
.

Concurrency 1

Shared Memory

Jean-Jacques Lévy

jeanjacqueslevy.net/dea

1

.

Why concurrency ?

1. Programs for multi-processors

2. Drivers for slow devices

3. Human users are concurrent

4. Distributed systems with multiple clients

5. Reduce lattency

6. Increase efficiency, but Amdahl’s law

S =
N

b ∗N + (1− b)

(S = speedup, b = sequential part, N processors)

2

.

Implicit Communication

Suppose x is a global variable. At beginning, x = 0

Consider

S = [x := x + 1; x := x + 1 || x := 2 ∗ x]

T = [x := x + 1; x := x + 1 || wait (x = 1); x := 2 ∗ x]

After S, then x ∈ {2, 3, 4}
After T , then x ∈ {3, 4}
T may be blocked

Conclusion

In S and T , interaction via x (shared memory)

3

.

Atomicity

Suppose x is a global variable. At beginning, x = 0

Consider

S = [x := x + 1 || x := x + 1]

After S, then x = 2.

However if

[x := x + 1] compiled into [A := x + 1; x := A]

Then

S = [A := x + 1; x := A] || [B := x + 1; x := B]

After S, then x ∈ {1, 2}.

Conclusion

1. [x := x + 1] was firstly considered atomic

2. Atomicity is important

4

.

Critical section – Mutual exclusion

Let P0 = [· · · ; C0; · · ·] and P1 = [· · · ; C1; · · ·]
C0 and C1 are critical sections (ie should not be executed

simultaneously).

Solution 1 At beginning, turn = 0.

P0 : · · ·
while turn != 0 do
;

C0;

turn := 1;

· · ·

P1 : · · ·
while turn != 1 do
;

C1;

turn := 0;

· · ·
P0 privileged, unfair.

5

.

Critical section – Mutual exclusion

Solution 2 At beginning, a0 = a1 = false .

P0 : · · ·
while a1 do
;

a0 := true;
C0;

a0 := false;
· · ·

P1 : · · ·
while a0 do
;

a1 := true;
C1;

a1 := false;
· · ·

False.

Solution 3 At beginning, a0 = a1 = false .

P0 : · · ·
a0 := true;
while a1 do
;

C0;

a0 := false;
· · ·

P1 : · · ·
a1 := true;
while a0 do
;

C1;

a1 := false;
· · ·

Deadlock. Both P0 and P1 blocked.

6

.

Dekker’s Algorithm (CACM 1965)

At beginning, a0 = a1 = false , turn ∈ {0, 1}

P0 : · · ·
a0 := true;
while a1 do

if (turn != 0) {

a0 := false;
while (turn != 0)

;

a0 := true;
}

C0;

turn := 1; a0 := false;
· · ·

P1 : · · ·
a1 := true;
while a0 do

if (turn != 1) {

a1 := false;
while (turn != 1)

;

a1 := true;
}

C1;

turn := 0; a1 := false;
· · ·

7

.

Peterson’s Algorithm (IPL June 81)

At beginning, a0 = a1 = false , turn ∈ {0, 1}

P0 : · · ·
a0 := true;
turn := 1;

while a1 && turn != 0 do
;

C0;

a0 := false;
· · ·

P1 : · · ·
a1 := true;
turn := 0;

while a0 && turn != 1 do
;

C1;

a0 := false;
· · ·

8

.

Synchronization

Concurrent/Distributed algorithms

1. Lamport : barber, baker, . . .

2. Dekker’s algorithm for P0, P1, PN (Dijsktra 1968)

3. Peterson is simpler and can be generalised to N processes

4. Proofs ? By model checking ? With assertions ? In temporal logic

(eg Lamport’s TLA) ?

5. Dekker’s algorithm is too complex

6. Dekker’s algorithm uses busy waiting

7. Fairness acheived because of fair scheduling

Need for higher constructs in concurrent programming.

Exercice 1 Try to define fairness.

9

.

Semaphores

A generalised semaphore s is integer variable with 2 operations

wait(s) : If s > 0 then s := s− 1

Otherwise be suspended on s.

signal(s) : If some process is suspended on s, wake it up

Otherwise s := s + 1.

Now mutual exclusion is easy :

At beginning, s = 1.

Then P1 || P2 where

P1 = [· · · ; wait(s); A; signal(s); · · ·]
P2 = [· · · ; wait(s); B; signal(s); · · ·]

10

.

Operational (micro-)semantics (sequential part)

Language

P, Q ::= skip | x := e | if b then P else Q | P ; Q | while b do P

e ::= expression

Semantics (SOS)

〈skip , σ〉 → 〈•, σ〉 〈x := e, σ〉 → 〈•, σ[σ(e)/x]〉

σ(e) = true
〈 if e then P else Q, σ〉 → 〈P, σ〉

σ(e) = false
〈 if e then P else Q, σ〉 → 〈Q, σ〉

〈P, σ〉 → 〈P ′, σ′〉
〈P ; Q, σ〉 → 〈P ′; Q, σ′〉 (P ′ 6= •) 〈P, σ〉 → 〈•, σ′〉

〈P ; Q, σ〉 → 〈Q, σ′〉

σ(e) = true
〈while e do P, σ〉 → 〈P ;while e do P, σ〉

σ(e) = false
〈while e do P, σ〉 → 〈•, σ〉

σ ∈ Variables 7→ Values σ[v/x](x) = v σ[v/x](y) = σ(y) if y 6= x

11

.

