
Verifying type soundness in HOL for OCaml: the core language
Scott Owens Gilles Peskine

University of Cambridge

Despite the recent interest in using computerized theorem
provers to verify theorems in programming languages research,
little progress has been made toward verification for real-world
languages. Such undertakings encounter two difficulties: not only
are the proofs larger and more complicated than in a corresponding
research calculus, but the language itself typically lacks a formal
specification. We attack both of these problems for OCaml, formal-
izing a sizable fragment of the language using Ott [5] and verifying
its type soundness in HOL [4].

We take a straightforward approach and formalize the syn-
tax of OCaml as a collection of (sometimes mutually) inductive
datatypes, and OCaml’s type system and operational semantics as
a collection of (sometimes mutually) inductive relations and recur-
sive functions. Nipkow and van Oheimb[3] apply a similar method-
ology to Java. Since OCaml does not come with a formal specifica-
tion of its type system or operational semantics, we base our seman-
tics on the informal language manual, and on the results of experi-
ments with the implementation. Ott allows us to express these def-
initions in a mathematical-style notation. It generates HOL, Coq,
Isabelle/HOL, and LATEX definitions, the first of which forms the
basis for our proof.

In contrast to Lee et al. [2], we specify the semantics directly
on the language’s source syntax, rather than using an elaboration
into an internal calculus. The direct approach requires reasoning
about diverse and redundant features in the verification, but the
theorem prover helps us manage the process. We hypothesize that
a clear connection between the source language and its semantics
will facilitate verification about OCaml programs in addition the
present verification about the OCaml language.
Formalization Our semantics covers a large part of OCaml, but
excludes the language’s module and object systems. We formalize:
• let-based polymorphism with a traditional value restriction
• pattern matching, with nested and “or” patterns; without guards
• type definitions, including type abbreviations, generative vari-

ant and record types, parametric types, and mutual recursion
• exception definitions and handling (try, raise, exception)
• mutable references (ref, !, :=), but not mutable record fields
• 31 bit word semantics for values of type int
• polymorphic equality (=), tuples (,), and lists (::, [])
• record update expressions (with) and loops (while, do).

The syntax specification closely follows the OCaml manual,
with several additions to support the semantics: typing contexts,
stores, type schemes, names of primitive functions, etc. The type
system has 156 rules in 32 relations, not including substitution
and free variable functions generated by Ott. The typing relation
is syntactic, but not unification-based, so special care is taken to
coordinate type variables mentioned in explicit type annotations.

The small-step reduction relation uses labeled transitions to ex-
press interactions with the store. The rules for the pure fragment
thereby avoid mentioning the store, similar to the “state conven-
tion” of The Definition of Standard ML, but with formal rigor. This
approach also simplifies the introduction of new effectful features
by localizing their mention to the new rules. There are 18 rules for
evaluating in contexts (they enforce right-to-left evaluation order-
ing), 17 for upward propagation of exceptions, and 26 for reducing
expressions, 13 for primitive equality, 11 for other primitive opera-
tions, and 12 for matching values against patterns.
Verification Most of the proof effort is a straightforward applica-
tion of HOL’s tactic-based proof mechanisms. Ott uses HOL’s built-
in facilities for datatype and inductive relation definitions, and these

automatically provide rule- and structural-induction theorems, and
case analysis theorems. Additionally, we have automated the con-
struction of inversion lemmas from the provided case analysis the-
orems. We use HOL’s tactics for the following operations: rewrit-
ing with equational theorems, backward and forward chaining with
implicational theorems, instantiating existentially quantified vari-
ables, applying induction theorems, case-splitting, and doing first-
order proof search (METIS TAC [1]). The last is used on around 500
goals in the verification; a good prover for first-order logic with
equality is an immense convenience in large verifications.

The proof does not require an α-aware term or type repre-
sentation, but we have settled on a de Bruijn index encoding of
type variables. Because the semantics never performs a reduc-
tion under a value or type variable binder, identifying names up
to α-equivalence is unnecessary; the Ott-generated non-capture-
avoiding substitutions will never capture because the term being
substituted has no free variables. Type variables, bound by poly-
morphic let, have the additional constraint that duplicate bindings
cannot be present in the typing context. Otherwise type scheme
generalization might capture a type variable introduced by a dif-
ferent let expression. Unfortunately, in the polymorphic let case
of the weakening lemma’s proof, a new type variable might conflict
with one in the weakened context. Thus, the let expression’s typ-
ing derivation must be α-renamed to introduce a non-conflicting
name. Preliminary investigation of two α-unaware approaches to
this dilemma showed the resulting proof obligations to be unsatis-
factorily complicated. The de Bruijn index encoding sidesteps the
potential for naming conflicts. Typical “locally nameless” encod-
ings do not help here because the binding in question spans two
positions in the judgment.
Status We have completed the verification of the progress theo-
rem for expressions (without type abbreviations). Except for a com-
bination weakening/type substitution lemma, we have also com-
pleted verification of the preservation theorem for expressions us-
ing the named representation for type schemes. The total proof ef-
fort uses about 4,400 lines of tactic scripts and has taken roughly
2.5 man-months thus far (the formalization has taken an estimated
.5 to 1 man-month). Ongoing work aims to replace the named rep-
resentation with a de Bruijn index representation to simplify the
verification of the (now separate) weakening and type substitution
lemmas, and to extend the proof to handle type abbreviations. The
formalization and proofs are available at http://www.cl.cam.
ac.uk/∼pes20/ott/.
Acknowledgments We acknowledge the support of EPSRC grants
GR/T11715/01 and EP/C510712/1.
References
[1] HURD, J. First-order proof tactics in higher-order logic theorem

provers. In Proc. Workshop on Design and Application of Strate-
gies/Tactics in Higher Order Logics (2003).

[2] LEE, D. K., CRARY, K., AND HARPER, R. Towards a mechanized
metatheory of Standard ML. In Proc. Principles of Prog. Lang. (2007).

[3] NIPKOW, T., AND VAN OHEIMB, D. Javalight is type-safe —
definitely. In Proc. Principles of Programming Languages (1998).

[4] NORRISH, M., AND SLIND, K. HOL-4 manuals, 1998–2006.
http://hol.sourceforge.net/.

[5] SEWELL, P., ZAPPA NARDELLI, F., OWENS, S., PESKINE, G.,
RIDGE, T., SARKAR, S., AND STRNIŠA, R. Ott: Effective tool
support for the working semanticist. In Proc. International Conference
on Functional Programming (2007).


