0 �!
 �x : T0. (E !!
 0[fxg T1) (ered.
ol.fun.I)[�x : T2. E℄�x:T0. PT1
 0 �!
 �x : T0. [E℄T1
 0[fxg (ered.
ol.fun.P)[[V
2℄LA2M
2 ℄LA1M
1 �!
 [V
2 ℄LA1M
1[
2 (ered.
ol.merge)if A1 et A2 are both opaque in
1 but A2 is
on
rete in
2[(V
 01 ,V
 02)℄�x:T1.T2
 0 �!
 ([V
 01 ℄T1
 0 , [V
 02 ℄fx
[V
 01 ℄T1
 0 gT2
 0) (ered.
ol.pair)[V
 0℄S(E)
 0 �!
 E (ered.
ol.sing)B ` [V
 0 ℄LAM
 0 �!
 B ` [V
 0℄Typ revealB(A)
 0 (ered.
olAbs)if underl(A) 2
 \
 0[V
 0℄Typ hTi
 0 �!
 [V
 0 ℄T
 0 (ered.
olTyp)E �!
 0 E 0C

 0 � E �!
 C

 0 � E 0 (ered.
ontext)dynV
 atT �!
 dynned [V
℄
on
B
 (T)
 at
on
B
 (T) (ered.dyn)let x = V
 inE : T �!
 fx
V
gE (ered.let)�i (V
1 ,V
2) �!
 Vi (ered.proj)B ` V
[
 0 !!
 0 T �!
 B,a = V
[
 0 :
[
 0 T ` [V
[
 0℄self T(a)
[
 0[fag (ered.seal)where a is fresh (i.e., a =2 domB)B ` undyn (dynV
 atT) atT 0 elseE 0 �!
 B ` ÆV
 if B; nil `
 T <: T 0E 0 otherwise (ered.undyn)
79

APPENDIX A. FORMAL DEFINITION OF TOPHAT

80

Bibliography[AM91℄ Andrew Appel and David B. Ma
Queen. Standard ML of new jersey. In J. Maluszyn-ski and M. Wirsing, editors, Programming Language Implementation and Logi
 Pro-gramming, Pro
eedings of the 3rd Intn'l Symposium, volume 528 of LNCS, pages 1{13.Springer Verlag, 1991.[CM88℄ L. Cardelli and D. Ma
Queen. Persisten
e and type abstra
tion. In Mal
olm P. Atkin-son, Peter Buneman, and Ronald Morrison, editors, Data Types and Persisten
e. EditedPapers from the Pro
eedings of the First Workshop on Persistent Obje
ts, Appin, S
ot-land, August 1985, Topi
s in Information Systems, pages 31{41. Springer, 1988. Sin
erevised.[DCH03℄ Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order mod-ules. In POPL '03: Pro
eedings of the 30th ACM SIGPLAN-SIGACT symposium onPrin
iples of programming languages, pages 236{249, New York, NY, USA, 2003. ACMPress.[Dre02℄ Derek Dreyer. Mos
ow ML's higher-order modules are unsound, De
ember 2002. Mes-sage on the TYPES forum. Online at http://www.seas.upenn.edu/�sweiri
h/types/ar
hive/1999-2003/msg01136.html.[Dre05℄ Derek Dreyer. Understanding and Evolving the ML Module System. PhD thesis, CarnegieMellon University, 2005.[FLFS07℄ C�edri
 Fournet, Fabri
e Le Fessant, and Alan S
hmitt. The JoCaml language (betarelease), 2007.[FLMR97℄ C�edri
 Fournet, Cosimo Laneve, Lu
 Maranget, and Didier R�emy. Impli
it typing �a laml for the join-
al
ulus. In CONCUR '97: Pro
eedings of the 1997 8th InternationalConferen
e on Con
urren
y Theory, pages 196{212. Springer-Verlag, July 1997.[Gar04℄ Ja
ques Garrigue. Relaxing the value restri
tion. In FLOPS '04: Pro
eedings of the 7thInternational Symposium on Fun
tional and Logi
 Programming, volume 2998 of Le
tureNotes in Computer S
ien
e, pages 196{213. Springer-Verlag, April 2004.[Gog05℄ Healfdene Goguen. A synta
ti
 approa
h to eta equality in type theory. In POPL'05: Pro
eedings of the 32nd ACM SIGPLAN-SIGACT symposium on Prin
iples ofprogramming languages, pages 75{84, 2005.[HL94℄ Robert Harper and Mark Lillibridge. A type-theoreti
 approa
h to higher-order moduleswith sharing. In POPL '94: Pro
eedings of the 21st ACM SIGPLAN-SIGACT sympo-sium on Prin
iples of programming languages, pages 123{137, New York, NY, USA,1994. ACM Press. 81

