## Happy birthday Henk!



## Happy birthday Henk!

## Happy birthday Henk!



HISTORY

## Sharing in the lambda-calculus

- goal:
- efficient implementations of functional languages
- by "functional languages", we mean here logical
systems (Coq, Isabelle, etc)
- although real functional languages use more
environment machines
- but it could be useful for partial evaluation


## Sharing in the lambda-calculus

- Lamping's algorithm [91]:
- optimal in total number of betareductions
- sharing contexts
- complex treatment of fan-in and fanout nodes (geometry of interaction
 [Gonthier 92])
- inefficient in practice (not elementary recursive [Mairson 96])


## Sharing in the lambda-calculus


application


## Sharing in the lambda-calculus


abstraction


## Sharing in the lambda-calculus


fan rules


## Sharing in the lambda-calculus


bracket rules


## Sharing in the lambda-calculus



## Wadsworth's algorithm

- sharing subterms [Wadsworth 72]:
- arguments of beta-redexes are shared
- easy to implement with dags (directed acyclic graphs)



## Wadsworth's algorithm

- Algorithm 1:
- need duplication steps (abstractions on left of beta-redexes with reference counter greater than 1)
- not optimal in total number of beta-reductions



## Wadsworth's algorithm

- Algorithm 2:
- only duplicate nodes on paths to the bound variable of abstractions on left of beta-redexes
- and share subterms not containing the bound variable



## Wadsworth's algorithm

- Algorithm 2 [Shivers-Wand 04 ]:
- bottom-up traversal of abstraction $\lambda t . M$ to find nodes and paths to the bound variable $t$



## Strong labeled lambda-calculus

- catch history of creations of redexes
- names (labels) of redexes are structured
- confluent calculus



## Strong labeled lambda-calculus

- catch history of creations of redexes
- names (labels) of redexes are structured
- confluent calculus



## Strong labeled lambda-calculus

- all redexes with same name are contracted in single step
- these complete normal order reductions are optimal
- theory of redex families



## Weak labeled lambda-calculus

- under lambdas compute subterms with no occurence of bound variable
- strong labeled theory + tagging paths to occurences of the bound variable
- confluent calculus



## Weak labeled lambda-calculus

- problem with K-terms.
- name of creating redex does not appear in name of created redex

name $_{1} \alpha$<br>name $_{2} b$



## Weak labeled lambda-calculus(1)

- [Klop 60]
- tag lefts of application nodes when K-terms
- special tag since corresponding node is not duplicated


$$
\begin{aligned}
& \text { name }_{1} \alpha \\
& \text { name }_{2}\langle\alpha, b\rangle
\end{aligned}
$$



## Weak labeled lambda-calculus (2)

- [Barendregt 60]
- add the atomic label of applications to the names of redexes.
- and redo all theory of (weak) labelled calculus


$$
\begin{aligned}
& \text { name }_{1} \alpha^{\prime}=f \alpha \\
& \text { name }_{2}\left[\alpha^{\prime}, a\right] b
\end{aligned}
$$



## Weak labeled lambda-calculus (3)

- [Geuvers 50 ?]
- keep $\lceil\alpha\rceil$ because of $K$-redexes
- $\lfloor\alpha\rfloor$ are useless

name $_{1} \alpha^{\prime}=f \alpha$
name $_{2}\left[\alpha^{\prime}, a\right] b$



## Weak lambda-calculus

- Terms

$$
M, N::=x|M N| \lambda x . M
$$

- Rules

$$
\begin{array}{rc}
(\beta) R=(\lambda x . M) N \xrightarrow{R} M[\llbracket x \backslash N \rrbracket & (\nu) \frac{M \xrightarrow{R} M^{\prime}}{M N \xrightarrow{R} M^{\prime} N} \\
\left(\xi^{\prime}\right) \frac{M \xrightarrow{R} M^{\prime} x \notin R}{\lambda x \cdot M \xrightarrow{R} \lambda x \cdot M^{\prime}} & (\mu) \frac{N \xrightarrow{R} N^{\prime}}{M N \xrightarrow{R} M N^{\prime}} \\
(w) \frac{M \xrightarrow{R} N}{M \rightarrow N} &
\end{array}
$$

## Weak labeled lambda-calculus

- Terms

$$
\begin{aligned}
U, V & ::=\alpha: X \\
X, Y & ::=S \mid U \\
S, T & ::=x|U V| \lambda x . U
\end{aligned}
$$

labeled terms<br>clipped or labeled terms<br>clipped terms

- Labels

$$
\begin{aligned}
\alpha, \beta & ::=a\left|\left\lceil\alpha^{\prime}\right\rceil\right|\left\lfloor\alpha^{\prime}\right\rfloor \mid\left[\alpha^{\prime}, \beta\right] & \text { labels } \\
\alpha^{\prime}, \beta^{\prime} & ::=\alpha_{1} \alpha_{2} \cdots \alpha_{n} \quad(n \geq 1) & \text { compound labels }
\end{aligned}
$$

