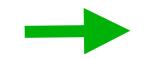
The cost of usage in the λ-calculus

jean-jacques.levy@inria.fr

P.-L. Curien 60th birthday, Venice, 10-09-2013

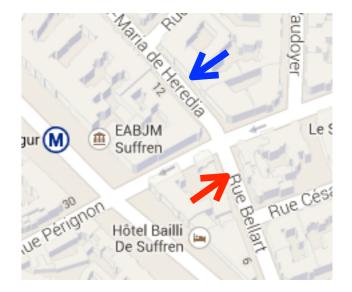
PLC

- theory of sequential algorithms game semantics
- missed jury of his PhD + 3 papers together
- λ -calculus + category theory



book with Roberto Amadio $\star \star \star$

- neighbors in Paris (PL in 15th -- JJ in 7th)
- Sophia-Antipolis in 70-80's



Plan

小菜一碟

- the standardization theorem (with upper bounds)
- our result
- rigid and minimum prefixes (stability thm)
- Xi's proof (with upper bounds)
- Xi's proof revisited with live occurences

.. joint work with Andrea Asperti (LICS 2013) ..

Standardization

Standard reductions (1/3)

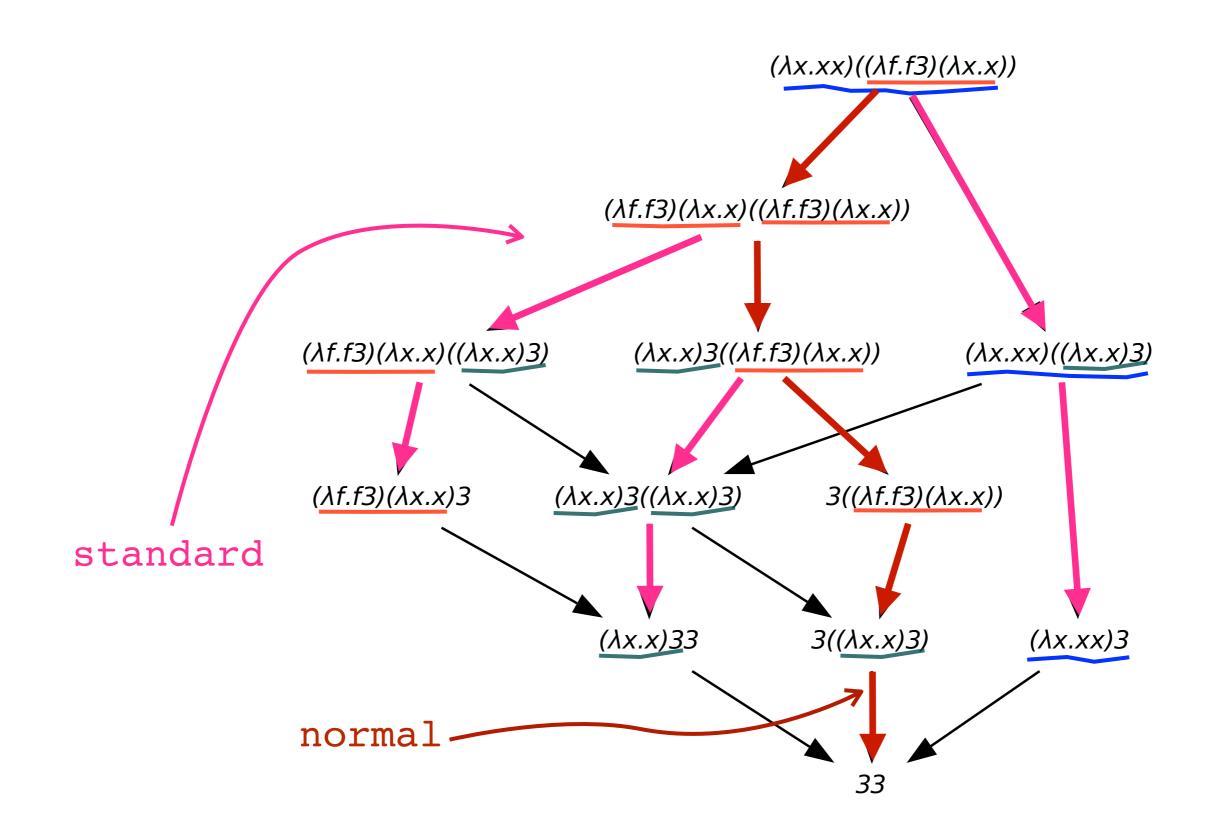
• **Definition:** The following reduction is **standard**

$$\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

iff for all *i* and *j*, *i* < *j*, then R_j is not residual along ρ of some R'_i to the left of R_i in M_{i-1} .