BIBLIOGRAPHY[HMM90℄ Robert Harper, John C. Mit
hell, and Eugenio Moggi. Higher-order modules and thephase distin
tion. In POPL '90: Pro
eedings of the 17th ACM SIGPLAN-SIGACTsymposium on Prin
iples of programming languages, pages 341{354, New York, NY,USA, 1990. ACM Press.[Klo80℄ Jan Willem Klop. Combinatory redu
tion systems. PhD thesis, Mathematis
h Centrum,Amsterdam, 1980.[L+℄ Xavier Leroy et al. The Obje
tive Caml system.[Ler℄ Xavier Leroy. Private
ommuni
ation.[Ler94℄ Xavier Leroy. Manifest types, modules, and separate
ompilation. In POPL '94: Pro-
eedings of the 21st ACM SIGPLAN-SIGACT symposium on Prin
iples of programminglanguages, pages 109{122, New York, NY, USA, 1994. ACM Press.[Ler95℄ Xavier Leroy. Appli
ative fun
tors and fully transparent higher-order modules. InPOPL '95: Pro
eedings of the 22nd ACM SIGPLAN-SIGACT symposium on Prin
iplesof programming languages, pages 142{153, New York, NY, USA, 1995. ACM Press.[Lil97℄ Mark Lillibridge. Translu
ent Sums: A Foundation for Higher-Order Module Systems.PhD thesis, Carnegie Mellon University, May 1997.[LPSW03℄ James J. Leifer, Gilles Peskine, Peter Sewell, and KeithWansbrough. Global abstra
tion-safe marshalling with hash types. In ICFP '03: Pro
eedings of the eighth ACM SIGPLANinternational
onferen
e on Fun
tional programming, pages 87{98, New York, NY, USA,2003. ACM Press.[Ma
84℄ David Ma
Queen. Modules for Standard ML. In LFP '84: Pro
eedings of the 1984 ACMSymposium on LISP and fun
tional programming, pages 198{207, New York, NY, USA,1984. ACM Press.[MM01℄ Louis Mandel and Lu
 Maranget. The JoCaml language, 2001.[OTCP90℄ Atsushi Ohori, Ivan Tabkha, Ri
hard Connor, and Paul Philbrow. Persisten
e andtype abstra
tion revisited. In Implementing Persistent Obje
t Bases, Prin
iples andPra
ti
e, Pro
eedings of the Fourth International Workshop on Persistent Obje
ts, 23-27 September 1990, Martha's Vineyard, MA, USA, pages 141{153. Morgan Kaufmann,1990.[Pie05℄ Benjamin C. Pier
e, editor. Advan
ed Topi
s in Types and Programming Languages.MIT Press, 2005.[PS00℄ Benjamin C. Pier
e and Eijiro Sumii. Relating
ryptography and polymorphism.Manus
ript, July 2000.[PSL℄ Programming System Lab, Saarland University. The Ali
e ML Language.[Ros℄ Andreas Rossberg. SML vs. O
aml. Online at http://www.ps.uni-sb.de/�rossberg/SMLvsO
aml.html. 82