- Rules
( $\ell) \quad R=\beta:\left(\left(\alpha^{\prime} \cdot \lambda x \cdot U\right) V\right) \xrightarrow{R}\left\lceil\beta \alpha^{\prime}\right\rceil:\left(\beta \alpha^{\prime} \circledast U\right)\left[\left[x \backslash\left\lfloor\beta \alpha^{\prime}\right\rfloor: V \rrbracket\right.\right.$

$$
\alpha_{1} \alpha_{2} \cdots \alpha_{n} \cdot X=\alpha_{1}: \alpha_{2}: \cdots \alpha_{n}: X
$$

## Weak labeled lambda-calculus

- Diffusion

$$
\begin{aligned}
\alpha^{\prime} \circledast X & =X \text { if } x \notin X \\
\alpha^{\prime} \circledast x & =x \\
\alpha^{\prime} \circledast U V & =\left(\alpha^{\prime} \circledast U \alpha^{\prime} \circledast V\right) \text { if } x \in U V \\
\alpha^{\prime} \circledast \lambda y \cdot U & =\lambda y \cdot \alpha^{\prime} \circledast U \text { if } x \in \lambda y . U \\
\alpha^{\prime} \circledast \beta: X & =\left[\alpha^{\prime}, \beta\right]: \alpha^{\prime} \circledast X \text { if } x \in X
\end{aligned}
$$

- Substitution

$$
\begin{aligned}
x[\llbracket x \backslash W] & =W \\
y[[x \backslash W] & =y \\
(U V)[[x \backslash W] & =U[[x \backslash W] V\lceil[x \backslash W] \\
(\lambda y \cdot U)[\llbracket x \backslash W] & =\lambda y \cdot U \llbracket[x \backslash W] \\
(\beta: X)[[x \backslash W] & =\beta: X[x x \backslash W \rrbracket
\end{aligned}
$$

## Weak labeled lambda-calculus

- Labels containment:

$$
\begin{aligned}
& \alpha^{\prime} \prec\left\lfloor\alpha^{\prime}\right\rfloor \\
& \alpha^{\prime} \prec\left\lceil\alpha^{\prime}\right\rceil \\
& \alpha^{\prime} \prec\left[\alpha^{\prime}, \beta\right] \\
& \alpha^{\prime} \prec \beta_{i} \Rightarrow \alpha^{\prime} \prec \beta_{1} \cdots \beta_{n} \\
& \alpha^{\prime} \prec \beta^{\prime} \prec \gamma^{\prime} \Rightarrow \alpha^{\prime} \prec \gamma^{\prime}
\end{aligned}
$$

## Weak labeled lambda-calculus

- Maximality invariant
$\mathcal{Q}(W)::=$ we have $\alpha^{\prime} \nprec \beta$ for every redex $R$ with name $\alpha^{\prime}$ and any subterm $\beta: X$ in $W$.
- Lemma 1

If $\mathcal{Q}(W)$ and $W \xlongequal{\gamma^{\prime}} W^{\prime}$, then $\mathcal{Q}\left(W^{\prime}\right)$.

## Weak labeled lambda-calculus

- Maximality invariant
$\mathcal{Q}(W)::=$ we have $\alpha^{\prime} \nprec \beta$ for every redex $R$ with name $\alpha^{\prime}$ and any subterm $\beta: X$ in $W$.
- Lemma 1

If $\mathcal{Q}(W)$ and $W \xlongequal{\gamma^{\prime}} W^{\prime}$, then $\mathcal{Q}\left(W^{\prime}\right)$.

- Lexical scope invariant
$\mathcal{R}(W)::=$ for any pair of subterms $\alpha: x$ and $\alpha: y$ in $W$, we have $x$ free in $W$ iff $y$ free in $W$.
- Lemma 2

If $\mathcal{R}(W)$ and $W \rightarrow W^{\prime}$, then $\mathcal{R}\left(W^{\prime}\right)$

## Weak labeled lambda-calculus

- Maximality invariant
$\mathcal{P}(W)::=$ for any pair of subterms $\alpha: X$ and $\alpha: Y$ in $W$, we have $X=Y$.
- Sharing lemma

$$
\text { If } \mathcal{P}(W) \wedge \mathcal{Q}(W) \wedge \mathcal{R}(W) \text { and } W \stackrel{\gamma^{\prime}}{\Longrightarrow} W^{\prime} \text {, then } \mathcal{P}\left(W^{\prime}\right)
$$

- Sharing theorem
$\operatorname{Init}(U)::=$ every subterm of $U$ is labeled with a distinct letter.
Let $\operatorname{Init}(U)$ and $U \Longrightarrow V$, then $\mathcal{P}(V)$.


## CONCLUSION

## Conclusion

-weak lambda calculus implemented with dags
-useful for programming languages ?
-do theory for weak labeled lambda calculus (3)
-and if explicit substitutions?
-do theory as particular case of term rewriting systems
-big difference between weak and strong calculus (POPL mark)

## Conclusion

-weak lambda calculus implemented with dags
-useful for programming languages ?
-do theory for weak labeled lambda calculus (3)
-and if explicit substitutions?
-do theory as particular case of term rewriting systems
$\bullet$-big difference between weak and strong calculus (POPL mark)

## GENTRE DE RECHERCHE COMMUN

