Concurrency 3

CCS

Jean-Jacques Lévy
jeanjacqueslevy.net/dea

Minimal language for concurrency

The λ-calculus is a minimal language for functional languages. It can also be used as a basis for imperative languages (via continuations).

What is a minimal language for concurrent processes ?

- CCS [Milner]
- π-calculus [Milner, Parrow, Walker, Sangiorgi]
- CSP [Hoare]
- Petri nets
- Mazurkiewitz traces
- Events structures \Leftrightarrow True concurrency [Winskel]
- IO-automatas [Lynch, Tuttle]

$\operatorname{CCS}(1 / 4)$

Language

$$
\begin{array}{rlll}
a, b, c & ::= & \text { (channel) names } & \\
\bar{a}, \bar{b}, \bar{c} & ::=\text { co-names } \quad \overline{\bar{a}}=a & \\
\alpha & ::=a|\bar{a}| \tau & \text { actions } \\
P, Q, R & ::=0|\alpha . P| P+Q|(P \mid Q)|(\nu \alpha) P \mid K & \text { processes } \\
K \stackrel{\text { def }}{=} P & ::=\text { constant definitions } &
\end{array}
$$

$$
\mathcal{A} c t=\{a, b, c, \ldots\} \cup\{\bar{a}, \bar{b}, \bar{c}, \ldots\} \cup\{\tau\}
$$

Notation: α for $\alpha .0$

- 0 null process
- $\alpha . P$ sequential action
- $P+Q$ non-deterministic (external) choice
- $P \mid Q$ parallel composition
- $(\nu \alpha) P$ restriction on α
- K (recursively defined) constant

CCS (2/4)

Examples (coffee machine revisited)

$$
\begin{array}{lll}
P_{0}=A & P_{0}^{\prime}=B & C=(k . d . D+t . d . D) \\
A=c .(k . d . A+t . d . A) & B=c . C & D=c . C \\
P_{0}^{\prime \prime}=E & P_{0}^{\prime \prime \prime}=F & \\
E=(c . k . d . E+c . t . d . E) & F=c+(c . k . d . F+c . t . d . F)
\end{array}
$$

Interaction with coffee machine
$P_{0}\left|\bar{c} . \bar{k} . \bar{d} \quad P_{0}\right| \bar{c} . \bar{k} . \bar{d} \mid \bar{c} . \bar{t} . \bar{d}$
$P_{0} \mid$ Client1 $\quad P_{0}^{\prime} \mid$ Client1 $\quad P_{0}^{\prime \prime} \mid$ Client1 $\quad P_{0}^{\prime \prime \prime} \mid$ Client1
$P_{0} \mid$ Client2 $\quad P_{0}^{\prime \prime} \mid$ Client2 \mid Client2 $\quad P_{0} \mid$ Client1 | Client2
where
Client1 $\stackrel{\text { def }}{=} \bar{c} . \bar{k} . \bar{d}$.Client1 Client2 $\stackrel{\text { def }}{=} \bar{c} . \bar{t} . \bar{d}$.Client2

$\operatorname{CCS}(3 / 4)$

Semantics (SOS)

$$
\begin{aligned}
& \text { [Act] } \alpha . P \xrightarrow{\alpha} P \quad\left[\text { Sum1] } \frac { P \xrightarrow { \alpha } P ^ { \prime } } { P + Q \xrightarrow { \alpha } P ^ { \prime } } \quad \left[\text { Sum2] } \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P+Q \xrightarrow{\alpha} Q^{\prime}}\right.\right. \\
& \text { [Par1] } \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \quad\left[\text { Par2] } \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P|Q \xrightarrow{\alpha} P| Q^{\prime}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& {[\text { Rec }] \frac{P \xrightarrow{\alpha} P^{\prime} K \stackrel{\text { def }}{=} P}{K \xrightarrow{\alpha} P^{\prime}}}
\end{aligned}
$$

$\xrightarrow{\tau}$ internal move
$\xrightarrow{\alpha}(\alpha \neq \tau)$ interaction on external α-channel
By convention, \xrightarrow{a} input on a-channel and $\xrightarrow{\bar{a}}$ output on a-channel Sum \neq internal choice $P+Q \xrightarrow{\tau} P$ or $P+Q \xrightarrow{\tau} Q$.

CCS (4/4)

At present time, no values passed on communication channels. (see later for value passing calculi)

No buffering in communications. Different from TCP sockets, from Kahn/MacQueen flow systems.
\Rightarrow communication by rendez-vous.
\equiv more basic calculus.

Rendez-vous exist in Occam, Ada, CML, Ocaml's processes.

CCS and strong bisimulation (1/4)

Theorem 1 Following relations hold.

$$
\begin{array}{rlrl}
P+0 & \sim P & P \mid 0 & \sim P \\
P+Q & \sim Q+P & P \mid Q & \sim Q \mid P \\
(P+Q)+R & \sim P+(Q+R) & & (P \mid Q) \mid R \\
P+P & \sim P & & \\
(\nu a)(P \mid Q) & \sim((\nu a) P) \mid Q & & \text { if } a \text { not free in } Q \\
(\nu a)(\nu b) P & \sim(\nu b)(\nu a) P & & \\
(\nu a) P & \sim(\nu b) P\{b / a\} & & \text { if } b \text { not bound in } Q \\
(\nu a) \alpha . P & \sim 0 & & \text { if } \alpha=a \text { or } \alpha=\bar{a} \\
(\nu a) \alpha . P & \sim \alpha .(\nu a) . P & & \text { otherwise } \\
K & \sim P & & \text { if } K \stackrel{\text { def }}{=} P
\end{array}
$$

CCS and strong bisimulation (2/4)

