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Sharing in the lambda-calculus

• goal:
- efficient implementations of functional languages
- by “functional languages”, we mean here logical 

systems (Coq, Isabelle, etc)
- although real functional languages use more 

environment machines
- but it could be useful for partial evaluation
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Sharing in the lambda-calculus

• Lamping’s algorithm [91]:

- optimal in total number of beta-
reductions

- sharing contexts
- complex treatment of fan-in and fan-

out nodes (geometry of interaction
[Gonthier 92])

- inefficient in practice (not 
elementary recursive [Mairson 
96] )



Sharing in the lambda-calculus

application
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Sharing in the lambda-calculus

abstraction
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Sharing in the lambda-calculus

fan rules
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Sharing in the lambda-calculus

bracket rules



Sharing in the lambda-calculus

croissant rules
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Wadsworth’s algorithm
• sharing subterms [Wadsworth 72]:

- arguments of beta-redexes are shared
- easy to implement with dags (directed acyclic graphs)
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Wadsworth’s algorithm 
• Algorithm 1:
- need duplication steps (abstractions on left of beta-redexes 

with reference counter greater than 1)
- not optimal in total number of beta-reductions
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Wadsworth’s algorithm
• Algorithm 2:
- only duplicate nodes on paths to the bound variable of 

abstractions on left of beta-redexes
- and share subterms not containing the bound variable
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Wadsworth’s algorithm
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• Algorithm 2 [Shivers-Wand 04]:

- bottom-up traversal of abstraction λt.M to find nodes and paths
to the bound variable t
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Strong labeled lambda-calculus
- catch history of creations of redexes
- names (labels) of redexes are structured 
- confluent calculus
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Strong labeled lambda-calculus
- catch history of creations of redexes
- names (labels) of redexes are structured 
- confluent calculus
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Strong labeled lambda-calculus
- all redexes with same name are contracted in single step
- these complete normal order reductions are optimal
- theory of redex families
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Weak labeled lambda-calculus
- under lambdas compute subterms with no occurence of bound 

variable
- strong labeled theory + tagging paths to occurences of the 

bound variable
- confluent calculus
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Weak labeled lambda-calculus
- problem with K-terms.
- name of creating redex does not appear in name of created 

redex
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Weak labeled lambda-calculus(1)
• [Klop 60]
- tag lefts of application nodes when K-terms
- special tag since corresponding node is not duplicated
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Weak labeled lambda-calculus (2)
• [Barendregt 60]
- add the atomic label of applications to the names of redexes.
- and redo all theory of (weak) labelled calculus
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Weak labeled lambda-calculus (3)
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Weak lambda-calculus

which differs from the one in [4]; in section 3, we prove the sharing property, which validates
the dag implementation of [14]. A more extensive study of this new weak labeled λ-calculus
is produced in [3].

1. The weak λ-calculus

The set of λ-terms is the usual set, recursively defined by:

M,N ::= x | MN | λx.M

We write x ∈ M when x is a free variable in M . The reduction step relation → is defined
by the following axiom and inference rules:

(β) R = (λx.M)N
R
→ M [[x\N ]] (ν)

M
R
→ M ′

MN
R
→ M ′N

(w)
M

R
→ N

M → N

(ξ′)
M

R
→ M ′ x #∈ R

λx.M
R
→ λx.M ′

(µ)
N

R
→ N ′

MN
R
→ MN ′

with the classic definition of substitution (using implicit alpha renaming):

x[[x\P ]] = P
y[[x\P ]] = y (x #= y)

(MN)[[x\P ]] = M [[x\P ]] N [[x\P ]]
(λy.M)[[x\P ]] = λy.M [[x\P ]] (x #= y, y #∈ P )

The reduction step relation
R
→ is annotated with the contracted redex R. We follow Baren-

dregt’s notation and write →→ for the transitive and reflexive closure of →. So M →→ N
iff M can reduce in several steps (maybe none) to N . We notice that the (ξ′)-rule is only
valid when the bound variable x is not free in the contracted redex R. Therefore, in the
weak λ-calculus, the redexes contracted in a given term cannot have a free variable bound
outside.

