The cost of usage in the λ-calculus

jean-jacques.levy@inria.fr

Deducteam, 17-04-2015

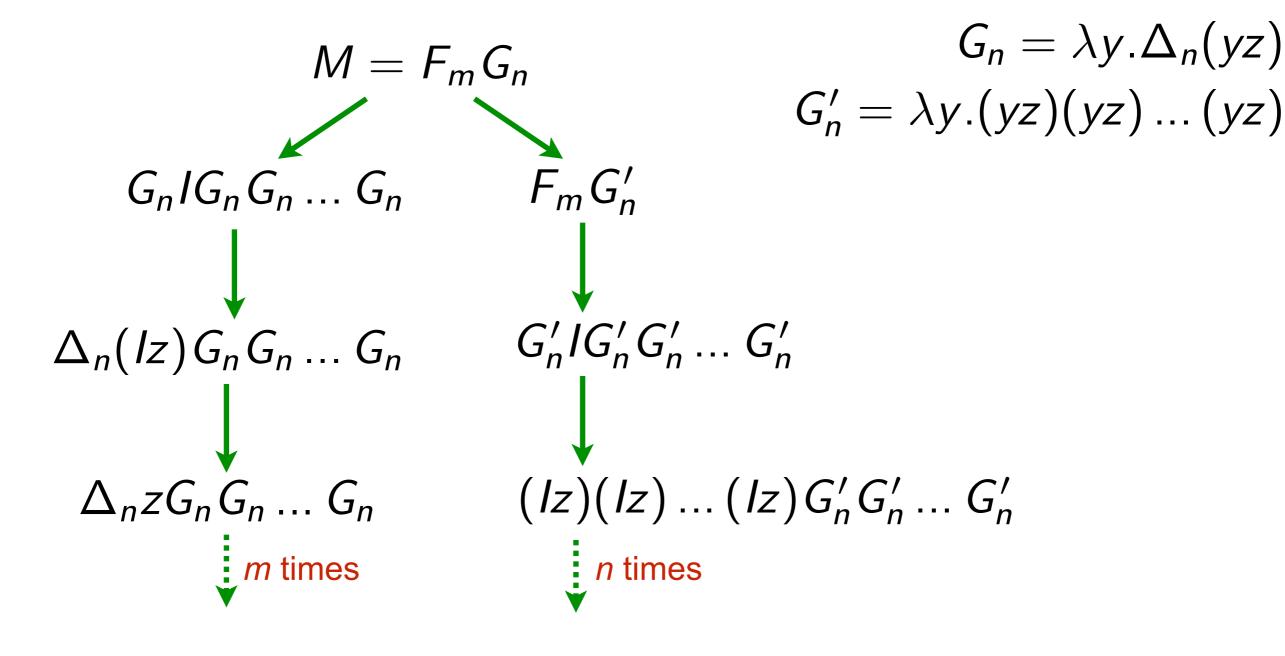
Plan

- the standardization theorem (with upper bounds)
- our result
- rigid and minimum prefixes (stability thm)
- Xi's proof (with upper bounds)
- Xi's proof revisited with live occurences

.. joint work with Andrea Asperti (LICS 2013) ..

Shortest reductions

non effective strategies



 $F_m = \lambda x.xIxx...x$

 $\Delta_n = \lambda x.xx...x$

Standardization

Standard reductions (1/4)

