Concurrency 3

•

Jean-Jacques Lévy

jeanjacqueslevy.net/dea

Minimal language for concurrency

The λ -calculus is a minimal language for functional languages. It can also be used as a basis for imperative languages (via continuations).

What is a minimal language for concurrent processes ?

- CCS [Milner]
- π -calculus [Milner, Parrow, Walker, Sangiorgi]
- CSP [Hoare]
- Petri nets
- Mazurkiewitz traces
- Events structures ⇔ True concurrency [Winskel]
- IO-automatas [Lynch, Tuttle]

CCS (1/4)

Language

.

a,b,c	::=	(channel) names	
$\overline{a},\overline{b},\overline{c}$::=	co-names $\overline{\overline{a}} = a$	
α	::=	$a \mid \overline{a} \mid \tau$ actions	
P,Q,R	::=	$0 \mid \alpha . P \mid P + Q \mid (P \mid Q) \mid (\nu \alpha) P \mid K \qquad \text{processes}$	
$K \stackrel{\rm def}{=} P$::=	constant definitions	

$$\mathcal{A}ct = \{a, b, c, \ldots\} \cup \{\overline{a}, \overline{b}, \overline{c}, \ldots\} \cup \{\tau\}$$

Notation: α for $\alpha.0$

- 0 null process
- $\alpha.P$ sequential action
- P + Q non-deterministic (external) choice
- $P \mid Q$ parallel composition
- $(\nu\alpha)P$ restriction on α
- K (recursively defined) constant

CCS (2/4)

Examples (coffee machine revisited)

.

- $P_0 = A \qquad P'_0 = B \qquad C = (k.d.D + t.d.D)$ $A = c.(k.d.A + t.d.A) \qquad B = c.C \qquad D = c.C$ $P''_0 = E \qquad P'''_0 = F$
- $E = (c.k.d.E + c.t.d.E) \qquad F = c + (c.k.d.F + c.t.d.F)$

Interaction with coffee machine

 $\begin{array}{lll} P_0 \mid \overline{c}.\overline{k}.\overline{d} & P_0 \mid \overline{c}.\overline{k}.\overline{d} \mid \overline{c}.\overline{t}.\overline{d} \\ P_0 \mid \mathsf{Client1} & P_0' \mid \mathsf{Client1} & P_0'' \mid \mathsf{Client1} & P_0''' \mid \mathsf{Client1} \\ P_0 \mid \mathsf{Client2} & P_0'' \mid \mathsf{Client2} \mid \mathsf{Client2} & P_0 \mid \mathsf{Client1} \mid \mathsf{Client2} \\ \end{array}$ where

Client1 $\stackrel{\text{def}}{=} \overline{c}.\overline{k}.\overline{d}.$ Client1 Client2 $\stackrel{\text{def}}{=} \overline{c}.\overline{t}.\overline{d}.$ Client2

CCS (3/4)

Semantics (SOS)

$$[\operatorname{Act}] \alpha . P \xrightarrow{\alpha} P \qquad [\operatorname{Sum1}] \frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'} \qquad [\operatorname{Sum2}] \frac{Q \xrightarrow{\alpha} Q'}{P + Q \xrightarrow{\alpha} Q'}$$
$$[\operatorname{Par1}] \frac{P \xrightarrow{\alpha} P'}{P \mid Q \xrightarrow{\alpha} P' \mid Q} \qquad [\operatorname{Par2}] \frac{Q \xrightarrow{\alpha} Q'}{P \mid Q \xrightarrow{\alpha} P \mid Q'}$$
$$[\operatorname{Com}] \frac{P \xrightarrow{\alpha} P' \quad Q \xrightarrow{\overline{\alpha}} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q'} \qquad [\operatorname{Res}] \frac{P \xrightarrow{\alpha} P' \quad \alpha \notin \{a, \overline{a}\}}{(\nu a) P \xrightarrow{\alpha} (\nu a) P'}$$
$$[\operatorname{Rec}] \frac{P \xrightarrow{\alpha} P' \quad K \stackrel{\text{def}}{=} P}{K \xrightarrow{\alpha} P'}$$

CCS (4/4)

At present time, no values passed on communication channels. (see later for value passing calculi)

No buffering in communications. Different from TCP sockets, from Kahn/MacQueen flow systems.

- \Rightarrow communication by rendez-vous.
- \equiv more basic calculus.

Rendez-vous exist in Occam, Ada, CML, Ocaml's processes.

CCS and strong bisimulation (1/4)

Theorem 1 Following relations hold.

.

$$P + 0 \sim P$$

$$P + Q \sim Q + P$$

$$(P + Q) + R \sim P + (Q + R)$$

$$P + P \sim P$$

$$P \mid 0 \sim P$$

$$P \mid Q \sim Q \mid P$$

$$(P \mid Q) \mid R \sim P \mid (Q \mid R)$$

 $(\nu a)(P \mid Q) \sim ((\nu a)P) \mid Q$ $(\nu a)(\nu b)P \sim (\nu b)(\nu a)P$ $(\nu a)P \sim (\nu b)P\{b/a\}$ if b not bound in Q $(\nu a)\alpha . P \sim 0$ $(\nu a)\alpha.P \sim \alpha.(\nu a).P$

if $\alpha = a$ or $\alpha = \overline{a}$ otherwise

if a not free in Q

$$K \sim P$$
 if $K \stackrel{\text{def}}{=} P$

CCS and strong bisimulation (2/4)

Proof of previous theorem

• $P + 0 \sim P$. Take $\mathcal{R} = \{(P + 0, P), (P, P + 0), (P, P)\}$ and show \mathcal{R} is a bisimulation.