Theorem 1.1. The weak λ-calculus is confluent.

Proof: The proof follows the standard Tait–Martin-Lof’s method [2]. !

2. The weak labeled λ-calculus

The weak labeled λ-calculus is a calculus to study sharing. It mimics a calculus on
dags, where labels represent the addresses of terms in these dags. Each subterm has its own
label; subterms which are copied along reductions keep their labels since they are not copied
in dags, but new subterms must have new labels. We want that the weak labeled λ-calculus
is confluent, as sharing and reduction strategy are two independent concepts. Therefore an
adequate labeling scheme should be invariant through permutations of reduction steps. To
get confluence, labels are structured and new terms receive new addresses by composing
old labels. Finally, the labeled calculus that we use here is different from the one used for
labeling weak explicit substitutions [9], since we have no closures nor explicit substitutions,
but here we have to take care of the variable binders.
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The weak labeled λ-calculus is a calculus to study sharing. It mimics a calculus on
dags, where labels represent the addresses of terms in these dags. Each subterm has its own
label; subterms which are copied along reductions keep their labels since they are not copied
in dags, but new subterms must have new labels. We want that the weak labeled λ-calculus
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• Terms

• Rules



Weak labeled lambda-calculus
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Figure 1: A reduction step in the weak labeled λ-calculus (dotted lines represent paths from
the root of U to occurrences of the free variable x in U ; dashed lines represent
the paths on which diffusion operates).

We base our labeling scheme on the labeling for the strong λ-calculus [8]. The set of
labeled terms is recursively defined by:

U, V ::= α :X labeled terms
X,Y ::= S | U clipped or labeled terms
S, T ::= x | UV | λx.U clipped terms
α,β ::= a | "α′# | $α′% | [α′,β] labels

α′,β′ ::= α1α2 · · ·αn (n ≥ 1) compound labels

The labeled term α :X is said to have label α. Labels can be stacked as in α1 :α2 : · · · αn :S
(n ≥ 1). Compound labels are sequences of labels. An atomic label can be a simple letter,
or formed by overlining "α′# and underlining $α′% the compound label α′; it also can be a
pair [α′,β] of the compound label α′ and the label β. In the pair [α′,β], we say that α′ tags
β.

The labeled reduction $-rule is defined as

($) R = β : ((α′ · λx.U)V )
R
→ "βα′# : (βα′©x U)[[x \ $βα′% :V ]]

where
α1α2 · · ·αn · X = α1 :α2 : · · ·αn :X

The name of R is βα′; we write name(R) = βα′. We assume that substitution has a higher
precedence than labeling. Hence "βα′# : U [[x\V ]] is read as "βα′# : (U [[x\V ]]). As in the
strong labeled λ-calculus, we sandwich the body of the function part of the redex with its
name overlined and underlined as shown in figure 1. The diffusion βα′ ©x U creates new
labels by tagging labels with βα′ on the paths from the root of U to free occurrences of x,
as illustrated in figure 1. Therefore new labels appeared for every subterm of U containing
a free occurrence of x. Formally substitution and diffusion are defined as follows:

x[[x\W ]] = W
y[[x\W ]] = y

(UV )[[x\W ]] = U [[x\W ]]V [[x\W ]]
(λy.U)[[x\W ]] = λy.U [[x\W ]]
(β :X)[[x\W ]] = β :X[[x\W ]]

α′©x X = X if x (∈ X
α′©x x = x

α′©x UV = (α′©x U α′©x V ) if x ∈ UV
α′©x λy.U = λy.α′©x U if x ∈ λy.U
α′©x β :X = [α′,β] :α′©x X if x ∈ X