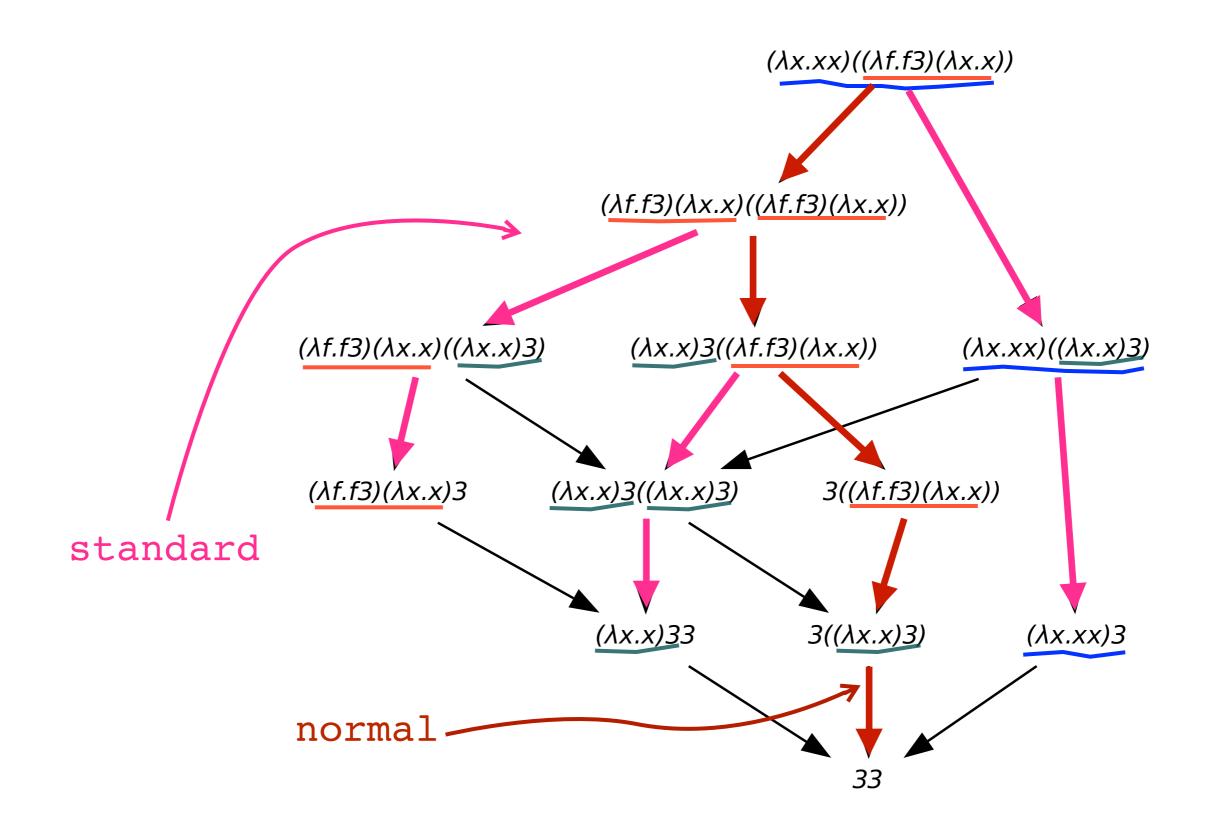
Definition: The following reduction is standard

$$\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

iff for all i and j, i < j, then R_j is not residual along ρ of some R'_j to the left of R_i in M_{i-1} .

 Definition: The leftmost-outermost reduction is also called the normal reduction.

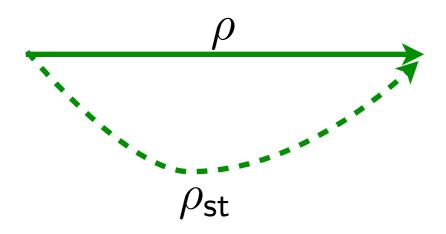
Standard reductions (2/4)



Standard reductions (3/4)

• Standardization thm[Curry 50]

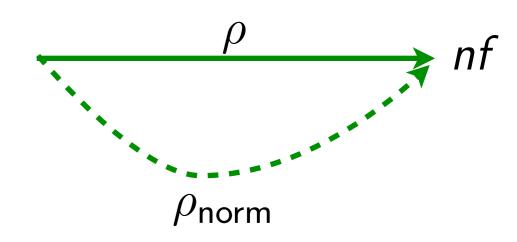
Let
$$M \stackrel{*}{\longrightarrow} N$$
. Then $M \stackrel{*}{\Longrightarrow} N$.



Any reduction can be performed outside-in and left-to-right.