• **Definition:** The leftmost-outermost reduction is also called the **normal reduction**.

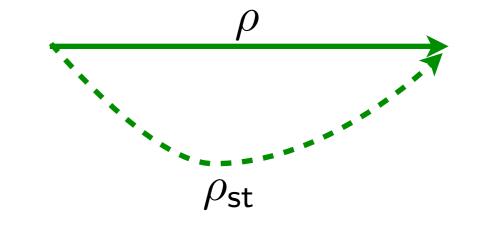
Standard reductions (2/3)



Standard reductions (3/3)

• **Standardization thm**[Curry 50]

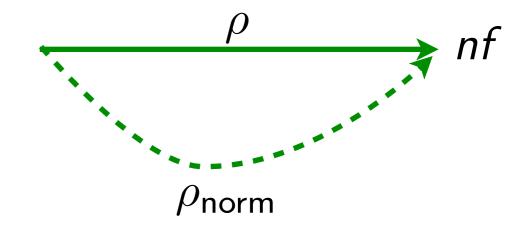
Let $M \xrightarrow{*} N$. Then $M \xrightarrow{*} N$.



Any reduction can be performed outside-in and left-to-right.

Normalization corollary

Let $M \xrightarrow{\bullet} nf$. Then $M \xrightarrow{\bullet} nf$.



Our result

• Upper-bound on standard reductions [Hongwey Xi, 99]

Let
$$\ell = |\rho|$$
 and $\rho : M \xrightarrow{*} N$. Then $|\rho_{st}| \leq |M|^{2^{\ell}}$
where $\rho_{st} : M \xrightarrow{*} N$.

• Upper-bound to normal forms [Asperti-JJL, 13] Let $\ell = |\rho|$ and $\rho : M \xrightarrow{\star} x$. Then $|\rho_{norm}| \leq \ell!$ where $\rho_{norm} : M \xrightarrow{\star} x$.

We gain one exponential.

Rigid prefixes: stability and multiplicity of variables

Stability (1/2)

• **Definition** [rigid prefix] A prefix of M is rigid when never the left of an application in A can reduce to an abstraction.

$$M = \Omega(\lambda x.x(lx))(llx)$$

$$-(\lambda x.x_{-})_{-} \text{ rigid prefix of } M \qquad \qquad \Omega = (\lambda x.xx)(\lambda x.xx)$$

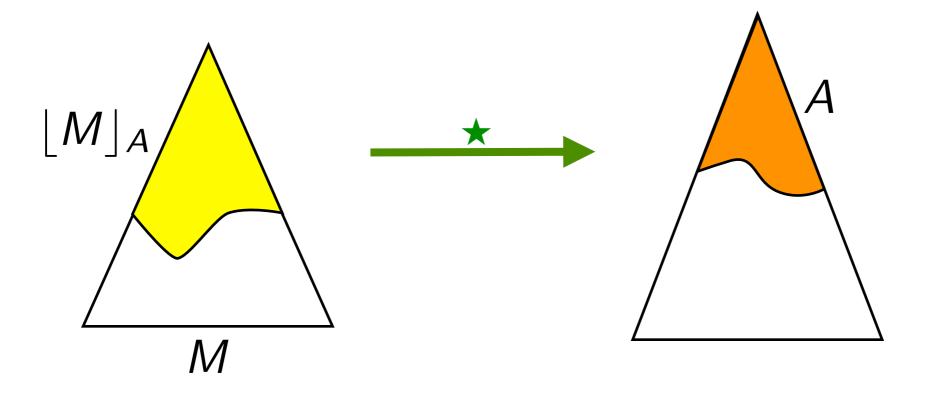
$$-(\lambda x.x_{-})(-lx) \text{ not rigid prefix of } M \qquad \qquad l = \lambda x.x$$

(rigid prefixes are finite prefixes of Berarducci trees)

• **Definition** M produces A if $M \xrightarrow{} N$ and A is rigid prefix of N.

Stability (2/2)

• Theorem [stability] For any rigid prefix A produced by M, there is a unique minimal prefix $\lfloor M \rfloor_A$ of M producing A.



• Fact [monotony] Let M produce A rigid and $M \xrightarrow{} N$. Then N produces A.

