
Semi-automatic proof

of

Strong connectivity

jean-jacques.levy@inria.fr

journées PPS, 12-10-2017

1

mailto:jean-jacques.levy@inria.fr

Plan

2

.. joint work (in progress) with Ran Chen [VSTTE 2017])
also cooperation with Cyril Cohen, Laurent Théry, Stephan Merz

• formal proof

• other systems

• conclusion

• motivation

• algorithm

Motivation

3

• fully published in articles or journals

• formal proofs should be exact and readable (by human)

• algorithms on graphs = a good testbed

• how to publish formal proofs ?

• mix automatic and interactive proofs

• first-order logic is easy to understand, but not expressive

• nice algorithms simple formal proofs

One-pass linear-time
algorithm

[tarjan 1972]

4

Depth-first-search

5

2 83

4 9

1 7

5 6

0 2 8

9

7

5

63

4

10

graph spanning tree (forest)

The algorithm (1/3)

6

2 8

9

7

5

63

4

10

2 83

4 9

1 7

5 6

0

3 SCCs (strongly connected components) 3 vertices are their bases

The algorithm (2/3)

7

LOWLINK(x) = min ({num[x]} [{num[y] | x
⇤

=),! y
^ x and y are in same
connected component})

2 8

9

7

5

63

4

10
0

2 8

9

7

5

63

4

1
1

5

5

5

1

1

2

2 8

93

4

1
1

4

4

1

1

2

The algorithm (3/3)

8

1 1 1 1 1

2 2 2 2

3 3 3

4 4

5

1

2

3

4

5

6

1 1

2 2

3 3

4 4

8 8

1

2

3

4

5

6 9

7

successive values of the working stack

0

1

2

3

4

5

6

increasing rank

0

2 8

9

7

5

63

4

10

The program

• print each component on a line

9

Imperative style

Proof in algorithms books (1/2)

10

• tree structure of strongly connected components

• consider the spanning trees (forest)

• 2-3 lemmas about ancestors in spanning trees

LOWLINK(x) = min ({num[x]} [{num[y] | x
⇤

=),! y
^ x and y are in same
connected component})

Proof in algorithms book (2/2)

11

• give the program

• proof program

• that part of the proof is very informal

Our program (1/3)

 returns LOWLINK(x) and new environment

x

e1.stack

s3

s2

12
Functional programming

Formal proof

13

using Why3

Plan of proof (1/2)

14

• prove a few lemmas about positions in stacks (ranks)

• give pre-post conditions for functions

• define reachability in graphs and SCCs

• define invariants on environments

• add a few intermediate assertions in function bodies

• avoid paths, prefer edges

Plan of proof (2/2)

15

• vertices have colors
- white = unvisited - gray = being visited - black = visited

• invariant on environment

 vertex in stack reaches all vertices with higher rank

cc1 cc2

ccn

sccs

stack
increasing rank

increasing num
ber

16

Invariants

17

Pre/Post-conditions

e’.stack

e.stack

xe.grays = e’.grays

e.sccs e’.sccs✓
e.blacks e’.blacks✓

Assertions

18

Coq

x

e1.stack

s3

s2

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]

http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html

Assertions

19

Coq

• 9x 0y 0, reachable x x 0 ^ edge x 0 y 0 ^ reachable y 0 y ^ x 0 2 s2 ^ y 0 62 s2

• 3 cases:

• proof by contradiction: 9y , in same scc y x ^ y 62 s2

y 0 is white

x 0 = x then y 0 2 successors x y 0 is black

x 0 6= x then x 0 is black ¬ no black to white b1 g1

[1]

y 0 2 e1.sccs then in same scc y 0 x x is black[2]

x 0 = x then y 0 2 successors x n1 e1.num[y 0]

y 0 2 s3 rank y 0 s1 < rank x s1 e1.num[y 0] < e1.num[x] = e.num[x] = n

x 0 6= x then xedge to s1 (Cons x s3) y 0

[3]

x

s1=e1.stack

s3

s2

Proof stats

20

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]

http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html

Other systems

21

Coq / ssreflect

• port in 1 week

• graphs and finite sets already in mathematical components

• problems with termination (hacky & higher-order)

• 920 lines

 [http://github.com/CohenCyril/tarjan]

22

[cyril cohen, laurent théry, JJL]

http://github.com/CohenCyril/tarjan

Isabelle / HOL

• port in 1 month

• use many strategies (metis, blast, sledgehammer)

• still problems with proving termination

• 31 pages

[http://jeanjacqueslevy.net/why3/graph/abs/scct/isa/Tarjan.pdf]

23

[stephan merz]

http://jeanjacqueslevy.net/why3/graph/abs/scct/isa/Tarjan.pdf

F*

• start discuss with them

• Z3 single automatic prover

• ??

24

[kenji maillard, catalin hritcu]

Conclusion

25

Future work

• library for formal proofs on graphs

• other graph algorithms

• beyond graphs …

• teaching formal methods on test cases

• imperative programs

26

[http://jeanjacqueslevy.net/why3]

http://jeanjacqueslevy.net/why3