Proof of previous theorem

- $P+0 \sim P$. Take $\mathcal{R}=\{(P+0, P),(P, P+0),(P, P)\}$ and show \mathcal{R} is a bisimulation.
Let $P+0 \xrightarrow{\alpha} P^{\prime}$. Then $P \xrightarrow{\alpha} P^{\prime}$ by rule [Sum1] since $0 \xrightarrow{\alpha} P^{\prime}$ is not possible. And $P^{\prime} \mathcal{R} P^{\prime}$.
Conversely let $P \xrightarrow{\alpha} P^{\prime}$. Then $P+0 \xrightarrow{\alpha} P^{\prime}$ by rule [Sum1]. And again $P^{\prime} \mathcal{R} P^{\prime}$.
- $P+Q \sim Q+P$. Show following \mathcal{R} is a bisimulation. Take $\mathcal{R}=\{P+Q, Q+P,(P, P)\}$.
Let $P+Q \xrightarrow{\alpha} S$.
- Case 1: let $P+Q \xrightarrow{\alpha} S$ using [Sum1]. Then $P \xrightarrow{\alpha} S$. But $Q+P \xrightarrow{\alpha} S$ using [Sum2]. QED since $S \mathcal{R} S$.
- Case 2: let $P+Q \xrightarrow{\alpha} S$ using [Sum2]. Then $Q \xrightarrow{\alpha} S$. But $Q+P \xrightarrow{\alpha} S$ using [Sum1]. QED since $S \mathcal{R} S$.
Conversely let $Q+P \xrightarrow{\alpha} S$. QED by symmetry.

CCS and strong bisimulation (3/4)

Proof of theorem (continued)

- $(P+Q)+R \sim P+(Q+R)$. Show following \mathcal{R} is a bisimulation.

$$
\text { Take } \mathcal{R}=\{(P+Q)+R, P+(Q+R),(P, P)\} .
$$

$$
\text { Let }(P+Q)+R \xrightarrow{\alpha} S \text {. }
$$

- Case 1: let $(P+Q) \xrightarrow{\alpha} S$ using [Sum1].
* Case 1.1: let $P \xrightarrow{\alpha} S$ using [Sum1] .

Then $P+(Q+R) \xrightarrow{\alpha} S$ by [Sum1] .
QED since $S \mathcal{R} S$.

* Case 1.2: Let $Q \xrightarrow{\alpha} S$. Then $(Q+R) \xrightarrow{\alpha} S$ by [Sum1], and $P+(Q+R) \xrightarrow{\alpha} S$ by [Sum2]. QED since $S \mathcal{R} S$.
- Case 2: Let $R \xrightarrow{\alpha} S$ by [Sum2]. Then $(Q+R) \xrightarrow{\alpha} S$ by [Sum2], and $P+(Q+R) \xrightarrow{\alpha} S$ by [Sum2]. QED since $S \mathcal{R} S$.
By symmetry when $P+(Q+R) \xrightarrow{\alpha} S$.
- other equations...

Exercice 1 Give full proof of theorem.

CCS and strong bisimulation (4/4)

Theorem 2 [Expansion]

$$
\begin{aligned}
a . P \mid b . Q & \sim a \cdot(P \mid b \cdot Q)+b \cdot(a . P \mid Q) \\
a . P \mid \bar{a} \cdot Q & \sim a \cdot(P \mid \bar{a} \cdot Q)+\bar{a} \cdot(a \cdot P \mid Q)+\tau \cdot(P \mid Q)
\end{aligned}
$$

Exercice 2 Prove it.
Concurrency in CCS relies on interleaving. Never two actions occur at same time. Different from "true concurrency".

Exercice 3 Draw LTS for following processes:

$$
\begin{array}{cl}
P=(\nu a)((a+b) \mid \bar{a}) & K_{2} \stackrel{\text { def }}{=} \tau \cdot(\nu a)(a \mid(\bar{a}+b))+c . K_{3} \\
K_{1} \xlongequal{=} a \cdot\left(\tau \cdot K_{1}+b\right)+\tau \cdot a \cdot K_{1} & K_{3} \stackrel{\text { def }}{=} d \cdot K_{3}
\end{array}
$$

Exercice 4 Draw LTS for $(\nu c)\left(K_{1} \mid K_{2}\right)$ where

$$
K_{1} \stackrel{\text { def }}{=} a . \bar{c} . K_{1} \quad K_{2} \stackrel{\text { def }}{=} \text { b.c. } K_{2}
$$

Exercice 5 Give a CCS term for boolean semaphores.
Exercice 6 Give a CCS term for n-ary semaphores.

Strong bisimulation and congruence

Theorem 3 Strong bisimulation \sim is a congruence. Namely:

$$
P \sim Q \Rightarrow C[P] \sim C[Q] \quad \text { for any context } C[] .
$$

Exercice 7 Prove it.
This means that \sim can be used as standard equations.
Exercice 8 Prove by using equations of Theorems 1 and 2 that: $(\nu b)(a .(b \mid c)+\tau .(b \mid \bar{b} . c)) \sim a . c+\tau . \tau . c$

Exercice 9 Show $K \mid K \sim K$ when $K \xlongequal{\text { def }} a . K$.
Exercice 10 Show $K \sim K^{\prime}$ when $K \stackrel{\text { def }}{=} a . K$ and $K^{\prime} \stackrel{\text { def }}{=} a . a . K^{\prime}$.
Exercice 11 Show $K \sim a . K^{\prime}$ when $K \stackrel{\text { def }}{=} a . b . K$ and $K^{\prime} \stackrel{\text { def }}{=} b . a . K^{\prime}$.
Exercice 12 Show that $a .(b+c) \nsim a b+a c$.