Normalization corollary

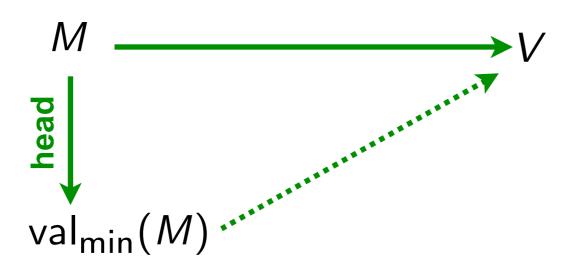
Let
$$M \xrightarrow{\bullet} nf$$
. Then $M \xrightarrow{\mathsf{norm}} nf$.



Standard reductions (4/4)

Head reduction corollary for values

Let
$$M \xrightarrow{*} V$$
. Then $M \xrightarrow{\text{head}} \text{val}_{\min}(M) \xrightarrow{*} V$



Our result

• Upper-bound on standard reductions [Hongwey Xi, 99]

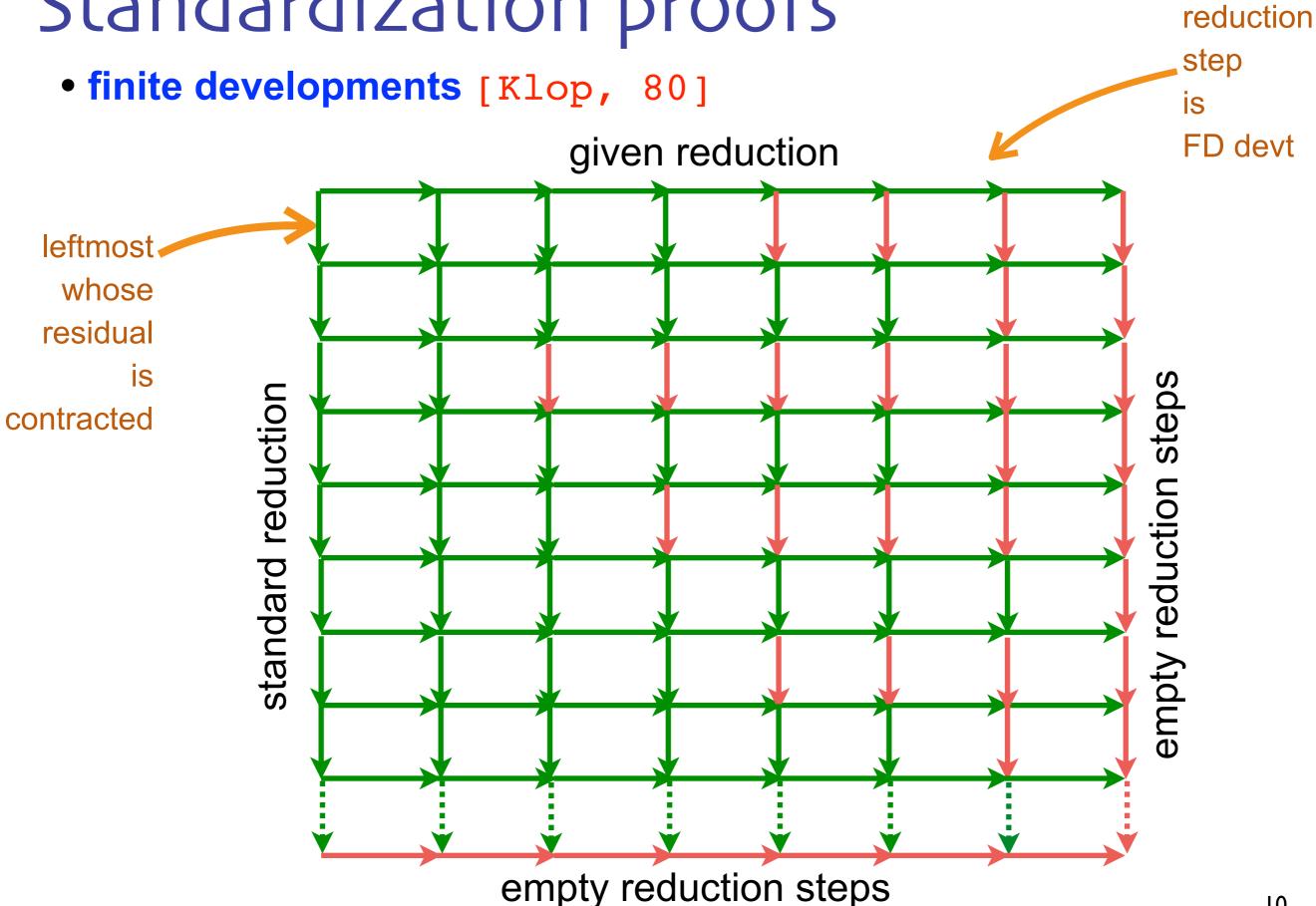
Let
$$\ell = |\rho|$$
 and $\rho : M \longrightarrow N$. Then $|\rho_{st}| \le |M|^{2^{\ell}}$ where $\rho_{st} : M \longrightarrow N$.