Let $P + 0 \xrightarrow{\alpha} P'$. Then $P \xrightarrow{\alpha} P'$ by rule [Sum1] since $0 \xrightarrow{\alpha} P'$ is not possible. And $P' \mathcal{R} P'$.

Conversely let $P \xrightarrow{\alpha} P'$. Then $P + 0 \xrightarrow{\alpha} P'$ by rule [Sum1]. And again $P' \mathcal{R} P'$.

• $P + Q \sim Q + P$. Show following \mathcal{R} is a bisimulation. Take $\mathcal{R} = \{P + Q, Q + P, (P, P)\}.$

Let $P + Q \xrightarrow{\alpha} S$.

- Case 1: let $P + Q \xrightarrow{\alpha} S$ using [Sum1]. Then $P \xrightarrow{\alpha} S$. But $Q + P \xrightarrow{\alpha} S$ using [Sum2]. QED since $S \mathcal{R} S$.
- Case 2: let $P + Q \xrightarrow{\alpha} S$ using [Sum2]. Then $Q \xrightarrow{\alpha} S$. But $Q + P \xrightarrow{\alpha} S$ using [Sum1]. QED since $S \mathcal{R} S$.

Conversely let $Q + P \xrightarrow{\alpha} S$. QED by symmetry.

CCS and strong bisimulation (3/4)

Proof of theorem (continued)

- $(P+Q) + R \sim P + (Q+R)$. Show following \mathcal{R} is a bisimulation. Take $\mathcal{R} = \{(P+Q) + R, P + (Q+R), (P,P)\}.$
 - Let $(P+Q) + R \xrightarrow{\alpha} S$.
 - Case 1: let $(P+Q) \xrightarrow{\alpha} S$ using [Sum1].
 - * Case 1.1: let $P \xrightarrow{\alpha} S$ using [Sum1]. Then $P + (Q + R) \xrightarrow{\alpha} S$ by [Sum1]. QED since $S \mathcal{R} S$.
 - * Case 1.2: Let $Q \xrightarrow{\alpha} S$. Then $(Q+R) \xrightarrow{\alpha} S$ by [Sum1], and $P + (Q+R) \xrightarrow{\alpha} S$ by [Sum2]. QED since $S \mathcal{R} S$.
 - Case 2: Let $R \xrightarrow{\alpha} S$ by [Sum2]. Then $(Q + R) \xrightarrow{\alpha} S$ by [Sum2], and $P + (Q + R) \xrightarrow{\alpha} S$ by [Sum2]. QED since $S \mathcal{R} S$.

By symmetry when $P + (Q + R) \xrightarrow{\alpha} S$.

• other equations ...

Exercice 1 Give full proof of theorem.

CCS and strong bisimulation (4/4)

Theorem 2 [Expansion]

$$a.P \mid b.Q \sim a.(P \mid b.Q) + b.(a.P \mid Q)$$
$$a.P \mid \overline{a}.Q \sim a.(P \mid \overline{a}.Q) + \overline{a}.(a.P \mid Q) + \tau.(P \mid Q)$$

Exercice 2 Prove it.

Concurrency in CCS relies on interleaving. Never two actions occur at same time. Different from "true concurrency".

Exercice 3 Draw LTS for following processes:

$$P = (\nu a)((a+b) \mid \overline{a}) \qquad K_2 \stackrel{\text{def}}{=} \tau.(\nu a)(a \mid (\overline{a}+b)) + c.K_3$$
$$K_1 \stackrel{\text{def}}{=} a.(\tau.K_1+b) + \tau.a.K_1 \qquad K_3 \stackrel{\text{def}}{=} d.K_3$$

Exercice 4 Draw LTS for $(\nu c)(K_1 | K_2)$ where

$$K_1 \stackrel{\text{def}}{=} a.\overline{c}.K_1 \qquad \qquad K_2 \stackrel{\text{def}}{=} b.c.K_2$$

Exercice 5 Give a CCS term for boolean semaphores. Exercice 6 Give a CCS term for *n*-ary semaphores.

Strong bisimulation and congruence

Theorem 3 Strong bisimulation \sim is a congruence. Namely:

 $P \sim Q \implies C[P] \sim C[Q]$ for any context C[].

Exercice 7 Prove it.

This means that \sim can be used as standard equations.

Exercice 8 Prove by using equations of Theorems 1 and 2 that: $(\nu b)(a.(b \mid c) + \tau.(b \mid \overline{b}.c)) \sim a.c + \tau.\tau.c$

Exercice 9 Show $K \mid K \sim K$ when $K \stackrel{\text{def}}{=} a.K$.

Exercice 10 Show $K \sim K'$ when $K \stackrel{\text{def}}{=} a.K$ and $K' \stackrel{\text{def}}{=} a.a.K'$.

Exercice 11 Show $K \sim a.K'$ when $K \stackrel{\text{def}}{=} a.b.K$ and $K' \stackrel{\text{def}}{=} b.a.K'$.

Exercice 12 Show that $a.(b+c) \not\sim ab + ac$.