• Terms
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We base our labeling scheme on the labeling for the strong λ-calculus [8]. The set of
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We base our labeling scheme on the labeling for the strong λ-calculus [8]. The set of
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where
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The name of R is βα′; we write name(R) = βα′. We assume that substitution has a higher
precedence than labeling. Hence "βα′# : U [[x\V ]] is read as "βα′# : (U [[x\V ]]). As in the
strong labeled λ-calculus, we sandwich the body of the function part of the redex with its
name overlined and underlined as shown in figure 1. The diffusion βα′ ©x U creates new
labels by tagging labels with βα′ on the paths from the root of U to free occurrences of x,
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We base our labeling scheme on the labeling for the strong λ-calculus [8]. The set of
labeled terms is recursively defined by:

U, V ::= α :X labeled terms
X,Y ::= S | U clipped or labeled terms
S, T ::= x | UV | λx.U clipped terms
α,β ::= a | "α′# | $α′% | [α′,β] labels

α′,β′ ::= α1α2 · · ·αn (n ≥ 1) compound labels

The labeled term α :X is said to have label α. Labels can be stacked as in α1 :α2 : · · · αn :S
(n ≥ 1). Compound labels are sequences of labels. An atomic label can be a simple letter,
or formed by overlining "α′# and underlining $α′% the compound label α′; it also can be a
pair [α′,β] of the compound label α′ and the label β. In the pair [α′,β], we say that α′ tags
β.

The labeled reduction $-rule is defined as

($) R = β : ((α′ · λx.U)V )
R
→ "βα′# : (βα′©x U)[[x \ $βα′% :V ]]

where
α1α2 · · ·αn · X = α1 :α2 : · · ·αn :X

The name of R is βα′; we write name(R) = βα′. We assume that substitution has a higher
precedence than labeling. Hence "βα′# : U [[x\V ]] is read as "βα′# : (U [[x\V ]]). As in the
strong labeled λ-calculus, we sandwich the body of the function part of the redex with its
name overlined and underlined as shown in figure 1. The diffusion βα′ ©x U creates new
labels by tagging labels with βα′ on the paths from the root of U to free occurrences of x,
as illustrated in figure 1. Therefore new labels appeared for every subterm of U containing
a free occurrence of x. Formally substitution and diffusion are defined as follows:

x[[x\W ]] = W
y[[x\W ]] = y

(UV )[[x\W ]] = U [[x\W ]]V [[x\W ]]
(λy.U)[[x\W ]] = λy.U [[x\W ]]
(β :X)[[x\W ]] = β :X[[x\W ]]

α′©x X = X if x (∈ X
α′©x x = x

α′©x UV = (α′©x U α′©x V ) if x ∈ UV
α′©x λy.U = λy.α′©x U if x ∈ λy.U
α′©x β :X = [α′,β] :α′©x X if x ∈ X

• Diffusion

• Substitution
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Proof: Straightforward by induction on the size of X. !

Theorem 2.3. The weak labeled λ-calculus is confluent.

Proof: By the Tait–Martin-Lof method, see [2]. To illustrate confluence, we consider local
confluence with the only interesting cases of the two following commuting diagrams, when
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• Labels containment:



Weak labeled lambda-calculus

If Q(W ) and W
γ′

=⇒W ′, then Q(W ′).

Q(W ) ::= we have α′ !≺ β for every redex R with name α′

and any subterm β :X in W .

• Maximality invariant

• Lemma 1



Weak labeled lambda-calculus

If Q(W ) and W
γ′

=⇒W ′, then Q(W ′).

Q(W ) ::= we have α′ !≺ β for every redex R with name α′

and any subterm β :X in W .

• Maximality invariant

• Lemma 1

R(W ) ::= for any pair of subterms α :x and α :y in W ,
we have x free in W iff y free in W .

If R(W ) and W →W ′, then R(W ′)

• Lexical scope invariant

• Lemma 2



Weak labeled lambda-calculus

P(W ) ::= for any pair of subterms α :X and α :Y in W ,
we have X = Y .

If P(W ) ∧Q(W ) ∧R(W ) and W
γ′

=⇒W ′, then P(W ′).

• Maximality invariant

• Sharing lemma

• Sharing theorem
Init(U) ::= every subterm of U is labeled with a distinct letter.

Let Init(U) and U =⇒=⇒ V , then P(V ).
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