Operational semantics (parallel part)

Language

P, Q ::= . . . | P || Q | wait b | await b do P

Semantics (SOS)

〈P, σ〉 → 〈P ′, σ′〉
〈P || Q, σ〉 → 〈P ′ || Q, σ′〉

〈Q, σ〉 → 〈Q′, σ′〉
〈P || Q, σ〉 → 〈P || Q′, σ′〉

〈• || •, σ〉 → 〈•, σ〉 σ(b) = true
〈 wait b, σ〉 → 〈•, σ〉

σ(b) = true 〈P, σ〉 → 〈P ′, σ′〉
〈await b do P, σ〉 → 〈P ′, σ′〉

σ(b) = true 〈P, σ〉 → 〈•, σ′〉
〈await b do P, σ〉 → 〈•, σ′〉

Exercice 2 Complete SOS for e and v

Exercice 3 Find SOS for boolean semaphores.

Exercice 4 Avoid spurious silent steps in if , while and ||.

12

.

SOS reductions

Notations

〈P0, σ0〉 → 〈P1, σ1〉 → 〈P2, σ2〉 → · · · 〈Pn, σn〉 →

We write

〈P0, σ0〉 →∗ 〈Pn, σn〉 when n ≥ 0,

〈P0, σ0〉 →+ 〈Pn, σn〉 when n > 0.

Remark that in our system, we have no rule such as

σ(b) = false

〈 wait b, σ〉 → 〈 wait b, σ〉

Ie no busy waiting. Reductions may block. (Same remark for

await b do P).

13

.

Atomic statements (Exercices)

Exercice 5 If we make following extension

P, Q ::= . . . | {P}

what is the meaning of following rule ?

〈P, σ〉 →+ 〈•, σ′〉
〈{P}, σ〉 → 〈•, σ′〉

Exercice 6 Show await b do P ≡ { wait b; P}

Exercice 7 Meaning of {while true do skip } ? Find simpler equivalent

statement.

Exercice 8 Try to add procedure calls to our SOS semantics.

14

.

Producer - Consumer

15

.

A typical thread package. Modula-3

INTERFACE Thread;

TYPE

T <: ROOT;

Mutex = MUTEX;

Condition <: ROOT;

A Thread.T is a handle on a thread. A Mutex is locked by some thread,

or unlocked. A Condition is a set of waiting threads. A newly-allocated

Mutex is unlocked ; a newly-allocated Condition is empty. It is a checked

runtime error to pass the NIL Mutex, Condition, or T to any procedure

in this interface.

16

.

PROCEDURE Wait(m: Mutex; c: Condition);

The calling thread must have m locked. Atomically unlocks m and waits

on c. Then relocks m and returns.

PROCEDURE Acquire(m: Mutex);

Wait until m is unlocked and then lock it.

PROCEDURE Release(m: Mutex);

The calling thread must have m locked. Unlocks m.

PROCEDURE Broadcast(c: Condition);

All threads waiting on c become eligible to run.

PROCEDURE Signal(c: Condition);

One or more threads waiting on c become eligible to run.

17

.

Locks

A LOCK statement has the form :

LOCK mu DO S END

where S is a statement and mu is an expression. It is equivalent to :

WITH m = mu DO

Thread.Acquire(m);

TRY S FINALLY Thread.Release(m) END

END

where m stands for a variable that does not occur in S.

18

.

Try Finally

A statement of the form :

TRY S_1 FINALLY S_2 END

executes statement S1 and then statement S2. If the outcome of S1 is

normal, the TRY statement is equivalent to S1 ;S2. If the outcome of S1

is an exception and the outcome of S2 is normal, the exception from S1

is re-raised after S2 is executed. If both outcomes are exceptions, the

outcome of the TRY is the exception from S2.

19

.

Concurrent stack

Popping in a stack :

VAR nonEmpty := NEW(Thread.Condition);

LOCK m DO

WHILE head = NIL DO Thread.Wait(m, nonEmpty) END;

topElement := head;

head := head.next;

END;

Pushing into a stack :

LOCK m DO

newElement.next := head;

head := newElement;

Thread.Signal (nonEmpty);

END;

Caution : WHILE is safer than IF in Pop.

20

.

Concurrent table

VAR table := ARRAY [0..999] of REFANY {NIL, ...};

VAR i:[0..1000] := 0;

PROCEDURE Insert (r: REFANY) =

BEGIN

IF r <> NIL THEN

table[i] := r;

i := i+1;

END;

END Insert;

Exercice 9 Complete previous program to avoid lost values.

21

.

Deadlocks

Thread A locks mutex m1

Thread B locks mutex m2

Thread A trying to lock m2

Thread B trying to lock m1

Simple stragegy for semaphore controls

Respect a partial order between semaphores. For example, A and B uses

m1 and m2 in same order.

22

.

Exercices

Exercice 10 Simulate conditions with semaphores. Hint : count

number of waiting processes on condition.

Exercice 11 Readers and writers. A buffer may be read by several

processes at same time. But only one process may write in it. Write

procedures StartRead, EndRead, StartWrite, EndWrite.

Exercice 12 Give SOS for operations on conditions.

23