BIBLIOGRAPHY[Ros03℄ Andreas Rossberg. Generativity and dynami
 opa
ity for abstra
t types. In PPDP'03: Pro
eedings of the 5th ACM SIGPLAN international
onferen
e on Prin
iples andpra
ti
e of de
laritive programming, pages 241{252, New York, NY, USA, 2003. ACMPress.[Ros07℄ Andreas Rossberg. Typed Open Programming | A higher-order, typed approa
h todynami
 modularity and distribution. PhD thesis, Universit�at des Saarlandes, January2007.[RRS℄ Sergei Romanenko, Claudio Russo, and Peter Sestoft. Mos
ow ML Language Overview.[Rus98℄ Claudio Russo. Types For Modules. PhD thesis, University of Edinburgh, 1998.[Sew01℄ Peter Sewell. Modules, abstra
t types, and distributed versioning. In POPL '01: Pro-
eedings of the 28th ACM SIGPLAN-SIGACT symposium on Prin
iples of programminglanguages, pages 236{247, New York, NY, USA, 2001. ACM Press.[Sha99℄ Zhong Shao. Transparent modules with fully syntati
 signatures. In ICFP '99: Pro
eed-ings of the fourth ACM SIGPLAN international
onferen
e on Fun
tional programming,pages 220{232, New York, NY, USA, 1999. ACM Press.[SP04℄ Eijiro Sumii and Benjamin C. Pier
e. A bisimulation for dynami
 sealing. In POPL '04:Pro
eedings of the 31st ACM SIGPLAN-SIGACT symposium on Prin
iples of program-ming languages, pages 161{172, New York, NY, USA, 2004. ACM Press.[Sun℄ Sun Mi
rosystems, In
. Java API Spe
i�
ations.[Wad89℄ Philip Wadler. Theorems for free! In FPCA '89: Pro
eedings of the fourth international
onferen
e on Fun
tional programming languages and
omputer ar
hite
ture, pages 347{359, New York, NY, USA, 1989. ACM Press.[Wri95℄ Andrew K. Wright. Simple imperative polymorphism. Lisp Symb. Comput., 8(4):343{355, 1995.[ZGM99℄ Steve Zdan
ewi
, Dan Grossman, and Greg Morrisett. Prin
ipals in programming lan-guages: a synta
ti
 proof te
hnique. In ICFP '99: Pro
eedings of the fourth ACMSIGPLAN international
onferen
e on Fun
tional programming, pages 197{207, NewYork, NY, USA, 1999. ACM Press.

83

BIBLIOGRAPHY

84

Index
abstra
ttype, 8abstra
t
omponent, 53abstra
t type, see typeabstra
tion kind, 65alpha-
onversion, 13, 46ambient
olour, 42apax, see non
eappli
ativefun
tor, see fun
toras
ription, 34avoidan
e problem, 15
losedterm, 13
olourprimary |, 42, 51transparen
y, 57variables in |, 44
oloured bra
ket, 39, 41, 51absolute |, 46additive, 46pushing, 44, 48universal |, 46
oloured bra
ketspushing, 42, 54
omparable (module), 25
ompletely spe
i�ed, see monomorphi

omponent type, 40
omponent value, 53
on
retisation, 44, 47
onversion, 20type |, 22
onvertibility, 22de
idability, 64dependen
yof a module identity, 43distributedsystem, 7

domain, 13dynami
sealing, see sealinge�e
t, 26empty
olour, 42environment, 13equitypable, 32equivalen
e
onvertibility, see
onvertibilityevaluation
ontext, 16extensionality, 24free variable, 13fully spe
i�ed, see monomorphi
fun
tionpolymorphi
 |, see polymorphi
fun
torappli
ative, 30generative, 30transparent, 30generativefun
tor, see fun
torgeneri
s, 50hash, 63impure, 26sealing, see sealingin
ompletely spe
i�ed, see polymorphi
inseparablesealing, see sealingjudgementlo
al typing |, 14kind, 48, 51abstra
tion |, see abstra
tion kindlexis, 3885