• Upper-bound to normal forms [Asperti-JJL, 13]

Let
$$\ell = |\rho|$$
 and $\rho : M \xrightarrow{*} x$. Then $|\rho_{norm}| \leq \ell!$ where $\rho_{norm} : M \xrightarrow{*} x$.

We gain one exponential.

Standardization proofs



each

Standardization proofs

• finite developments [Gonthier-Melliès-JJL,92]
tricky axiomatic proof

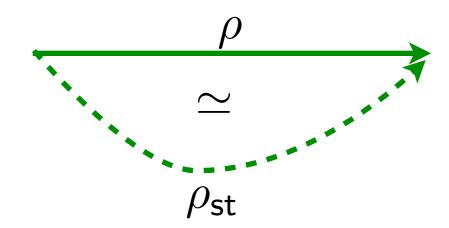
• head normal forms [Mitschke, 80]

• initial proof and statement [Curry&Feys, 70] correct statement, but proof?

Standard reductions (4+/4)

• Standardization thm[JJL 77]

Let
$$\rho: M \xrightarrow{*} N$$
. $\exists ! \rho_{st}. M \xrightarrow{*} N$ and $\rho_{st} \simeq \rho$.



Standard reduction is canonical representative in permutation class.

• **\lambda-standardization**[Church 36]

Standard reduction is longest in its equivalence class.

. .

Rigid prefixes: stability and

multiplicity of variables

Stability (1/2)

• **Definition** [rigid prefix] Any rigid prefix A of M is any prefix of M where never the left of an application can reduce to an abstraction.

$$M = \Omega(\lambda x.x(Ix))(IIx)$$

$$_{(\lambda x.x_{-})_{-}} \text{ rigid prefix of } M$$

$$\Omega = (\lambda x.xx)(\lambda x.xx)$$

$$_{(\lambda x.x_{-})_{-}}(\lambda x.x_{-})(-Ix) \text{ not rigid prefix of } M$$

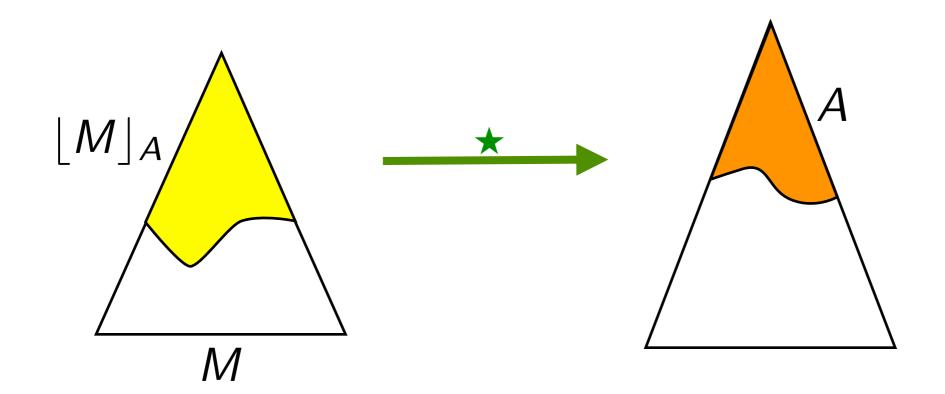
$$I = \lambda x.x$$

(rigid prefixes are finite prefixes of Berarducci trees)

• Definition M produces A if $M \xrightarrow{} N$ and A is rigid prefix of N.

