Semi-automatic proof of Strong connectivity

jean-jacques.levy@inria.fr

journées PPS, 12-10-2017

Plan

- motivation
- algorithm
- formal proof
- other systems
- conclusion

.. joint work (in progress) with Ran Chen [VSTTE 2017])

also cooperation with Cyril Cohen, Laurent Théry, Stephan Merz

Motivation

- nice algorithms **simple** formal proofs
- fully published in articles or journals
- how to publish formal proofs ?
- formal proofs should be exact and readable (by human)
- mix automatic and interactive proofs
- first-order logic is **easy** to understand, but **not** expressive
- algorithms on graphs = a good testbed

One-pass linear-time algorithm

[tarjan 1972]

Depth-first-search

spanning tree (forest)

graph

The algorithm (1/3)

3 SCCs (strongly connected components)

3 vertices are their bases

The algorithm (2/3)

 $LOWLINK(x) = \min \left(\{ num[x] \} \cup \{ num[y] \mid x \xrightarrow{*} \longrightarrow y \\ \land x \text{ and } y \text{ are in same} \\ \text{ connected component} \} \right)$

The algorithm (3/3)

successive values of the working stack 2 2 2 increasing rank

The program

```
let rec printSCC (x: int) (s: stack int)
    (num: array int) (sn: ref int) =
Stack.push x s;
num[x] ← !sn; sn := !sn + 1;
let low = ref num[x] in
foreach y in (successors x) do
    let m = if num[y] = -1
      then printSCC y s num sn
      else num[y] in
    low := Math.min m !low
done;
```

• print each component on a line

Proof in algorithms books (1/2)

- consider the spanning trees (forest)
- tree structure of strongly connected components
- 2-3 lemmas about ancestors in spanning trees

LEMMA 10. Let v and w be vertices in G which lie in the same strongly connected component. Let F be a spanning forest of G generated by repeated depth-first search. Then v and w have a common ancestor in F. Further, if u is the highest numbered common ancestor of v and w, then u lies in the same strongly connected component as v and w.

$$LOWLINK(x) = \min \left(\{ num[x] \} \cup \{ num[y] \mid x \stackrel{*}{\Longrightarrow} \hookrightarrow y \\ \land x \text{ and } y \text{ are in same} \\ \text{connected component} \} \right)$$

LEMMA 12. Let G be a directed graph with LOWLINK defined as above relative to some spanning forest F of G generated by depth-first search. Then v is the root of some strongly connected component of G if and only if LOWLINK (v) = v.

Proof in algorithms book (2/2)

• give the program

• that part of the proof is very informal

el.stack

Our program (1/3)

```
let rec dfs1 x e =
                                                                           s3
 let n = e.sn in
 let (n1, e1) = dfs (successors x) (add_stack_incr x e) in
  let (s2, s3) = split x e1.stack in
  if n1 < n then (n1, e1) else
    (max_int(), {stack = s3; sccs = add (elements s2) e1.sccs;
                                                                         X
       sn = e1.sn; num = set_max_int s2 e1.num})
                                                                           s2
with dfs roots e = if is_empty roots then (max_int(), e) else
  let x = choose roots in
 let roots' = remove x roots in
 let (n1, e1) = if e.num[x] \neq -1 then (e.num[x], e) else dfs1 x e in
  let (n2, e2) = dfs roots' e1 in (min n1 n2, e2)
let tarjan () =
                                                    Functional programming
  let e0 = \{ stack = Nil; sccs = empty; sn = 0; num = const (-1) \} in
  let (_, e') = dfs vertices e0 in e'.sccs
returns LOWLINK(x) and new environment
```

Formal proof

Plan of proof (1/2)

- define **reachability** in graphs and SCCs
- prove a few lemmas about positions in stacks (ranks)
- define invariants on environments
- give pre-post conditions for functions
- add a few intermediate assertions in function bodies

• avoid paths, prefer edges

Plan of proof (2/2)

- vertices have colors
 - white = unvisited gray = being visited black = visited
- invariant on environment

vertex in stack reaches all vertices with higher rank

Invariants

type env = {ghost blacks: set vertex; ghost grays: set vertex; stack: list vertex; sccs: set (set vertex); sn: int; num: map vertex int}

Pre/Post-conditions

let rec dfs1 x e =
requires {mem x vertices} (* R1 *)
requires {access_to e.grays x} (* R2 *)
requires {not mem x (union e.blacks e.grays)} (* R3 *)

Assertions

let n = e.sn in
let (n1, e1) =
 dfs' (successors x) (add_stack_incr x e) in
let (s2, s3) = split x e1.stack in

if nl < n then begin

(nl, add_blacks x el) end else begin

(max_int(), {blacks = add x el.blacks; grays = e.grays; stack = s3; sccs = add (elements s2) el.sccs; sn = el.sn; num = set_max_int s2 el.num}) end

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]

el.stack

X

s3

s2

Proof stats

provers	Alt-	CVC3	CVC4	Coq	E-	Spass	Yices	$\mathbf{Z3}$	all	#VC	#PO
	Ergo				prover						
38 lemmas	2.35	0.23	5.79		0.66	0.75	0.21		9.99	77	38
split	0.09	0.2							0.29	6	6
add_stack_incr	0.01								0.01	1	1
add_blacks	0.01								0.01	1	1
set_max_int	0.02								0.02	1	1
dfs1	53.52	12.88	36.39	3.06	28.06			9.01	142.92	218	24
dfs	4.6	0.23	11.63					0.31	16.77	51	35
tarjan	0.44								0.44	16	6
total	61.04	13.54	53.81	3.06	28.72	0.75	0.21	9.32	170.45	371	112

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]

Other systems

Coq / ssreflect

[cyril cohen, laurent théry, JJL]

- port in 1 week
- graphs and finite sets already in mathematical components
- problems with termination (hacky & higher-order)
- 920 lines

[http://github.com/CohenCyril/tarjan]

Isabelle / HOL

[stephan merz]

- port in 1 month
- use many strategies (metis, blast, sledgehammer)
- still problems with proving termination
- 31 pages

[http://jeanjacqueslevy.net/why3/graph/abs/scct/isa/Tarjan.pdf]

[kenji maillard, catalin hritcu]

- start discuss with them
- Z3 single automatic prover
- ??

Conclusion

Future work

- library for formal proofs on graphs
- other graph algorithms
- beyond graphs ...
- teaching formal methods on test cases
- imperative programs

[http://jeanjacqueslevy.net/why3]