Slow consumption (1/2)

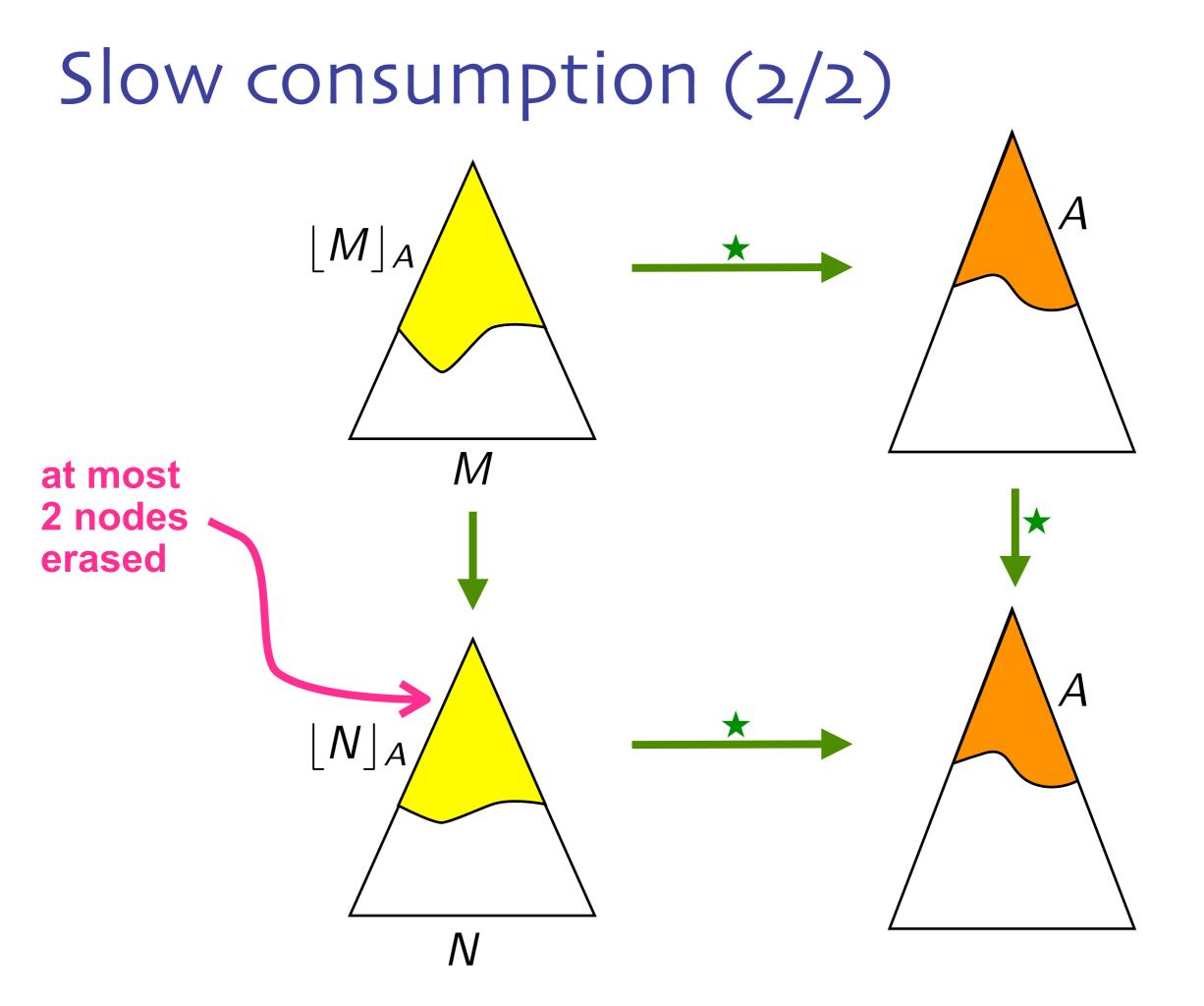
• Lemma 1 [slow consumption] Let M produce A rigid and

$$M \longrightarrow N$$
. Then $|\lfloor N \rfloor_A| \ge |\lfloor M \rfloor_A| - 2$.

i.e.
$$|\lfloor M \rfloor_A|_{@} \leq 1 + |\lfloor N \rfloor_A|_{@}$$

where $|P|_{@}$ is the applicative size of P (its number of application nodes).

• Corollary Let $\rho : M \xrightarrow{*} N$ and A be rigid prefix of N. Then $|\lfloor M \rfloor_A|_{\mathbb{Q}} \leq |\rho| + |A|_{\mathbb{Q}}$.



Multiplicity of variables

• **Definition** Let *M* produce *A* rigid. An occurrence of *x* is live for *A* if it belongs to $\lfloor M \rfloor_A$.