Stability (2/2)

• Theorem [stability] For any rigid prefix A produced by M, there is a unique minimal prefix $|M|_A$ of M producing A.



• Fact [monotony] Let M produce A rigid and $M \xrightarrow{*} N$. Then N produces A.

Slow consumption (1/2)

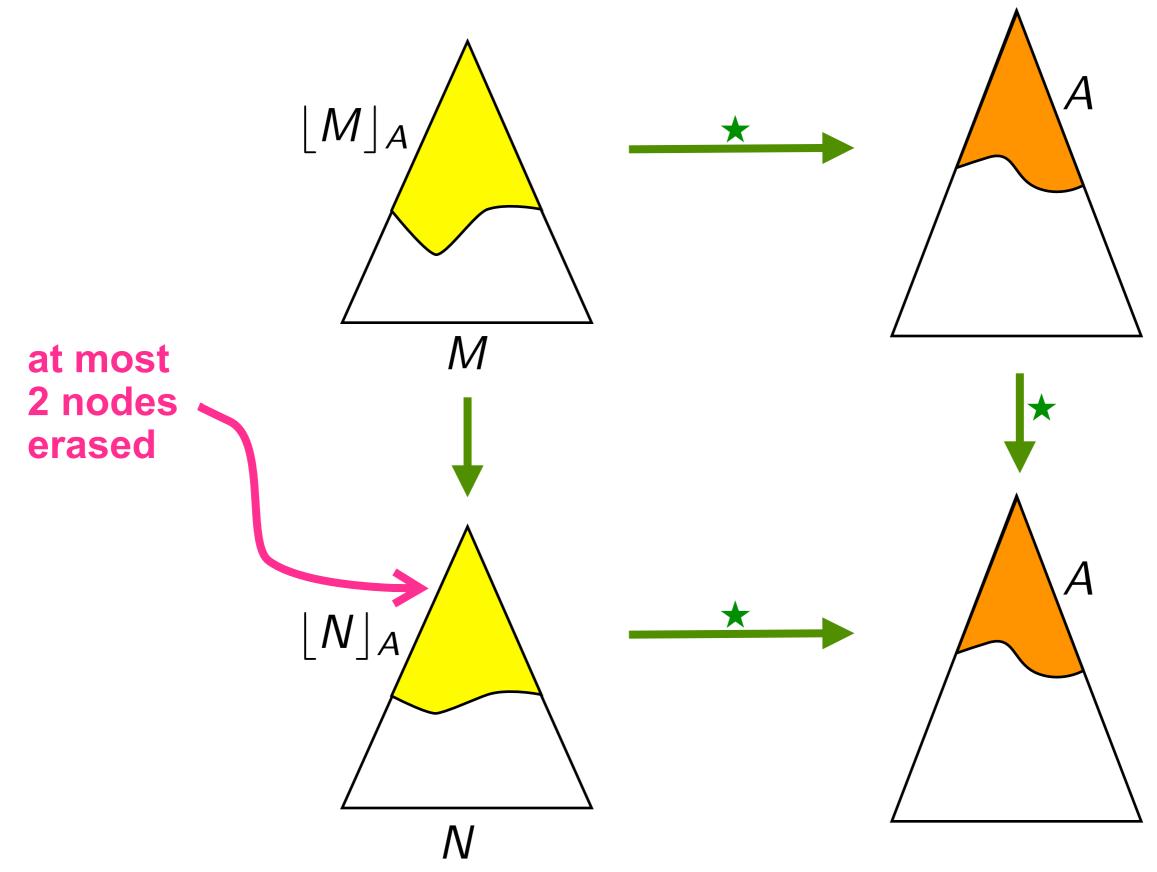
• Lemma 1 [slow consumption] Let M produce A rigid and $M \longrightarrow N$. Then $||N|_A| \ge ||M|_A| - 2$.

i.e.
$$|\lfloor M \rfloor_A|_{@} \leq 1 + |\lfloor N \rfloor_A|_{@}$$

where $|P|_{\mathbb{Q}}$ is the applicative size of P (its number of application nodes).

