Sharing in the weak lambda-calculus (2)

Jean-Jacques Lévy INRIA

Joint work with Tomasz Blanc and Luc Maranget

CENTRE DE RECHERCHE COMMUN

Happy birthday Henk !

Happy birthday Henk !

Happy birthday Henk !

Sharing in the lambda-calculus

• goal:

- efficient implementations of functional languages
- by "functional languages", we mean here logical systems (Coq, Isabelle, etc)
- although real functional languages use more environment machines
- but it could be useful for partial evaluation

Sharing in the lambda-calculus

- Lamping's algorithm [91]:
 - optimal in total number of betareductions
 - sharing contexts
 - complex treatment of fan-in and fanout nodes (geometry of interaction [Gonthier 92])
 - inefficient in practice (not
 - elementary recursive [Mairson
 - 96])

 $(\lambda x.yx)z$

Z

- sharing subterms [Wadsworth 72]:
 - arguments of beta-redexes are shared
 - easy to implement with dags (directed acyclic graphs)

- Algorithm 1:
 - need duplication steps (abstractions on left of beta-redexes

with reference counter greater than 1)

- not optimal in total number of beta-reductions

- Algorithm 2:
 - only duplicate nodes on paths to the bound variable of abstractions on left of beta-redexes
 - and share subterms not containing the bound variable

• Algorithm 2 [Shivers-Wand 04]:

– bottom-up traversal of abstraction $\lambda t.M$ to find nodes and paths to the bound variable t

Strong labeled lambda-calculus

 $\lceil \alpha \rceil a$

M

 $\alpha | h$

 $c[\alpha]\tilde{k}$

- catch history of creations of redexes

M

- names (labels) of redexes are structured
- confluent calculus

 $\lambda \dot{x}$

Ĺ

Strong labeled lambda-calculus

 $\lceil \alpha \rceil a$

M

 $\alpha | h$

 $c|\alpha|\hat{h}$

- catch history of creations of redexes

M

- names (labels) of redexes are structured
- confluent calculus

 $\lambda \dot{x}$

Ĺ

Strong labeled lambda-calculus

- all redexes with same name are contracted in single step
- these complete normal order reductions are optimal
- theory of redex families

- under lambdas compute subterms with no occurence of bound variable
- strong labeled theory + tagging paths to occurences of the bound variable
- confluent calculus

- problem with K-terms.
- name of creating redex does not appear in name of created redex

• [Klop 60]

- tag lefts of application nodes when K-terms

- special tag since corresponding node is not duplicated

- [Barendregt 60]
 - add the atomic label of applications to the names of redexes.
 - and redo all theory of (weak) labelled calculus

- [Geuvers 50 ?]
 - keep $\lceil \alpha \rceil$ because of K-redexes
 - $\lfloor \alpha \rfloor$ are useless

THEOREMS

Weak lambda-calculus

Terms

$$M, N ::= x \mid MN \mid \lambda x.M$$

Rules

$$(\beta) \ R = (\lambda x.M)N \xrightarrow{R} M[[x \setminus N]]$$

$$\begin{aligned} & (\lambda x.M)N \xrightarrow{R} M[[x \setminus N]] & (\nu) \ \frac{M \xrightarrow{R} M'}{MN \xrightarrow{R} M'N} \\ & (\xi') \ \frac{M \xrightarrow{R} M' \quad x \notin R}{\lambda x.M \xrightarrow{R} \lambda x.M'} & (\mu) \ \frac{N \xrightarrow{R} N'}{MN \xrightarrow{R} MN'} \end{aligned}$$

$$(w) \ \frac{M \xrightarrow{R} N}{M \to N}$$

Terms

Labels

$$\begin{array}{lll} \alpha,\beta & ::= & a \mid \lceil \alpha' \rceil \mid \lfloor \alpha' \rfloor \mid \lceil \alpha',\beta \rceil & \qquad \text{labels} \\ \alpha',\beta' & ::= & \alpha_1\alpha_2\cdots\alpha_n & (n \ge 1) & \qquad \text{compound labels} \end{array}$$