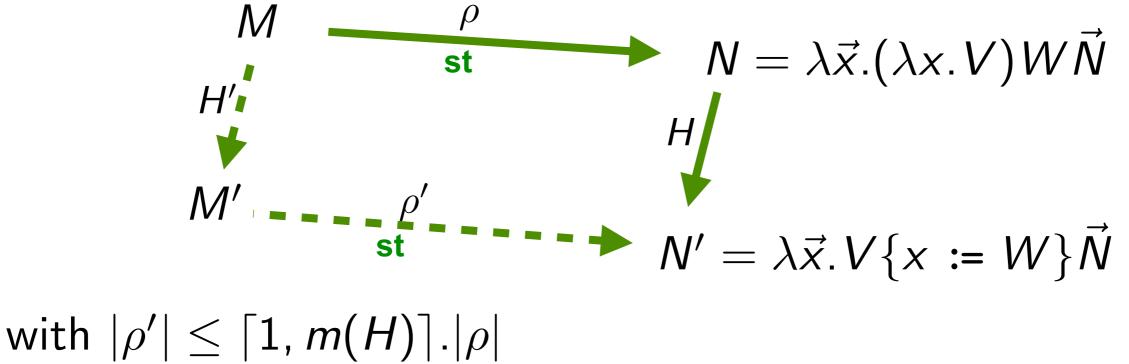
Let $m_A(x)$ be the number of live occurrences of x in M. We pose $m_A(R) = m_A(x)$ when $R = (\lambda x.M)N$.

• Lemma 2 [upper bound on live multiplicity] Let $\rho: M \xrightarrow{\star} N$ and A rigid prefix of N. Then $m_A(x) \le |\rho| + |A|_{@} + 1$ for any variable x in M.

Standardization

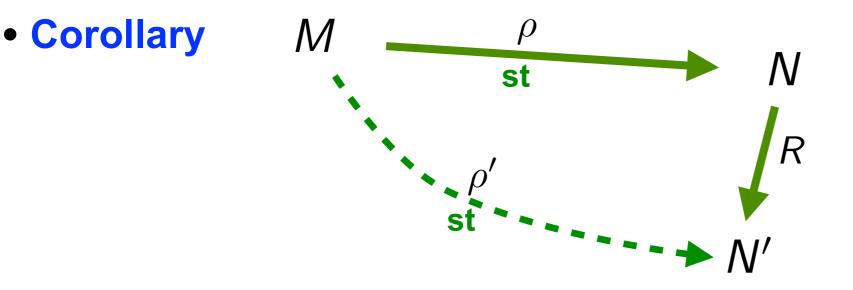
Xi's proof of standardization (1/3)

• Lemma [reordering of head redexes] H is residual of H'. Then



Proof Easy since $M = \lambda \vec{x}.(\lambda x.T)U\vec{M}$ and $\rho = \rho_T \rho_U \rho_1 \cdots \rho_n$. And ρ' is disjoint intermix of ρ_T , several ρ_U , followed by ρ_i 's. Thus $|\rho'| = |\rho_T| + m(H).|\rho_U| + \sum_i |\rho_i|$

Xi's proof of standardization (2/3)



with $|\rho'| \leq 1 + \lceil 1, m(R) \rceil |\rho|$

Proof

By induction on pair $(|\rho|, |M|)$. Cases on ρR contracting head redex or not + previous lemma.

Xi's proof of standardization (3/3)

• Theorem [standardization with upper bounds]

Let
$$M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

Then there is ρ standard from M to N such that $|\rho| \leq (1 + \lceil 1, m(R_2) \rceil)(1 + \lceil 1, m(R_3) \rceil) \cdots (1 + \lceil 1, m(R_n) \rceil)$

Proof By induction on the length n of reduction from M to N.

Proof of our upper bound (1/2)

• Theorem [standardization with upper bounds] Let $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ and A be rigid prefix of N.

Then there is ρ standard from M to N' such that $|\rho| \leq (1 + \lceil 1, m_A(R_2) \rceil)(1 + \lceil 1, m_A(R_3) \rceil) \cdots (1 + \lceil 1, m_A(R_n) \rceil)$ and A is rigid prefix of N'.

Proof of our upper bound (2/2)

• Corollary 1 Let $\rho : M \xrightarrow{*} N$ and A be rigid prefix of N. Then there is ρ_{st} standard producing A such that:

$$|\rho_{st}| \leq \frac{(|\rho| + |A|_{@})!}{(1 + |A|_{@})!}$$

Proof Simple calculation with lemma 2 and previous thm.

• Corollary 2 Let $\rho_{st} : M \xrightarrow{*} x$ be standard reduction. Then $|\rho_{st}| \le |\rho|!$ where ρ is shortest reduction from M to x.

Conclusion

- \bullet terms are easy to grow in the $\lambda\text{-calculus}$
- but take time to consume terms

• back to earth