• Corollary Let $\rho: M \xrightarrow{\hspace{1cm}\longrightarrow} N$ and A be rigid prefix of N. Then $||M|_A|_{\mathfrak{Q}} \leq |\rho| + |A|_{\mathfrak{Q}}$.

Slow consumption (2/2)



Multiplicity of variables

• Definition Let M produce A rigid. An occurrence of x is live for A if it belongs to $\lfloor M \rfloor_A$.

Let $m_A(x)$ be the number of live occurrences of x in M. We pose $m_A(R) = m_A(x)$ when $R = (\lambda x. M)N$.

• Lemma 2 [upper bound on live multiplicity] Let $\rho: M \xrightarrow{*} N$ and A rigid prefix of N. Then $m_A(x) \leq |\rho| + |A|_{@} + 1$ for any variable x in M.

Standardization

Xi's proof of standardization (1/2)

• Lemma [reordering of head redexes] H is residual of H'. Then

$$M \longrightarrow \rho$$
st
$$N = \lambda \vec{x} . (\lambda x. V) W \vec{N}$$

$$H' \longrightarrow H$$

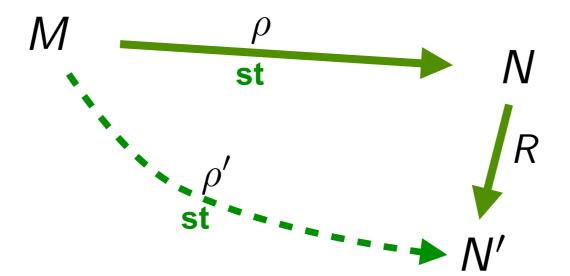
$$M' \longrightarrow \rho' \longrightarrow N' = \lambda \vec{x} . V \{x := W\} \vec{N}$$

with
$$|\rho'| \leq \lceil 1, m(H) \rceil . |\rho|$$

Proof Easy since $M = \lambda \vec{x}.(\lambda x.T)U\vec{M}$ and $\rho = \rho_T \rho_U \rho_1 \cdots \rho_n$. And ρ' is disjoint intermix of ρ_T , several ρ_U , followed by ρ_i 's. Thus $|\rho'| = |\rho_T| + m(H).|\rho_U| + \sum_i |\rho_i|$

Xi's proof of standardization (2/2)

Corollary



with
$$|\rho'| \leq 1 + \lceil 1, m(R) \rceil . |\rho|$$

Proof

By induction on pair $(|\rho|, |M|)$. Cases on ρR contracting head redex or not + previous lemma.

Xi's proof of standardization (2/2)

• Theorem [standardization with upper bounds]

Let
$$M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

Then there is ρ standard from M to N such that

$$|\rho| \leq (1+\lceil 1, m(R_2)\rceil)(1+\lceil 1, m(R_3)\rceil)\cdots(1+\lceil 1, m(R_n)\rceil)$$

Proof By induction on the length n of reduction from M to N.

Proof of our upper bound (1/2)

• Theorem [standardization with upper bounds] Let $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$

and A be rigid prefix of N.

Then there is ρ standard from M to N' such that

$$|\rho| \leq (1+\lceil 1, m_A(R_2)\rceil)(1+\lceil 1, m_A(R_3)\rceil)\cdots(1+\lceil 1, m_A(R_n)\rceil)$$

and A is rigid prefix of N'.