• Rules (ℓ) $R = \beta : ((\alpha' \cdot \lambda x.U)V) \xrightarrow{R} [\beta \alpha'] : (\beta \alpha' \circledast U)[[x \setminus \lfloor \beta \alpha' \rfloor : V]]$

$$\alpha_1 \alpha_2 \cdots \alpha_n \cdot X = \alpha_1 : \alpha_2 : \cdots : \alpha_n : X$$

Diffusion

$\alpha'(x)X$	-	$X \text{ if } x \not\in X$
$\alpha'(x)x$	=	x
$\alpha' x UV$	=	$(\alpha' \circledast U \ \alpha' \circledast V)$ if $x \in UV$
$\alpha'(x)\lambda y.U$	=	$\lambda y. \alpha' \otimes U \text{ if } x \in \lambda y. U$
$\alpha' x \beta : X$	—	$[\alpha',\beta]$: $\alpha' \otimes X$ if $x \in X$

Substitution

$$\begin{array}{rcl} x[\![x \backslash W]\!] &= & W \\ y[\![x \backslash W]\!] &= & y \\ (UV)[\![x \backslash W]\!] &= & U[\![x \backslash W]\!] V[\![x \backslash W]\!] \\ (\lambda y.U)[\![x \backslash W]\!] &= & \lambda y.U[\![x \backslash W]\!] \\ (\beta : X)[\![x \backslash W]\!] &= & \beta : X[\![x \backslash W]\!] \end{array}$$

• Labels containment:

 $\alpha' \prec \lfloor \alpha' \rfloor$ $\alpha' \prec \lceil \alpha' \rceil$ $\alpha' \prec \lceil \alpha', \beta \rceil$ $\alpha' \prec \beta_i \Rightarrow \alpha' \prec \beta_1 \cdots \beta_n$ $\alpha' \prec \beta' \prec \gamma' \Rightarrow \alpha' \prec \gamma'$

Maximality invariant

 $\mathcal{Q}(W) ::=$ we have $\alpha' \not\prec \beta$ for every redex R with name α' and any subterm $\beta : X$ in W.

• Lemma 1

If $\mathcal{Q}(W)$ and $W \stackrel{\gamma'}{\Longrightarrow} W'$, then $\mathcal{Q}(W')$.

Maximality invariant

 $\mathcal{Q}(W) ::=$ we have $\alpha' \not\prec \beta$ for every redex R with name α' and any subterm $\beta : X$ in W.

• Lemma 1 If $\mathcal{Q}(W)$ and $W \stackrel{\gamma'}{\Longrightarrow} W'$, then $\mathcal{Q}(W')$.

Lexical scope invariant

 $\mathcal{R}(W) ::=$ for any pair of subterms $\alpha : x$ and $\alpha : y$ in W, we have x free in W iff y free in W.

• Lemma 2 If $\mathcal{R}(W)$ and $W \to W'$, then $\mathcal{R}(W')$

Maximality invariant

 $\mathcal{P}(W) ::=$ for any pair of subterms $\alpha : X$ and $\alpha : Y$ in W, we have X = Y.

Sharing lemma

If $\mathcal{P}(W) \wedge \mathcal{Q}(W) \wedge \mathcal{R}(W)$ and $W \stackrel{\gamma'}{\Longrightarrow} W'$, then $\mathcal{P}(W')$.

Sharing theorem

Init(U) ::= every subterm of U is labeled with a distinct letter. Let Init(U) and $U \Longrightarrow V$, then $\mathcal{P}(V)$.

CONCLUSION

Conclusion

- •weak lambda calculus implemented with dags
- •useful for programming languages ?
- do theory for weak labeled lambda calculus (3)
- •and if explicit substitutions ?
- do theory as particular case of term rewriting systems
- •big difference between weak and strong calculus (POPL mark)

Conclusion

- •weak lambda calculus implemented with dags
- useful for programming languages ?
- do theory for weak labeled lambda calculus (3)
- •and if explicit substitutions ?
- do theory as particular case of term rewriting systems
- •big difference between weak and strong calculus (POPL mark)

Rendez-vous in 2017...

CENTRE DE RECHERCHE COMMUN

INRIA MICROSOFT RESEARCH