INDEXlo
al binding, 29marshal, 61marshaling, 7minimalsealing, see sealingmodule, 13module
omponent, 40, 51module identity, 37, see non
emonomorphi
, 44, 48name server, 67non
e, 37, 63transparen
y, 57opa
ity, 66opaque, 42parametri
ity, 21, 66partially spe
i�ed, see polymorphi
phase separation, 25pi
kling, see marshalingpolymorphi
, 48fun
tion, 49type parameter, 50value, 50proje
tible, 25pure, 26module, 25quasi-values, 53redu
tion, 16reveal, 40revelation, 52sandbox, 46sealing, 27dynami
 |, 31, 63, 65dynami
 |dynami
, 33dynami
 |stati
, 33dynami
 |strong, 33dynami
 |weak, 33impure |, 33inseparable |, 33minimal |, 34separable |, 33stati
 |, 31, 63strong |, 30weak |, 30

sel��
ation, 21, 38, 48separable, 25, 67sealing, see sealingserialisation, see marshalingsignature, 13singleton, 30higher-order, 18of an expression, 17singularised identity, 37, 63sound, 64stamp, 37, 63stamp book, see lexisstati
sealing, see sealingstrengthening, 38strongsealing, see sealingsubstitution, 13, 46transparent, 39, 42, 52, 57fun
tor, see fun
torvariable, 45typeabstra
t|, 51arrow |, 13
oer
ion, 38fun
tion, 13inferen
e, 64produ
t |, 13underlying non
e, 40, 52universal, 62| term, 44
oloured bra
ket, see
oloured bra
ketvalue, 15polymorphi
 |, see polymorphi
value restri
tion, 67variabletransparen
y, 57weaksealing, see sealingweakening
olour, 43, 45, 46
86

	Introduction
	Tophat: a module calculus suited to distributed environments
	Introduction
	A module calculus [B]
	Fundamental constructs
	About the base language
	Formal description of the core language
	Syntax
	Variables
	Environments

	Typing
	Introduction
	Environment corrections
	Type correctness
	Expression typing
	Type fields

	Run-time
	Expression reduction

	Singletons [S]
	Motivation
	Abstract types, concrete types
	Type sharing
	Value singletons
	Higher-order singletons
	A practical example

	Properties
	Typing rules
	Subtyping
	Singletons
	Expression typing
	Convertibility equivalences
	Type conversion
	Expression conversion
	Extensionality

	Sealing [E]
	Sealing
	An effect system
	Introduction
	Purity
	Projectibility, separability and comparability

	Formal presentation
	Syntax
	Run-time
	Typing: correction, equivalences, subtyping
	Expression typing

	Applicativity
	Applicative functors
	Static sealing: formalisation [W]
	Equivalences in the presence of static sealing
	Other forms of sealing
	Mutual encodings of static and dynamic sealing
	On applicativity through functor sealing

	Colours and brackets [C]
	Module identities
	Nonce generation
	Lexes
	From sealing to brackets
	Abstract types
	Selfification

	Colors
	Colouring
	Semantics of a type and dependencies of a nonce
	Variables in colours
	Absolute brackets, additive brackets

	Polymorphism
	Coloration of a type
	Kinds
	Brackets and function application; polymorphic functions
	Polymorphic types and values
	Colour fusion
	Generative functors

	Evaluation
	Syntax
	Values and abstract components
	Reduction

	Typing
	Environment formation
	Type kinding
	Colour transparency
	Module components
	Coloration of expressions
	Conversion and coloured brackets

	Dynamic typing and distributed programs [D]
	Dynamic typing
	Formalisation
	Syntax
	Reduction
	Typing

	Communication inter-machines
	Introduction
	Communication and colours
	Universals
	Nonce sharing
	Static sealing and hashes

	Conclusion

	Conclusion
	Summary
	Related work
	Theoretic considerations
	Programming languages
	Acute and HashCaml
	Alice ML

	Future work
	Improvements to the theory
	Stratification
	One or two language levels?
	Effect analysis
	Colours and brackets
	Decidability of type-checking
	Parametricity

	Supplementary features
	Field names and width subsignaturing
	Towards a programming language
	Generic programming
	Security

	Implementation
	Hash computation
	Typing tophat
	Integration into Objective Caml: the module system

	Applications of dynamic typing
	The JoCaml name server

	Formal definition of tophat
	Bibliography
	Index