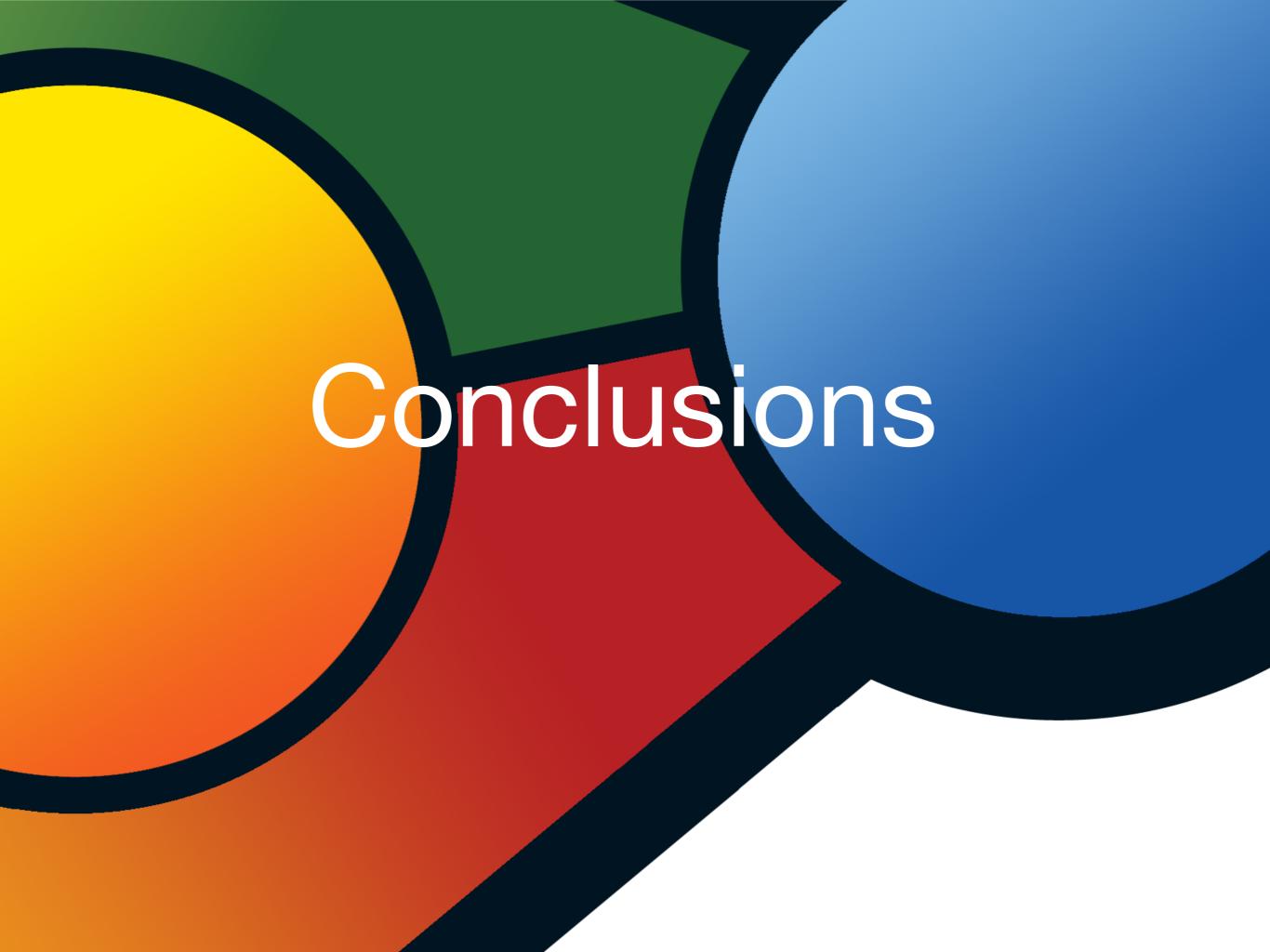
Proof of our upper bound (2/2)

• Corollary 1 Let $\rho: M \xrightarrow{*} N$ and A be rigid prefix of N. Then there is ρ_{st} standard such that:

$$|
ho_{st}| \leq \frac{(|
ho| + |A|_{@})!}{(1 + |A|_{@})!}$$

Proof Simple calculation with lemma 2 and previous thm.

• Corollary 2 Let $\rho_{st}: M \xrightarrow{*} x$ be standard reduction. Then $|\rho_{st}| \leq |\rho|!$ where ρ is shortest reduction from M to x.



Conclusion

- terms are easy to grow in the λ-calculus
- but take time to consume terms
- there is a need for sharing
- back to earth and higher-order functional languages